kopia lustrzana https://github.com/f4exb/sdrangel
726 wiersze
22 KiB
C++
726 wiersze
22 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright (C) 2019 Edouard Griffiths, F4EXB //
|
|
// //
|
|
// This program is free software; you can redistribute it and/or modify //
|
|
// it under the terms of the GNU General Public License as published by //
|
|
// the Free Software Foundation as version 3 of the License, or //
|
|
// (at your option) any later version. //
|
|
// //
|
|
// This program is distributed in the hope that it will be useful, //
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
// GNU General Public License V3 for more details. //
|
|
// //
|
|
// You should have received a copy of the GNU General Public License //
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
#include "dsp/dspengine.h"
|
|
#include "dsp/fftfactory.h"
|
|
#include "dsp/fftengine.h"
|
|
|
|
#include "interferometercorr.h"
|
|
|
|
std::complex<float> s2c(const Sample& s)
|
|
{
|
|
return std::complex<float>{s.real() / SDR_RX_SCALEF, s.imag() / SDR_RX_SCALEF};
|
|
}
|
|
|
|
std::complex<float> s2cNorm(const Sample& s)
|
|
{
|
|
float x = s.real() / SDR_RX_SCALEF;
|
|
float y = s.imag() / SDR_RX_SCALEF;
|
|
float m = sqrt(x*x + y*y);
|
|
return std::complex<float>{x/m, y/m};
|
|
}
|
|
|
|
Sample sFirst(const Sample& a, const Sample& b) {
|
|
(void) b;
|
|
return a;
|
|
}
|
|
|
|
Sample sSecond(const Sample& a, const Sample& b) {
|
|
(void) a;
|
|
return b;
|
|
}
|
|
|
|
Sample sSecondInv(const Sample& a, const Sample& b) {
|
|
(void) a;
|
|
return Sample{-b.real(), -b.imag()};
|
|
}
|
|
|
|
Sample sAdd(const Sample& a, const Sample& b) { //!< Sample addition
|
|
return Sample{(a.real()+b.real())/2, (a.imag()+b.imag())/2};
|
|
}
|
|
|
|
Sample sAddInv(const Sample& a, const Sample& b) { //!< Sample addition
|
|
return Sample{(a.real()-b.real())/2, (a.imag()+b.imag())/2};
|
|
}
|
|
|
|
Sample sMulConj(const Sample& a, const Sample& b) { //!< Sample multiply with conjugate
|
|
Sample s;
|
|
// Integer processing
|
|
int64_t ax = a.real();
|
|
int64_t ay = a.imag();
|
|
int64_t bx = b.real();
|
|
int64_t by = b.imag();
|
|
int64_t x = ax*bx + ay*by;
|
|
int64_t y = ay*bx - ax*by;
|
|
s.setReal(x>>(SDR_RX_SAMP_SZ-1));
|
|
s.setImag(y>>(SDR_RX_SAMP_SZ-1));
|
|
// Floating point processing (in practice there is no significant performance difference)
|
|
// float ax = a.real() / SDR_RX_SCALEF;
|
|
// float ay = a.imag() / SDR_RX_SCALEF;
|
|
// float bx = b.real() / SDR_RX_SCALEF;
|
|
// float by = b.imag() / SDR_RX_SCALEF;
|
|
// float x = ax*bx + ay*by;
|
|
// float y = ay*bx - ax*by;
|
|
// s.setReal(x*SDR_RX_SCALEF);
|
|
// s.setImag(y*SDR_RX_SCALEF);
|
|
return s;
|
|
}
|
|
|
|
Sample sMulConjInv(const Sample& a, const Sample& b) { //!< Sample multiply with conjugate
|
|
Sample s;
|
|
// Integer processing
|
|
int64_t ax = a.real();
|
|
int64_t ay = a.imag();
|
|
int64_t bx = -b.real();
|
|
int64_t by = -b.imag();
|
|
int64_t x = ax*bx + ay*by;
|
|
int64_t y = ay*bx - ax*by;
|
|
s.setReal(x>>(SDR_RX_SAMP_SZ-1));
|
|
s.setImag(y>>(SDR_RX_SAMP_SZ-1));
|
|
return s;
|
|
}
|
|
|
|
Sample invfft2s(const std::complex<float>& a) { //!< Complex float to Sample for 1 side time correlation
|
|
Sample s;
|
