sdrangel/wdsp/TXA.cpp

1010 wiersze
48 KiB
C++

/* TXA.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014, 2016, 2017, 2021, 2023 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "ammod.hpp"
#include "meter.hpp"
#include "resample.hpp"
#include "patchpanel.hpp"
#include "amsq.hpp"
#include "eq.hpp"
#include "iir.hpp"
#include "cfcomp.hpp"
#include "compress.hpp"
#include "bandpass.hpp"
#include "bps.hpp"
#include "osctrl.hpp"
#include "wcpAGC.hpp"
#include "emph.hpp"
#include "fmmod.hpp"
#include "siphon.hpp"
#include "gen.hpp"
#include "slew.hpp"
#include "iqc.hpp"
#include "cfir.hpp"
#include "TXA.hpp"
namespace WDSP {
TXA* TXA::create_txa (
int in_rate, // input samplerate
int out_rate, // output samplerate
int dsp_rate, // sample rate for mainstream dsp processing
int dsp_size // number complex samples processed per buffer in mainstream dsp processing
)
{
TXA *txa = new TXA;
txa->in_rate = in_rate;
txa->out_rate = out_rate;
txa->dsp_rate = dsp_rate;
txa->dsp_size = dsp_size;
if (in_rate >= dsp_rate)
txa->dsp_insize = dsp_size * (in_rate / dsp_rate);
else
txa->dsp_insize = dsp_size / (dsp_rate / in_rate);
if (out_rate >= dsp_rate)
txa->dsp_outsize = dsp_size * (out_rate / dsp_rate);
else
txa->dsp_outsize = dsp_size / (dsp_rate / out_rate);
txa->mode = TXA_LSB;
txa->f_low = -5000.0;
txa->f_high = - 100.0;
txa->inbuff = new float[1 * txa->dsp_insize * 2]; // (float *) malloc0 (1 * txa->dsp_insize * sizeof (complex));
txa->outbuff = new float[1 * txa->dsp_outsize * 2]; // (float *) malloc0 (1 * txa->dsp_outsize * sizeof (complex));
txa->midbuff = new float[3 * txa->dsp_size * 2]; //(float *) malloc0 (2 * txa->dsp_size * sizeof (complex));
txa->rsmpin.p = new RESAMPLE(
0, // run - will be turned on below if needed
txa->dsp_insize, // input buffer size
txa->inbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->in_rate, // input sample rate
txa->dsp_rate, // output sample rate
0.0, // select cutoff automatically
0, // select ncoef automatically
1.0); // gain
txa->gen0.p = new GEN(
0, // run
txa->dsp_size, // buffer size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
2); // mode
txa->panel.p = PANEL::create_panel (
1, // run
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
1.0, // gain1
1.0, // gain2I
1.0, // gain2Q
2, // 1 to use Q, 2 to use I for input
0); // 0, no copy
txa->phrot.p = PHROT::create_phrot (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // samplerate
338.0, // 1/2 of phase frequency
8); // number of stages
txa->micmeter.p = new METER(
1, // run
0, // optional pointer to another 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_MIC_AV, // index for average value
TXA_MIC_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
txa->amsq.p = new AMSQ(
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->midbuff, // trigger buffer
txa->dsp_rate, // sample rate
0.010, // time constant for averaging signal
0.004, // up-slew time
0.004, // down-slew time
0.180, // signal level to initiate tail
0.200, // signal level to initiate unmute
0.000, // minimum tail length
0.025, // maximum tail length
0.200); // muted gain
{
float default_F[11] = {0.0, 32.0, 63.0, 125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0, 16000.0};
float default_G[11] = {0.0, -12.0, -12.0, -12.0, -1.0, +1.0, +4.0, +9.0, +12.0, -10.0, -10.0};
//float default_G[11] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
txa->eqp.p = EQP::create_eqp (
0, // run - OFF by default
