sdrangel/plugins/samplesource/sdrdaemonfec/sdrdaemonfecbuffer.cpp

297 wiersze
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <QDebug>
#include <cassert>
#include <cstring>
#include <cmath>
#include <lz4.h>
#include "sdrdaemonfecbuffer.h"
const int SDRdaemonFECBuffer::m_udpPayloadSize = 512;
const int SDRdaemonFECBuffer::m_sampleSize = 2;
const int SDRdaemonFECBuffer::m_iqSampleSize = 2 * m_sampleSize;
const int SDRdaemonFECBuffer::m_rawBufferLengthSeconds = 8; // should be even
const int SDRdaemonFECBuffer::m_rawBufferMinNbFrames = 50;
SDRdaemonFECBuffer::SDRdaemonFECBuffer(uint32_t throttlems) :
m_frameHead(0),
m_decoderSlotHead(nbDecoderSlots/2),
m_curNbBlocks(0),
m_curNbRecovery(0),
m_throttlemsNominal(throttlems),
m_readIndex(0),
m_readBuffer(0),
m_readSize(0),
m_bufferLenSec(0.0f)
{
m_currentMeta.init();
m_framesNbBytes = nbDecoderSlots * sizeof(BufferFrame) * m_iqSampleSize;
m_wrDeltaEstimate = m_framesNbBytes / 2;
}
SDRdaemonFECBuffer::~SDRdaemonFECBuffer()
{
if (m_readBuffer) {
delete[] m_readBuffer;
}
}
void SDRdaemonFECBuffer::initDecoderSlotsAddresses()
{
for (int i = 0; i < nbDecoderSlots; i++)
{
for (int j = 0; j < nbOriginalBlocks - 1; j++)
{
m_decoderSlots[i].m_originalBlockPtrs[j] = &m_frames[i].m_blocks[j];
}
}
}
void SDRdaemonFECBuffer::initDecodeAllSlots()
{
for (int i = 0; i < nbDecoderSlots; i++)
{
m_decoderSlots[i].m_blockCount = 0;
m_decoderSlots[i].m_recoveryCount = 0;
m_decoderSlots[i].m_decoded = false;
m_decoderSlots[i].m_blockZero.m_metaData.init();
}
}
void SDRdaemonFECBuffer::initReadIndex()
{
m_readIndex = ((m_decoderSlotHead + (nbDecoderSlots/2)) % nbDecoderSlots) * sizeof(BufferFrame);
m_wrDeltaEstimate = m_framesNbBytes / 2;
}
void SDRdaemonFECBuffer::initDecodeSlot(int slotIndex)
{
int pseudoWriteIndex = slotIndex * sizeof(BufferFrame);
m_wrDeltaEstimate = pseudoWriteIndex - m_readIndex;
// collect stats before voiding the slot
m_curNbBlocks = m_decoderSlots[slotIndex].m_blockCount;
m_curNbRecovery = m_decoderSlots[slotIndex].m_recoveryCount;
m_avgNbBlocks(m_curNbBlocks);
m_avgNbRecovery(m_curNbRecovery);
// void the slot
m_decoderSlots[slotIndex].m_blockCount = 0;
m_decoderSlots[slotIndex].m_recoveryCount = 0;
m_decoderSlots[slotIndex].m_decoded = false;
m_decoderSlots[slotIndex].m_blockZero.m_metaData.init();
memset((void *) m_decoderSlots[slotIndex].m_blockZero.m_samples, 0, samplesPerBlockZero * sizeof(Sample));
memset((void *) m_frames[slotIndex].m_blocks, 0, (nbOriginalBlocks - 1) * samplesPerBlock * sizeof(Sample));
}
void SDRdaemonFECBuffer::writeData(char *array, uint32_t length)
{
assert(length == udpSize);
bool dataAvailable = false;
SuperBlock *superBlock = (SuperBlock *) array;
int frameIndex = superBlock->header.frameIndex;
int decoderIndex = frameIndex % nbDecoderSlots;
if (m_frameHead == -1) // initial state
{
m_decoderSlotHead = decoderIndex; // new decoder slot head
m_frameHead = frameIndex;
initReadIndex(); // reset read index
initDecodeAllSlots(); // initialize all slots
}