|
s.setReal(a.real()/2.0f);
|
|
s.setImag(a.imag()/2.0f);
|
|
return s;
|
|
}
|
|
|
|
Sample invfft2s2(const std::complex<float>& a) { //!< Complex float to Sample for 2 sides time correlation
|
|
Sample s;
|
|
s.setReal(a.real());
|
|
s.setImag(a.imag());
|
|
return s;
|
|
}
|
|
|
|
Sample invfft2star(const std::complex<float>& a) { //!< Complex float to Sample for 1 side time correlation
|
|
Sample s;
|
|
s.setReal(a.real()/2.82842712475f); // 2*sqrt(2)
|
|
s.setImag(a.imag()/2.82842712475f);
|
|
return s;
|
|
}
|
|
|
|
InterferometerCorrelator::InterferometerCorrelator(int fftSize) :
|
|
m_corrType(InterferometerSettings::CorrelationAdd),
|
|
m_fftSize(fftSize)
|
|
{
|
|
setPhase(0);
|
|
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
|
|
m_window.create(FFTWindow::Function::Hanning, fftSize);
|
|
m_data0w.resize(m_fftSize);
|
|
m_data1w.resize(m_fftSize);
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
m_fftSequences[i] = fftFactory->getEngine(2*fftSize, false, &m_fft[i]); // internally twice the data FFT size
|
|
m_fft2Sequences[i] = fftFactory->getEngine(fftSize, false, &m_fft2[i]);
|
|
}
|
|
|
|
m_invFFTSequence = fftFactory->getEngine(2*fftSize, true, &m_invFFT);
|
|
m_invFFT2Sequence = fftFactory->getEngine(fftSize, true, &m_invFFT2);
|
|
|
|
m_dataj = new std::complex<float>[2*fftSize]; // receives actual FFT result hence twice the data FFT size
|
|
m_scorr.resize(fftSize);
|
|
m_tcorr.resize(fftSize);
|
|
m_scorrSize = fftSize;
|
|
m_tcorrSize = fftSize;
|
|
}
|
|
|
|
InterferometerCorrelator::~InterferometerCorrelator()
|
|
{
|
|
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
|
|
fftFactory->releaseEngine(2*m_fftSize, true, m_invFFTSequence);
|
|
fftFactory->releaseEngine(m_fftSize, true, m_invFFT2Sequence);
|
|
delete[] m_dataj;
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
fftFactory->releaseEngine(2*m_fftSize, false, m_fftSequences[i]);
|
|
fftFactory->releaseEngine(m_fftSize, false, m_fft2Sequences[i]);
|
|
}
|
|
}
|
|
|
|
bool InterferometerCorrelator::performCorr(
|
|
const SampleVector& data0,
|
|
unsigned int size0,
|
|
const SampleVector& data1,
|
|
unsigned int size1
|
|
)
|
|
{
|
|
bool results = false;
|
|
|
|
if (m_phase == 0)
|
|
{
|
|
switch (m_corrType)
|
|
{
|
|
case InterferometerSettings::Correlation0:
|
|
results = performOpCorr(data0, size0, data1, size1, sFirst);
|
|
break;
|
|
case InterferometerSettings::Correlation1:
|
|
results = performOpCorr(data0, size0, data1, size1, sSecond);
|
|
break;
|
|
case InterferometerSettings::CorrelationAdd:
|
|
results = performOpCorr(data0, size0, data1, size1, sAdd);
|
|
break;
|
|
case InterferometerSettings::CorrelationMultiply:
|
|
results = performOpCorr(data0, size0, data1, size1, sMulConj);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFT:
|
|
results = performIFFTCorr(data0, size0, data1, size1);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFTStar:
|
|
results = performIFFTCorr(data0, size0, data1, size1, true);
|
|
break;
|
|
case InterferometerSettings::CorrelationFFT:
|
|
results = performFFTProd(data0, size0, data1, size1);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFT2:
|
|
results = performIFFT2Corr(data0, size0, data1, size1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else if ((m_phase == -180) || (m_phase == 180))