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of filter coefficients
0, // minimum phase flag
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
10, // nfreqs
default_F, // vector of frequencies
default_G, // vector of gain values
0, // cutoff mode
0, // wintype
txa->dsp_rate); // samplerate
}
txa->eqmeter.p = new METER(
1, // run
&(txa->eqp.p->run), // pointer to eqp 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_EQ_AV, // index for average value
TXA_EQ_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
txa->preemph.p = EMPHP::create_emphp (
0, // run
1, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of filter coefficients
0, // minimum phase flag
txa->midbuff, // input buffer
txa->midbuff, // output buffer,
txa->dsp_rate, // sample rate
0, // pre-emphasis type
300.0, // f_low
3000.0); // f_high
txa->leveler.p = WCPAGC::create_wcpagc (
0, // run - OFF by default
5, // mode
0, // 0 for max(I,Q), 1 for envelope
txa->midbuff, // input buff pointer
txa->midbuff, // output buff pointer
txa->dsp_size, // io_buffsize
txa->dsp_rate, // sample rate
0.001, // tau_attack
0.500, // tau_decay
6, // n_tau
1.778, // max_gain
1.0, // var_gain
1.0, // fixed_gain
1.0, // max_input
1.05, // out_targ
0.250, // tau_fast_backaverage
0.005, // tau_fast_decay
5.0, // pop_ratio
0, // hang_enable
0.500, // tau_hang_backmult
0.500, // hangtime
2.000, // hang_thresh
0.100); // tau_hang_decay
txa->lvlrmeter.p = new METER(
1, // run
&(txa->leveler.p->run), // pointer to leveler 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_LVLR_AV, // index for average value
TXA_LVLR_PK, // index for peak value
TXA_LVLR_GAIN, // index for gain value
&txa->leveler.p->gain); // pointer for gain computation
{
float default_F[5] = {200.0, 1000.0, 2000.0, 3000.0, 4000.0};
float default_G[5] = {0.0, 5.0, 10.0, 10.0, 5.0};
float default_E[5] = {7.0, 7.0, 7.0, 7.0, 7.0};
txa->cfcomp.p = CFCOMP::create_cfcomp(
0, // run
0, // position
0, // post-equalizer run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
2048, // fft size
4, // overlap
txa->dsp_rate, // samplerate
1, // window type
0, // compression method
5, // nfreqs
0.0, // pre-compression
0.0, // pre-postequalization
default_F, // frequency array
default_G, // compression array
default_E, // eq array
0.25, // metering time constant
0.50); // display time constant
}
txa->cfcmeter.p = new METER(
1, // run
&(txa->cfcomp.p->run), // pointer to eqp 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_CFC_AV, // index for average value
TXA_CFC_PK, // index for peak value
TXA_CFC_GAIN, // index for gain value
(double*) &txa->cfcomp.p->gain); // pointer for gain computation
txa->bp0.p = BANDPASS::create_bandpass (
1, // always runs
0, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of coefficients
0, // flag for minimum phase
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->f_low, // low freq cutoff
txa->f_high, // high freq cutoff
txa->dsp_rate, // samplerate
1, // wintype
2.0); // gain
txa->compressor.p = COMPRESSOR::create_compressor (
0, // run - OFF by default
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
3.0); // gain
txa->bp1.p = BANDPASS::create_bandpass (
0, // ONLY RUNS WHEN COMPRESSOR IS USED
0, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of coefficients
0, // flag for minimum phase
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->f_low, // low freq cutoff
txa->f_high, // high freq cutoff
txa->dsp_rate, // samplerate
1, // wintype
2.0); // gain