else
{
int frameDelta = m_frameHead - frameIndex;
if (frameDelta < 0)
{
if (-frameDelta < nbDecoderSlots) // new frame head not too new
{
m_decoderSlotHead = decoderIndex; // new decoder slot head
m_frameHead = frameIndex;
dataAvailable = true;
initDecodeSlot(decoderIndex); // collect stats and re-initialize current slot
}
else if (-frameDelta <= sizeof(uint16_t) - nbDecoderSlots) // loss of sync start over
{
m_decoderSlotHead = frameIndex % nbDecoderSlots; // new decoder slot head
decoderIndex = m_decoderSlotHead;
m_frameHead = frameIndex;
initReadIndex(); // reset read index
initDecodeAllSlots(); // re-initialize all slots
}
}
else
{
if (frameDelta > sizeof(uint16_t) - nbDecoderSlots) // new frame head not too new
{
m_decoderSlotHead = decoderIndex; // new decoder slot head
m_frameHead = frameIndex;
dataAvailable = true;
initDecodeSlot(decoderIndex); // collect stats and re-initialize current slot
}
else if (frameDelta >= nbDecoderSlots) // loss of sync start over
{
m_decoderSlotHead = frameIndex % nbDecoderSlots; // new decoder slot head
decoderIndex = m_decoderSlotHead;
m_frameHead = frameIndex;
initReadIndex(); // reset read index
initDecodeAllSlots(); // re-initialize all slots
}
}
}
// decoderIndex should now be correctly set
int blockIndex = superBlock->header.blockIndex;
int blockHead = m_decoderSlots[decoderIndex].m_blockCount;
if (blockHead < nbOriginalBlocks) // not enough blocks to decode -> store data
{
if (blockIndex == 0) // first block with meta
{
SuperBlockZero *superBlockZero = (SuperBlockZero *) array;
m_decoderSlots[decoderIndex].m_blockZero = superBlockZero->protectedBlock;
m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[blockHead].Block = (void *) &m_decoderSlots[decoderIndex].m_blockZero;
memcpy((void *) m_frames[decoderIndex].m_blockZero.m_samples,
(const void *) m_decoderSlots[decoderIndex].m_blockZero.m_samples,
samplesPerBlockZero * sizeof(Sample));
}
else if (blockIndex < nbOriginalBlocks) // normal block
{
m_frames[decoderIndex].m_blocks[blockIndex - 1] = superBlock->protectedBlock;
m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[blockHead].Block = (void *) &m_frames[decoderIndex].m_blocks[blockIndex - 1];
}
else // redundancy block
{
m_decoderSlots[decoderIndex].m_recoveryBlocks[m_decoderSlots[decoderIndex].m_recoveryCount] = superBlock->protectedBlock;
m_decoderSlots[decoderIndex].m_recoveryCount++;
}
m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[blockHead].Index = blockIndex;
m_decoderSlots[decoderIndex].m_blockCount++;
}
else if (!m_decoderSlots[decoderIndex].m_decoded) // ready to decode
{
if (m_decoderSlots[decoderIndex].m_blockZero.m_metaData.m_nbFECBlocks < 0) // block zero has not been received
{
m_paramsCM256.RecoveryCount = m_currentMeta.m_nbFECBlocks; // take last value for number of FEC blocks
}
else
{
m_paramsCM256.RecoveryCount = m_decoderSlots[decoderIndex].m_blockZero.m_metaData.m_nbFECBlocks;
}
if (m_decoderSlots[decoderIndex].m_recoveryCount > 0) // recovery data used