|
|
{
|
|
if ((m_corrType == InterferometerSettings::CorrelationIFFT)
|
|
|| (m_corrType == InterferometerSettings::CorrelationIFFT2)
|
|
|| (m_corrType == InterferometerSettings::CorrelationIFFTStar)
|
|
|| (m_corrType == InterferometerSettings::CorrelationFFT))
|
|
{
|
|
if (size1 > m_data1p.size()) {
|
|
m_data1p.resize(size1);
|
|
}
|
|
|
|
std::transform(
|
|
data1.begin(),
|
|
data1.begin() + size1,
|
|
m_data1p.begin(),
|
|
[](const Sample& s) -> Sample {
|
|
return Sample{-s.real(), -s.imag()};
|
|
}
|
|
);
|
|
}
|
|
|
|
switch (m_corrType)
|
|
{
|
|
case InterferometerSettings::Correlation0:
|
|
results = performOpCorr(data0, size0, data1, size1, sFirst);
|
|
break;
|
|
case InterferometerSettings::Correlation1:
|
|
results = performOpCorr(data0, size0, data1, size1, sSecondInv);
|
|
break;
|
|
case InterferometerSettings::CorrelationAdd:
|
|
results = performOpCorr(data0, size0, data1, size1, sAddInv);
|
|
break;
|
|
case InterferometerSettings::CorrelationMultiply:
|
|
results = performOpCorr(data0, size0, data1, size1, sMulConjInv);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFT:
|
|
results = performIFFTCorr(data0, size0, m_data1p, size1);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFTStar:
|
|
results = performIFFTCorr(data0, size0, m_data1p, size1, true);
|
|
break;
|
|
case InterferometerSettings::CorrelationFFT:
|
|
results = performFFTProd(data0, size0, m_data1p, size1);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFT2:
|
|
results = performIFFT2Corr(data0, size0, m_data1p, size1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (size1 > m_data1p.size()) {
|
|
m_data1p.resize(size1);
|
|
}
|
|
|
|
std::transform(
|
|
data1.begin(),
|
|
data1.begin() + size1,
|
|
m_data1p.begin(),
|
|
[this](const Sample& s) -> Sample {
|
|
Sample t;
|
|
int64_t sx = s.real();
|
|
int64_t sy = s.imag();
|
|
int64_t x = sx*m_cos + sy*m_sin;
|
|
int64_t y = sy*m_cos - sx*m_sin;
|
|
t.setReal(x>>(SDR_RX_SAMP_SZ-1));
|
|
t.setImag(y>>(SDR_RX_SAMP_SZ-1));
|
|
return t;
|
|
}
|
|
);
|
|
|
|
switch (m_corrType)
|
|
{
|
|
case InterferometerSettings::Correlation0:
|
|
results = performOpCorr(data0, size0, m_data1p, size1, sFirst);
|
|
break;
|
|
case InterferometerSettings::Correlation1:
|
|
results = performOpCorr(data0, size0, m_data1p, size1, sSecond);
|
|
break;
|
|
case InterferometerSettings::CorrelationAdd:
|
|
results = performOpCorr(data0, size0, m_data1p, size1, sAdd);
|
|
break;
|
|
case InterferometerSettings::CorrelationMultiply:
|
|
results = performOpCorr(data0, size0, m_data1p, size1, sMulConj);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFT:
|
|
results = performIFFTCorr(data0, size0, m_data1p, size1);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFTStar:
|
|
results = performIFFTCorr(data0, size0, m_data1p, size1, true);
|
|
break;
|
|
case InterferometerSettings::CorrelationFFT:
|
|
results = performFFTProd(data0, size0, m_data1p, size1);
|
|
break;
|
|
case InterferometerSettings::CorrelationIFFT2:
|
|
results = performIFFT2Corr(data0, size0, m_data1p, size1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
bool InterferometerCorrelator::performOpCorr(
|
|