txa->osctrl.p = OSCTRL::create_osctrl (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
1.95); // gain for clippings
txa->bp2.p = BANDPASS::create_bandpass (
0, // ONLY RUNS WHEN COMPRESSOR IS USED
0, // position
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of coefficients
0, // flag for minimum phase
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
txa->f_low, // low freq cutoff
txa->f_high, // high freq cutoff
txa->dsp_rate, // samplerate
1, // wintype
1.0); // gain
txa->compmeter.p = new METER(
1, // run
&(txa->compressor.p->run), // pointer to compressor 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_COMP_AV, // index for average value
TXA_COMP_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
txa->alc.p = WCPAGC::create_wcpagc (
1, // run - always ON
5, // mode
1, // 0 for max(I,Q), 1 for envelope
txa->midbuff, // input buff pointer
txa->midbuff, // output buff pointer
txa->dsp_size, // io_buffsize
txa->dsp_rate, // sample rate
0.001, // tau_attack
0.010, // tau_decay
6, // n_tau
1.0, // max_gain
1.0, // var_gain
1.0, // fixed_gain
1.0, // max_input
1.0, // out_targ
0.250, // tau_fast_backaverage
0.005, // tau_fast_decay
5.0, // pop_ratio
0, // hang_enable
0.500, // tau_hang_backmult
0.500, // hangtime
2.000, // hang_thresh
0.100); // tau_hang_decay
txa->ammod.p = AMMOD::create_ammod (
0, // run - OFF by default
0, // mode: 0=>AM, 1=>DSB
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to output buffer
0.5); // carrier level
txa->fmmod.p = FMMOD::create_fmmod (
0, // run - OFF by default
txa->dsp_size, // size
txa->midbuff, // pointer to input buffer
txa->midbuff, // pointer to input buffer
txa->dsp_rate, // samplerate
5000.0, // deviation
300.0, // low cutoff frequency
3000.0, // high cutoff frequency
1, // ctcss run control
0.10, // ctcss level
100.0, // ctcss frequency
1, // run bandpass filter
std::max(2048, txa->dsp_size), // number coefficients for bandpass filter
0); // minimum phase flag
txa->gen1.p = new GEN(
0, // run
txa->dsp_size, // buffer size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
0); // mode
txa->uslew.p = USLEW::create_uslew (
txa,
&(txa->upslew), // pointer to channel upslew flag
txa->dsp_size, // buffer size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // sample rate
0.000, // delay time
0.005); // upslew time
txa->alcmeter.p = new METER(
1, // run
0, // optional pointer to a 'run'
txa->dsp_size, // size
txa->midbuff, // pointer to buffer
txa->dsp_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_ALC_AV, // index for average value
TXA_ALC_PK, // index for peak value
TXA_ALC_GAIN, // index for gain value
&txa->alc.p->gain); // pointer for gain computation
txa->sip1.p = SIPHON::create_siphon (
1, // run
0, // position
0, // mode
0, // disp
txa->dsp_size, // input buffer size
txa->midbuff, // input buffer
16384, // number of samples to buffer
16384, // fft size for spectrum
1); // specmode
// txa->calcc.p = create_calcc (
// channel, // channel number
// 1, // run calibration
// 1024, // input buffer size
// txa->in_rate, // samplerate
// 16, // ints
// 256, // spi
// (1.0 / 0.4072), // hw_scale
// 0.1, // mox delay
// 0.0, // loop delay
// 0.8, // ptol
// 0, // mox
// 0, // solidmox
// 1, // pin mode
// 1, // map mode
// 0, // stbl mode
// 256, // pin samples
// 0.9); // alpha
txa->iqc.p0 = txa->iqc.p1 = IQC::create_iqc (
0, // run
txa->dsp_size, // size
txa->midbuff, // input buffer
txa->midbuff, // output buffer