{
if (cm256_decode(m_paramsCM256, m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks)) // failure to decode
{
qDebug("SDRdaemonFECBuffer::writeAndRead: CM256 decode error");
}
else // success to decode
{
int nbOriginalBlocks = m_decoderSlots[decoderIndex].m_blockCount - m_decoderSlots[decoderIndex].m_recoveryCount;
for (int ir = 0; ir < m_decoderSlots[decoderIndex].m_recoveryCount; ir++) // recover lost blocks
{
int blockIndex = m_decoderSlots[decoderIndex].m_cm256DescriptorBlocks[nbOriginalBlocks+ir].Index;
if (blockIndex == 0)
{
ProtectedBlockZero *recoveredBlockZero = (ProtectedBlockZero *) &m_decoderSlots[decoderIndex].m_recoveryBlocks[ir];
m_decoderSlots[decoderIndex].m_blockZero.m_metaData = recoveredBlockZero->m_metaData;
memcpy((void *) m_frames[decoderIndex].m_blockZero.m_samples,
(const void *) recoveredBlockZero->m_samples,
samplesPerBlockZero * sizeof(Sample));
}
else
{
m_frames[decoderIndex].m_blocks[blockIndex - 1] = m_decoderSlots[decoderIndex].m_recoveryBlocks[ir];
}
}
}
}
if (m_decoderSlots[decoderIndex].m_blockZero.m_metaData.m_nbFECBlocks >= 0) // meta data valid
{
if (!(m_decoderSlots[decoderIndex].m_blockZero.m_metaData == m_currentMeta))
{
int sampleRate = m_decoderSlots[decoderIndex].m_blockZero.m_metaData.m_sampleRate;
if (sampleRate > 0) {
m_bufferLenSec = (float) m_framesNbBytes / (float) sampleRate;
}
printMeta("SDRdaemonFECBuffer::writeData", &m_decoderSlots[decoderIndex].m_blockZero.m_metaData); // print for change other than timestamp
}
m_currentMeta = m_decoderSlots[decoderIndex].m_blockZero.m_metaData; // renew current meta
}
m_decoderSlots[decoderIndex].m_decoded = true;
}
}
uint8_t *SDRdaemonFECBuffer::readData(int32_t length)
{
uint8_t *buffer = (uint8_t *) m_frames;
uint32_t readIndex = m_readIndex;
if (m_readIndex + length < m_framesNbBytes) // ends before buffer bound
{
m_readIndex += length;
return &buffer[readIndex];
}
else if (m_readIndex + length == m_framesNbBytes) // ends at buffer bound
{
m_readIndex = 0;
return &buffer[readIndex];
}
else // ends after buffer bound
{
if (length > m_readSize) // reallocate composition buffer if necessary
{
if (m_readBuffer) {
delete[] m_readBuffer;
}
m_readBuffer = new uint8_t[length];
m_readSize = length;
}
std::memcpy((void *) m_readBuffer, (const void *) &buffer[m_readIndex], m_framesNbBytes - m_readIndex); // copy end of buffer
length -= m_framesNbBytes - m_readIndex;
std::memcpy((void *) &m_readBuffer[m_framesNbBytes - m_readIndex], (const void *) buffer, length); // copy start of buffer
m_readIndex = length;
return m_readBuffer;
}
}
void SDRdaemonFECBuffer::printMeta(const QString& header, MetaDataFEC *metaData)
{
qDebug() << header << ": "
<< "|" << metaData->m_centerFrequency
<< ":" << metaData->m_sampleRate
<< ":" << (int) (metaData->m_sampleBytes & 0xF)
<< ":" << (int) metaData->m_sampleBits
<< ":" << (int) metaData->m_nbOriginalBlocks
<< ":" << (int) metaData->m_nbFECBlocks
<< "|" << metaData->m_tv_sec
<< ":" << metaData->m_tv_usec
<< "|";
}