const SampleVector& data0,
|
|
unsigned int size0,
|
|
const SampleVector& data1,
|
|
unsigned int size1,
|
|
Sample sampleOp(const Sample& a, const Sample& b)
|
|
)
|
|
{
|
|
unsigned int size = std::min(size0, size1);
|
|
adjustTCorrSize(size);
|
|
|
|
std::transform(
|
|
data0.begin(),
|
|
data0.begin() + size,
|
|
data1.begin(),
|
|
m_tcorr.begin(),
|
|
sampleOp
|
|
);
|
|
|
|
m_processed = size;
|
|
m_remaining[0] = size0 - size;
|
|
m_remaining[1] = size1 - size;
|
|
return true;
|
|
}
|
|
|
|
bool InterferometerCorrelator::performIFFTCorr(
|
|
const SampleVector& data0,
|
|
unsigned int size0,
|
|
const SampleVector& data1,
|
|
unsigned int size1,
|
|
bool star
|
|
)
|
|
{
|
|
unsigned int size = std::min(size0, size1);
|
|
int nfft = 0;
|
|
SampleVector::const_iterator begin0 = data0.begin();
|
|
SampleVector::const_iterator begin1 = data1.begin();
|
|
adjustSCorrSize(size);
|
|
adjustTCorrSize(size);
|
|
|
|
while (size >= m_fftSize)
|
|
{
|
|
// FFT[0]
|
|
std::transform(
|
|
begin0,
|
|
begin0 + m_fftSize,
|
|
m_fft[0]->in(),
|
|
s2c
|
|
);
|
|
m_window.apply(m_fft[0]->in());
|
|
std::fill(m_fft[0]->in() + m_fftSize, m_fft[0]->in() + 2*m_fftSize, std::complex<float>{0, 0});
|
|
m_fft[0]->transform();
|
|
|
|
// FFT[1]
|
|
std::transform(
|
|
begin1,
|
|
begin1 + m_fftSize,
|
|
m_fft[1]->in(),
|
|
s2c
|
|
);
|
|
m_window.apply(m_fft[1]->in());
|
|
std::fill(m_fft[1]->in() + m_fftSize, m_fft[1]->in() + 2*m_fftSize, std::complex<float>{0, 0});
|
|
m_fft[1]->transform();
|
|
|
|
// conjugate FFT[1]
|
|
std::transform(
|
|
m_fft[1]->out(),
|
|
m_fft[1]->out() + 2*m_fftSize,
|
|
m_dataj,
|
|
[](const std::complex<float>& c) -> std::complex<float> {
|
|
return std::conj(c);
|
|
}
|
|
);
|
|
|
|
// product of FFT[1]* with FFT[0] and store in inverse FFT input
|
|
std::transform(
|
|
m_fft[0]->out(),
|
|
m_fft[0]->out() + 2*m_fftSize,
|
|
m_dataj,
|
|
m_invFFT->in(),
|
|
[](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
|
|
return (a*b);
|
|
}
|
|
);
|
|
|
|
// copy product to correlation spectrum - convert and scale to FFT size and Hanning window
|
|
std::transform(
|
|
m_invFFT->in(),
|
|
m_invFFT->in() + m_fftSize,
|
|
m_scorr.begin() + nfft*m_fftSize,
|
|
[this](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()*(SDR_RX_SCALEF/m_fftSize));
|
|
s.setImag(a.imag()*(SDR_RX_SCALEF/m_fftSize));
|
|
return s;
|
|
}
|
|
);
|
|
|
|
// do the inverse FFT to get time correlation
|
|
m_invFFT->transform();
|
|
|
|
if (star)
|
|
{
|
|
// sum first half with the reversed second half as one is the conjugate of the other this should yield constant phase
|
|
*m_tcorr.begin() = invfft2star(m_invFFT->out()[0]); // t = 0
|
|
std::reverse(m_invFFT->out() + m_fftSize, m_invFFT->out() + 2*m_fftSize);
|
|
std::transform(
|
|
m_invFFT->out() + 1,
|
|
m_invFFT->out() + m_fftSize,
|
|
m_invFFT->out() + m_fftSize,
|
|
m_tcorr.begin() + nfft*m_fftSize,
|
|
[](const std::complex<float>& a, const std::complex<float>& b) -> Sample {
|
|
Sample s;
|
|
std::complex<float> sum = a + b;
|
|
s.setReal(sum.real()/12.0f);
|
|
s.setImag(sum.imag()/12.0f);
|
|
return s;
|
|
}
|
|
);
|
|
}
|
|
else
|
|
{
|
|
std::transform(
|
|
m_invFFT->out(),
|
|
m_invFFT->out() + m_fftSize,
|
|
m_tcorr.begin() + nfft*m_fftSize,