(float)txa->dsp_rate, // sample rate
16, // ints
0.005, // changeover time
256); // spi
txa->cfir.p = CFIR::create_cfir(
0, // run
txa->dsp_size, // size
std::max(2048, txa->dsp_size), // number of filter coefficients
0, // minimum phase flag
txa->midbuff, // input buffer
txa->midbuff, // output buffer
txa->dsp_rate, // input sample rate
txa->out_rate, // CIC input sample rate
1, // CIC differential delay
640, // CIC interpolation factor
5, // CIC integrator-comb pairs
20000.0, // cutoff frequency
2, // brick-wall windowed rolloff
0.0, // raised-cosine transition width
0); // window type
txa->rsmpout.p = new RESAMPLE(
0, // run - will be turned ON below if needed
txa->dsp_size, // input size
txa->midbuff, // pointer to input buffer
txa->outbuff, // pointer to output buffer
txa->dsp_rate, // input sample rate
txa->out_rate, // output sample rate
0.0, // select cutoff automatically
0, // select ncoef automatically
0.980); // gain
txa->outmeter.p = new METER(
1, // run
0, // optional pointer to another 'run'
txa->dsp_outsize, // size
txa->outbuff, // pointer to buffer
txa->out_rate, // samplerate
0.100, // averaging time constant
0.100, // peak decay time constant
txa->meter, // result vector
TXA_OUT_AV, // index for average value
TXA_OUT_PK, // index for peak value
-1, // index for gain value
0); // pointer for gain computation
// turn OFF / ON resamplers as needed
ResCheck (*txa);
return txa;
}
void TXA::destroy_txa (TXA *txa)
{
// in reverse order, free each item we created
delete (txa->outmeter.p);
delete (txa->rsmpout.p);
CFIR::destroy_cfir(txa->cfir.p);
// destroy_calcc (txa->calcc.p);
IQC::destroy_iqc (txa->iqc.p0);
SIPHON::destroy_siphon (txa->sip1.p);
delete (txa->alcmeter.p);
USLEW::destroy_uslew (txa->uslew.p);
delete (txa->gen1.p);
FMMOD::destroy_fmmod (txa->fmmod.p);
AMMOD::destroy_ammod (txa->ammod.p);
WCPAGC::destroy_wcpagc (txa->alc.p);
delete (txa->compmeter.p);
BANDPASS::destroy_bandpass (txa->bp2.p);
OSCTRL::destroy_osctrl (txa->osctrl.p);
BANDPASS::destroy_bandpass (txa->bp1.p);
COMPRESSOR::destroy_compressor (txa->compressor.p);
BANDPASS::destroy_bandpass (txa->bp0.p);
delete (txa->cfcmeter.p);
CFCOMP::destroy_cfcomp (txa->cfcomp.p);
delete (txa->lvlrmeter.p);
WCPAGC::destroy_wcpagc (txa->leveler.p);
EMPHP::destroy_emphp (txa->preemph.p);
delete (txa->eqmeter.p);
EQP::destroy_eqp (txa->eqp.p);
delete (txa->amsq.p);
delete (txa->micmeter.p);
PHROT::destroy_phrot (txa->phrot.p);
PANEL::destroy_panel (txa->panel.p);
delete (txa->gen0.p);
delete (txa->rsmpin.p);
delete[] (txa->midbuff);
delete[] (txa->outbuff);
delete[] (txa->inbuff);
delete txa;
}
void TXA::flush_txa (TXA* txa)
{
std::fill(txa->inbuff, txa->inbuff + 1 * txa->dsp_insize * 2, 0);
std::fill(txa->outbuff, txa->outbuff + 1 * txa->dsp_outsize * 2, 0);
std::fill(txa->midbuff, txa->midbuff + 2 * txa->dsp_size * 2, 0);
txa->rsmpin.p->flush();
txa->gen0.p->flush();
PANEL::flush_panel (txa->panel.p);
PHROT::flush_phrot (txa->phrot.p);
txa->micmeter.p->flush ();
txa->amsq.p->flush ();
EQP::flush_eqp (txa->eqp.p);
txa->eqmeter.p->flush ();
EMPHP::flush_emphp (txa->preemph.p);
WCPAGC::flush_wcpagc (txa->leveler.p);
txa->lvlrmeter.p->flush ();
CFCOMP::flush_cfcomp (txa->cfcomp.p);
txa->cfcmeter.p->flush ();
BANDPASS::flush_bandpass (txa->bp0.p);
COMPRESSOR::flush_compressor (txa->compressor.p);
BANDPASS::flush_bandpass (txa->bp1.p);
OSCTRL::flush_osctrl (txa->osctrl.p);
BANDPASS::flush_bandpass (txa->bp2.p);
txa->compmeter.p->flush ();
WCPAGC::flush_wcpagc (txa->alc.p);
AMMOD::flush_ammod (txa->ammod.p);
FMMOD::flush_fmmod (txa->fmmod.p);
txa->gen1.p->flush();
USLEW::flush_uslew (txa->uslew.p);
txa->alcmeter.p->flush ();
SIPHON::flush_siphon (txa->sip1.p);
IQC::flush_iqc (txa->iqc.p0);
CFIR::flush_cfir(txa->cfir.p);
txa->rsmpout.p->flush();
txa->outmeter.p->flush ();
}
void xtxa (TXA* txa)
{
txa->rsmpin.p->execute(); // input resampler
txa->gen0.p->execute(); // input signal generator
PANEL::xpanel (txa->panel.p); // includes MIC gain
PHROT::xphrot (txa->phrot.p); // phase rotator
txa->micmeter.p->execute (); // MIC meter
txa->amsq.p->xcap (); // downward expander capture
txa->amsq.p->execute (); // downward expander action
EQP::xeqp (txa->eqp.p); // pre-EQ
txa->eqmeter.p->execute (); // EQ meter
EMPHP::xemphp (txa->preemph.p, 0); // FM pre-emphasis (first option)
WCPAGC::xwcpagc (txa->leveler.p); // Leveler
txa->lvlrmeter.p->execute (); // Leveler Meter
CFCOMP::xcfcomp (txa->cfcomp.p, 0); // Continuous Frequency Compressor with post-EQ
txa->cfcmeter.p->execute (); // CFC+PostEQ Meter
BANDPASS::xbandpass (txa->bp0.p, 0); // primary bandpass filter
COMPRESSOR::xcompressor (txa->compressor.p); // COMP compressor
BANDPASS::xbandpass (txa->bp1.p, 0); // aux bandpass (runs if COMP)
OSCTRL::xosctrl (txa->osctrl.p); // CESSB Overshoot Control
BANDPASS::xbandpass (txa->bp2.p, 0); // aux bandpass (runs if CESSB)
txa->compmeter.p->execute (); // COMP meter
WCPAGC::xwcpagc (txa->alc.p); // ALC
AMMOD::xammod (txa->ammod.p); // AM Modulator
EMPHP::xemphp (txa->preemph.p, 1); // FM pre-emphasis (second option)
FMMOD::xfmmod (txa->fmmod.p); // FM Modulator
txa->gen1.p->execute(); // output signal generator (TUN and Two-tone)
USLEW::xuslew (txa->uslew.p); // up-slew for AM, FM, and gens
txa->alcmeter.p->execute (); // ALC Meter
SIPHON::xsiphon (txa->sip1.p, 0); // siphon data for display
IQC::xiqc (txa->iqc.p0); // PureSignal correction
CFIR::xcfir(txa->cfir.p); // compensating FIR filter (used Protocol_2 only)
txa->rsmpout.p->execute(); // output resampler
txa->outmeter.p->execute (); // output meter
// print_peak_env ("env_exception.txt", txa->dsp_outsize, txa->outbuff, 0.7);
}
void TXA::setInputSamplerate (TXA *txa, int in_rate)
{
if (in_rate >= txa->dsp_rate)
txa->dsp_insize = txa->dsp_size * (in_rate / txa->dsp_rate);
else
txa->dsp_insize = txa->dsp_size / (txa->dsp_rate / in_rate);
txa->in_rate = in_rate;
// buffers
delete[] (txa->inbuff);
txa->inbuff = new float[1 * txa->dsp_insize * 2]; //(float *)malloc0(1 * txa->dsp_insize * sizeof(complex));
// input resampler
txa->rsmpin.p->setBuffers(txa->inbuff, txa->midbuff);
txa->rsmpin.p->setSize(txa->dsp_insize);
txa->rsmpin.p->setInRate(txa->in_rate);
ResCheck (*txa);
}
void TXA::setOutputSamplerate (TXA* txa, int out_rate)
{
if (out_rate >= txa->dsp_rate)
txa->dsp_outsize = txa->dsp_size * (out_rate / txa->dsp_rate);
else
txa->dsp_outsize = txa->dsp_size / (txa->dsp_rate / out_rate);
txa->out_rate = out_rate;
// buffers
delete[] (txa->outbuff);
txa->outbuff = new float[1 * txa->dsp_outsize * 2]; // (float *)malloc0(1 * txa->dsp_outsize * sizeof(complex));
// cfir - needs to know input rate of firmware CIC
CFIR::setOutRate_cfir (txa->cfir.p, txa->out_rate);
// output resampler
txa->rsmpout.p->setBuffers(txa->midbuff, txa->outbuff);
txa->rsmpout.p->setOutRate(txa->out_rate);
ResCheck (*txa);
// output meter
txa->outmeter.p->setBuffers(txa->outbuff);
txa->outmeter.p->setSize(txa->dsp_outsize);