|
|
[](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()/6.0f);
|
|
s.setImag(a.imag()/6.0f);
|
|
return s;
|
|
}
|
|
);
|
|
}
|
|
|
|
size -= m_fftSize;
|
|
begin0 += m_fftSize;
|
|
begin1 += m_fftSize;
|
|
nfft++;
|
|
}
|
|
|
|
// update the samples counters
|
|
m_processed = nfft*m_fftSize;
|
|
m_remaining[0] = size0 - nfft*m_fftSize;
|
|
m_remaining[1] = size1 - nfft*m_fftSize;
|
|
|
|
return nfft > 0;
|
|
}
|
|
|
|
bool InterferometerCorrelator::performIFFT2Corr(
|
|
const SampleVector& data0,
|
|
unsigned int size0,
|
|
const SampleVector& data1,
|
|
unsigned int size1
|
|
)
|
|
{
|
|
unsigned int size = std::min(size0, size1);
|
|
int nfft = 0;
|
|
SampleVector::const_iterator begin0 = data0.begin();
|
|
SampleVector::const_iterator begin1 = data1.begin();
|
|
adjustSCorrSize(size);
|
|
adjustTCorrSize(size);
|
|
|
|
while (size >= m_fftSize)
|
|
{
|
|
// FFT[0]
|
|
std::transform(
|
|
begin0,
|
|
begin0 + m_fftSize,
|
|
m_fft2[0]->in(),
|
|
s2c
|
|
);
|
|
m_window.apply(m_fft2[0]->in());
|
|
m_fft2[0]->transform();
|
|
|
|
// FFT[1]
|
|
std::transform(
|
|
begin1,
|
|
begin1 + m_fftSize,
|
|
m_fft2[1]->in(),
|
|
s2c
|
|
);
|
|
m_window.apply(m_fft2[1]->in());
|
|
m_fft2[1]->transform();
|
|
|
|
// conjugate FFT[1]
|
|
std::transform(
|
|
m_fft2[1]->out(),
|
|
m_fft2[1]->out() + m_fftSize,
|
|
m_dataj,
|
|
[](const std::complex<float>& c) -> std::complex<float> {
|
|
return std::conj(c);
|
|
}
|
|
);
|
|
|
|
// product of FFT[1]* with FFT[0] and store in inverse FFT input
|
|
std::transform(
|
|
m_fft2[0]->out(),
|
|
m_fft2[0]->out() + m_fftSize,
|
|
m_dataj,
|
|
m_invFFT2->in(),
|
|
[](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
|
|
return (a*b);
|
|
}
|
|
);
|
|
|
|
// copy product to correlation spectrum - convert and scale to FFT size
|
|
std::transform(
|
|
m_invFFT2->in(),
|
|
m_invFFT2->in() + m_fftSize,
|
|
m_scorr.begin() + nfft*m_fftSize,
|
|
[this](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()*(SDR_RX_SCALEF/m_fftSize));
|
|
s.setImag(a.imag()*(SDR_RX_SCALEF/m_fftSize));
|
|
return s;
|
|
}
|
|
);
|
|
|
|
// do the inverse FFT to get time correlation
|
|
m_invFFT2->transform();
|
|
std::transform(
|
|
m_invFFT2->out() + m_fftSize/2,
|
|
m_invFFT2->out() + m_fftSize,
|
|
m_tcorr.begin() + nfft*m_fftSize,
|
|
[](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()/3.0f);
|
|
s.setImag(a.imag()/3.0f);
|
|
return s;
|
|
}
|
|
);
|
|
std::transform(
|
|
m_invFFT2->out(),
|
|
m_invFFT2->out() + m_fftSize/2,
|
|
m_tcorr.begin() + nfft*m_fftSize + m_fftSize/2,
|
|
[](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()/3.0f);
|
|
s.setImag(a.imag()/3.0f);
|
|
return s;
|
|
}
|
|
);
|
|
|
|
size -= m_fftSize;
|
|
begin0 += m_fftSize;
|
|
begin1 += m_fftSize;
|
|
nfft++;
|
|
}
|
|
|
|
// update the samples counters
|
|
m_processed = nfft*m_fftSize;
|
|
m_remaining[0] = size0 - nfft*m_fftSize;
|
|
m_remaining[1] = size1 - nfft*m_fftSize;
|
|
|
|
return nfft > 0;
|
|
}
|
|
|
|
bool InterferometerCorrelator::performFFTProd(
|
|
const SampleVector& data0,
|
|
unsigned int size0,
|
|
const SampleVector& data1,
|
|
unsigned int size1
|
|
)
|
|
{
|
|
unsigned int size = std::min(size0, size1);
|
|
int nfft = 0;
|
|
SampleVector::const_iterator begin0 = data0.begin();