txa->outmeter.p->setSamplerate (txa->out_rate);
}
void TXA::setDSPSamplerate (TXA *txa, int dsp_rate)
{
if (txa->in_rate >= dsp_rate)
txa->dsp_insize = txa->dsp_size * (txa->in_rate / dsp_rate);
else
txa->dsp_insize = txa->dsp_size / (dsp_rate / txa->in_rate);
if (txa->out_rate >= dsp_rate)
txa->dsp_outsize = txa->dsp_size * (txa->out_rate / dsp_rate);
else
txa->dsp_outsize = txa->dsp_size / (dsp_rate / txa->out_rate);
txa->dsp_rate = dsp_rate;
// buffers
delete[] (txa->inbuff);
txa->inbuff = new float[1 * txa->dsp_insize * 2]; // (float *)malloc0(1 * txa->dsp_insize * sizeof(complex));
delete[] (txa->outbuff);
txa->outbuff = new float[1 * txa->dsp_outsize * 2]; // (float *)malloc0(1 * txa->dsp_outsize * sizeof(complex));
// input resampler
txa->rsmpin.p->setBuffers(txa->inbuff, txa->midbuff);
txa->rsmpin.p->setSize(txa->dsp_insize);
txa->rsmpin.p->setOutRate(txa->dsp_rate);
// dsp_rate blocks
txa->gen0.p->setSamplerate(txa->dsp_rate);
PANEL::setSamplerate_panel (txa->panel.p, txa->dsp_rate);
PHROT::setSamplerate_phrot (txa->phrot.p, txa->dsp_rate);
txa->micmeter.p->setSamplerate (txa->dsp_rate);
txa->amsq.p->setSamplerate (txa->dsp_rate);
EQP::setSamplerate_eqp (txa->eqp.p, txa->dsp_rate);
txa->eqmeter.p->setSamplerate (txa->dsp_rate);
EMPHP::setSamplerate_emphp (txa->preemph.p, txa->dsp_rate);
WCPAGC::setSamplerate_wcpagc (txa->leveler.p, txa->dsp_rate);
txa->lvlrmeter.p->setSamplerate (txa->dsp_rate);
CFCOMP::setSamplerate_cfcomp (txa->cfcomp.p, txa->dsp_rate);
txa->cfcmeter.p->setSamplerate (txa->dsp_rate);
BANDPASS::setSamplerate_bandpass (txa->bp0.p, txa->dsp_rate);
COMPRESSOR::setSamplerate_compressor (txa->compressor.p, txa->dsp_rate);
BANDPASS::setSamplerate_bandpass (txa->bp1.p, txa->dsp_rate);
OSCTRL::setSamplerate_osctrl (txa->osctrl.p, txa->dsp_rate);
BANDPASS::setSamplerate_bandpass (txa->bp2.p, txa->dsp_rate);
txa->compmeter.p->setSamplerate (txa->dsp_rate);
WCPAGC::setSamplerate_wcpagc (txa->alc.p, txa->dsp_rate);
AMMOD::setSamplerate_ammod (txa->ammod.p, txa->dsp_rate);
FMMOD::setSamplerate_fmmod (txa->fmmod.p, txa->dsp_rate);
txa->gen1.p->setSamplerate(txa->dsp_rate);
USLEW::setSamplerate_uslew (txa->uslew.p, txa->dsp_rate);
txa->alcmeter.p->setSamplerate (txa->dsp_rate);
SIPHON::setSamplerate_siphon (txa->sip1.p, txa->dsp_rate);
IQC::setSamplerate_iqc (txa->iqc.p0, txa->dsp_rate);
CFIR::setSamplerate_cfir (txa->cfir.p, txa->dsp_rate);
// output resampler
txa->rsmpout.p->setBuffers(txa->midbuff, txa->outbuff);
txa->rsmpout.p->setInRate(txa->dsp_rate);
ResCheck (*txa);
// output meter
txa->outmeter.p->setBuffers(txa->outbuff);
txa->outmeter.p->setSize (txa->dsp_outsize);
}
void TXA::setDSPBuffsize (TXA *txa, int dsp_size)
{
if (txa->in_rate >= txa->dsp_rate)
txa->dsp_insize = dsp_size * (txa->in_rate / txa->dsp_rate);
else
txa->dsp_insize = dsp_size / (txa->dsp_rate / txa->in_rate);
if (txa->out_rate >= txa->dsp_rate)
txa->dsp_outsize = dsp_size * (txa->out_rate / txa->dsp_rate);
else
txa->dsp_outsize = dsp_size / (txa->dsp_rate / txa->out_rate);
txa->dsp_size = dsp_size;
// buffers
delete[] (txa->inbuff);
txa->inbuff = new float[1 * txa->dsp_insize * 2]; // (float *)malloc0(1 * txa->dsp_insize * sizeof(complex));
delete[] (txa->midbuff);
txa->midbuff = new float[2 * txa->dsp_size * 2]; // (float *)malloc0(2 * txa->dsp_size * sizeof(complex));
delete[] (txa->outbuff);
txa->outbuff = new float[1 * txa->dsp_outsize * 2]; // (float *)malloc0(1 * txa->dsp_outsize * sizeof(complex));
// input resampler
txa->rsmpin.p->setBuffers(txa->inbuff, txa->midbuff);
txa->rsmpin.p->setSize(txa->dsp_insize);
// dsp_size blocks
txa->gen0.p->setBuffers(txa->midbuff, txa->midbuff);
txa->gen0.p->setSize(txa->dsp_size);
PANEL::setBuffers_panel (txa->panel.p, txa->midbuff, txa->midbuff);
PANEL::setSize_panel (txa->panel.p, txa->dsp_size);
PHROT::setBuffers_phrot (txa->phrot.p, txa->midbuff, txa->midbuff);
PHROT::setSize_phrot (txa->phrot.p, txa->dsp_size);
txa->micmeter.p->setBuffers (txa->midbuff);
txa->micmeter.p->setSize (txa->dsp_size);
txa->amsq.p->setBuffers (txa->midbuff, txa->midbuff, txa->midbuff);
txa->amsq.p->setSize (txa->dsp_size);
EQP::setBuffers_eqp (txa->eqp.p, txa->midbuff, txa->midbuff);
EQP::setSize_eqp (txa->eqp.p, txa->dsp_size);
txa->eqmeter.p->setBuffers (txa->midbuff);
txa->eqmeter.p->setSize (txa->dsp_size);
EMPHP::setBuffers_emphp (txa->preemph.p, txa->midbuff, txa->midbuff);
EMPHP::setSize_emphp (txa->preemph.p, txa->dsp_size);
WCPAGC::setBuffers_wcpagc (txa->leveler.p, txa->midbuff, txa->midbuff);
WCPAGC::setSize_wcpagc (txa->leveler.p, txa->dsp_size);
txa->lvlrmeter.p->setBuffers(txa->midbuff);
txa->lvlrmeter.p->setSize(txa->dsp_size);
CFCOMP::setBuffers_cfcomp (txa->cfcomp.p, txa->midbuff, txa->midbuff);
CFCOMP::setSize_cfcomp (txa->cfcomp.p, txa->dsp_size);
txa->cfcmeter.p->setBuffers(txa->midbuff);
txa->cfcmeter.p->setSize(txa->dsp_size);
BANDPASS::setBuffers_bandpass (txa->bp0.p, txa->midbuff, txa->midbuff);
BANDPASS::setSize_bandpass (txa->bp0.p, txa->dsp_size);
COMPRESSOR::setBuffers_compressor (txa->compressor.p, txa->midbuff, txa->midbuff);
COMPRESSOR::setSize_compressor (txa->compressor.p, txa->dsp_size);
BANDPASS::setBuffers_bandpass (txa->bp1.p, txa->midbuff, txa->midbuff);
BANDPASS::setSize_bandpass (txa->bp1.p, txa->dsp_size);
OSCTRL::setBuffers_osctrl (txa->osctrl.p, txa->midbuff, txa->midbuff);
OSCTRL::setSize_osctrl (txa->osctrl.p, txa->dsp_size);
BANDPASS::setBuffers_bandpass (txa->bp2.p, txa->midbuff, txa->midbuff);
BANDPASS::setSize_bandpass (txa->bp2.p, txa->dsp_size);
txa->compmeter.p->setBuffers(txa->midbuff);
txa->compmeter.p->setSize(txa->dsp_size);
WCPAGC::setBuffers_wcpagc (txa->alc.p, txa->midbuff, txa->midbuff);
WCPAGC::setSize_wcpagc (txa->alc.p, txa->dsp_size);
AMMOD::setBuffers_ammod (txa->ammod.p, txa->midbuff, txa->midbuff);
AMMOD::setSize_ammod (txa->ammod.p, txa->dsp_size);
FMMOD::setBuffers_fmmod (txa->fmmod.p, txa->midbuff, txa->midbuff);
FMMOD::setSize_fmmod (txa->fmmod.p, txa->dsp_size);
txa->gen1.p->setBuffers(txa->midbuff, txa->midbuff);
txa->gen1.p->setSize(txa->dsp_size);
USLEW::setBuffers_uslew (txa->uslew.p, txa->midbuff, txa->midbuff);
USLEW::setSize_uslew (txa->uslew.p, txa->dsp_size);
txa->alcmeter.p->setBuffers (txa->midbuff);
txa->alcmeter.p->setSize(txa->dsp_size);
SIPHON::setBuffers_siphon (txa->sip1.p, txa->midbuff);
SIPHON::setSize_siphon (txa->sip1.p, txa->dsp_size);
IQC::setBuffers_iqc (txa->iqc.p0, txa->midbuff, txa->midbuff);
IQC::setSize_iqc (txa->iqc.p0, txa->dsp_size);
CFIR::setBuffers_cfir (txa->cfir.p, txa->midbuff, txa->midbuff);
CFIR::setSize_cfir (txa->cfir.p, txa->dsp_size);
// output resampler
txa->rsmpout.p->setBuffers(txa->midbuff, txa->outbuff);
txa->rsmpout.p->setSize(txa->dsp_size);
// output meter
txa->outmeter.p->setBuffers(txa->outbuff);
txa->outmeter.p->setSize(txa->dsp_outsize);
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
void TXA::SetMode (TXA& txa, int mode)
{
if (txa.mode != mode)
{
txa.mode = mode;