|
|
SampleVector::const_iterator begin1 = data1.begin();
|
|
adjustSCorrSize(size);
|
|
adjustTCorrSize(size);
|
|
|
|
while (size >= m_fftSize)
|
|
{
|
|
// FFT[0]
|
|
std::transform(
|
|
begin0,
|
|
begin0 + m_fftSize,
|
|
m_fft2[0]->in(),
|
|
s2cNorm
|
|
);
|
|
m_window.apply(m_fft2[0]->in());
|
|
m_fft2[0]->transform();
|
|
|
|
// FFT[1]
|
|
std::transform(
|
|
begin1,
|
|
begin1 + m_fftSize,
|
|
m_fft2[1]->in(),
|
|
s2cNorm
|
|
);
|
|
m_window.apply(m_fft2[1]->in());
|
|
m_fft2[1]->transform();
|
|
|
|
// conjugate FFT[1]
|
|
std::transform(
|
|
m_fft2[1]->out(),
|
|
m_fft2[1]->out() + m_fftSize,
|
|
m_dataj,
|
|
[](const std::complex<float>& c) -> std::complex<float> {
|
|
return std::conj(c);
|
|
}
|
|
);
|
|
|
|
// product of FFT[1]* with FFT[0] and store in both results
|
|
std::transform(
|
|
m_fft2[0]->out(),
|
|
m_fft2[0]->out() + m_fftSize,
|
|
m_dataj,
|
|
m_invFFT2->in(),
|
|
[this](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
|
|
return (a*b);
|
|
}
|
|
);
|
|
|
|
// copy product to time domain - re-order, convert and scale to FFT size
|
|
std::transform(
|
|
m_invFFT2->in(),
|
|
m_invFFT2->in() + m_fftSize/2,
|
|
m_tcorr.begin() + nfft*m_fftSize + m_fftSize/2,
|
|
[](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()/2.0f);
|
|
s.setImag(a.imag()/2.0f);
|
|
return s;
|
|
}
|
|
);
|
|
std::transform(
|
|
m_invFFT2->in() + m_fftSize/2,
|
|
m_invFFT2->in() + m_fftSize,
|
|
m_tcorr.begin() + nfft*m_fftSize,
|
|
[](const std::complex<float>& a) -> Sample {
|
|
Sample s;
|
|
s.setReal(a.real()/2.0f);
|
|
s.setImag(a.imag()/2.0f);
|
|
return s;
|
|
}
|
|
);
|
|
|
|
// feed spectrum with the sum
|
|
std::transform(
|
|
begin0,
|
|
begin0 + m_fftSize,
|
|
begin1,
|
|
m_scorr.begin() + nfft*m_fftSize,
|
|
sAdd
|
|
);
|
|
|
|
size -= m_fftSize;
|
|
begin0 += m_fftSize;
|
|
begin1 += m_fftSize;
|
|
nfft++;
|
|
}
|
|
|
|
// update the samples counters
|
|
m_processed = nfft*m_fftSize;
|
|
m_remaining[0] = size0 - nfft*m_fftSize;
|
|
m_remaining[1] = size1 - nfft*m_fftSize;
|
|
|
|
return nfft > 0;
|
|
}
|
|
|
|
void InterferometerCorrelator::adjustSCorrSize(int size)
|
|
{
|
|
int nFFTSize = (size/m_fftSize)*m_fftSize;
|
|
|
|
if (nFFTSize > m_scorrSize)
|
|
{
|
|
m_scorr.resize(nFFTSize);
|
|
m_scorrSize = nFFTSize;
|
|
}
|
|
}
|
|
|
|
void InterferometerCorrelator::adjustTCorrSize(int size)
|
|
{
|
|
int nFFTSize = (size/m_fftSize)*m_fftSize;
|
|
|
|
if (nFFTSize > m_tcorrSize)
|
|
{
|
|
m_tcorr.resize(nFFTSize);
|
|
m_tcorrSize = nFFTSize;
|
|
}
|
|
}
|
|
|
|
void InterferometerCorrelator::setPhase(int phase)
|
|
{
|
|
m_phase = phase;
|
|
|
|
if (phase == 0)
|
|
{
|
|
m_sin = 0;
|
|
m_cos = 1<<(SDR_RX_SAMP_SZ-1);
|
|
}
|
|
else if (phase == 90)
|
|
{
|
|
m_sin = 1<<(SDR_RX_SAMP_SZ-1);
|
|
m_cos = 0;
|
|
}
|
|
else if (phase == -90)
|
|
{
|
|
m_sin = -(1<<(SDR_RX_SAMP_SZ-1));
|
|
m_cos = 0;
|
|
}
|
|
else if ((phase == -180) || (phase == 180))
|
|
{
|
|
m_sin = 0;
|
|
m_cos = -(1<<(SDR_RX_SAMP_SZ-1));
|
|
}
|
|
else
|
|
{
|
|
m_phase = phase % 180;
|
|
double d_sin = sin(M_PI*(m_phase/180.0)) * (1<<(SDR_RX_SAMP_SZ-1));
|
|
double d_cos = cos(M_PI*(m_phase/180.0)) * (1<<(SDR_RX_SAMP_SZ-1));
|
|
m_sin = d_sin;
|
|
m_cos = d_cos;
|
|
}
|
|
}
|