txa.ammod.p->run = 0;
txa.fmmod.p->run = 0;
txa.preemph.p->run = 0;
switch (mode)
{
case TXA_AM:
case TXA_SAM:
txa.ammod.p->run = 1;
txa.ammod.p->mode = 0;
break;
case TXA_DSB:
txa.ammod.p->run = 1;
txa.ammod.p->mode = 1;
break;
case TXA_AM_LSB:
case TXA_AM_USB:
txa.ammod.p->run = 1;
txa.ammod.p->mode = 2;
break;
case TXA_FM:
txa.fmmod.p->run = 1;
txa.preemph.p->run = 1;
break;
default:
break;
}
SetupBPFilters (txa);
}
}
void TXA::SetBandpassFreqs (TXA& txa, float f_low, float f_high)
{
if ((txa.f_low != f_low) || (txa.f_high != f_high))
{
txa.f_low = f_low;
txa.f_high = f_high;
SetupBPFilters (txa);
}
}
/********************************************************************************************************
* *
* TXA Internal Functions *
* *
********************************************************************************************************/
void TXA::ResCheck (TXA& txa)
{
RESAMPLE *a = txa.rsmpin.p;
if (txa.in_rate != txa.dsp_rate)
a->run = 1;
else
a->run = 0;
a = txa.rsmpout.p;
if (txa.dsp_rate != txa.out_rate)
a->run = 1;
else
a->run = 0;
}
int TXA::UslewCheck (TXA& txa)
{
return (txa.ammod.p->run == 1) ||
(txa.fmmod.p->run == 1) ||
(txa.gen0.p->run == 1) ||
(txa.gen1.p->run == 1);
}
void TXA::SetupBPFilters (TXA& txa)
{
txa.bp0.p->run = 1;
txa.bp1.p->run = 0;
txa.bp2.p->run = 0;
switch (txa.mode)
{
case TXA_LSB:
case TXA_USB:
case TXA_CWL:
case TXA_CWU:
case TXA_DIGL:
case TXA_DIGU:
case TXA_SPEC:
case TXA_DRM:
BANDPASS::CalcBandpassFilter (txa.bp0.p, txa.f_low, txa.f_high, 2.0);
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp1.p, txa.f_low, txa.f_high, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, txa.f_low, txa.f_high, 1.0);
txa.bp2.p->run = 1;
}
}
break;
case TXA_DSB:
case TXA_AM:
case TXA_SAM:
case TXA_FM:
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp0.p, 0.0, txa.f_high, 2.0);
BANDPASS::CalcBandpassFilter (txa.bp1.p, 0.0, txa.f_high, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, 0.0, txa.f_high, 1.0);
txa.bp2.p->run = 1;
}
}
else
{
BANDPASS::CalcBandpassFilter (txa.bp0.p, txa.f_low, txa.f_high, 1.0);
}
break;
case TXA_AM_LSB:
BANDPASS::CalcBandpassFilter (txa.bp0.p, -txa.f_high, 0.0, 2.0);
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp1.p, -txa.f_high, 0.0, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, -txa.f_high, 0.0, 1.0);
txa.bp2.p->run = 1;
}
}
break;
case TXA_AM_USB:
BANDPASS::CalcBandpassFilter (txa.bp0.p, 0.0, txa.f_high, 2.0);
if (txa.compressor.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp1.p, 0.0, txa.f_high, 2.0);
txa.bp1.p->run = 1;
if (txa.osctrl.p->run)
{
BANDPASS::CalcBandpassFilter (txa.bp2.p, 0.0, txa.f_high, 1.0);
txa.bp2.p->run = 1;
}
}
break;
}
}
/********************************************************************************************************
* *
* Collectives *
* *
********************************************************************************************************/
void TXA::SetNC (TXA& txa, int nc)
{
int oldstate = txa.state;
BANDPASS::SetBandpassNC (txa, nc);
EMPHP::SetFMEmphNC (txa, nc);
EQP::SetEQNC (txa, nc);
FMMOD::SetFMNC (txa, nc);
CFIR::SetCFIRNC (txa, nc);
txa.state = oldstate;
}
void TXA::SetMP (TXA& txa, int mp)
{
BANDPASS::SetBandpassMP (txa, mp);
EMPHP::SetFMEmphMP (txa, mp);
EQP::SetEQMP (txa, mp);
FMMOD::SetFMMP (txa, mp);
}
void TXA::SetFMAFFilter (TXA& txa, float low, float high)
{
EMPHP::SetFMPreEmphFreqs (txa, low, high);
FMMOD::SetFMAFFreqs (txa, low, high);
}
} // namespace WDSP