sdrangel/sdrbase/audio/audiocompressorsnd.cpp

324 wiersze
12 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019-2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// //
// Audio compressor based on sndfilter by Sean Connelly (@voidqk) //
// https://github.com/voidqk/sndfilter //
// //
// Sample by sample interface to facilitate integration in SDRangel modulators. //
// Uses mono samples (just floats) //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include "audiocompressorsnd.h"
AudioCompressorSnd::AudioCompressorSnd()
{
m_sampleIndex = 0;
std::fill(m_processedBuffer, m_processedBuffer+AUDIOCOMPRESSORSND_SF_COMPRESSOR_CHUNKSIZE, 0.0f);
}
AudioCompressorSnd::~AudioCompressorSnd()
{}
void AudioCompressorSnd::initState()
{
m_compressorState.sf_advancecomp(
m_rate,
m_pregain,
m_threshold,
m_knee,
m_ratio,
m_attack,
m_release,
m_predelay,
m_releasezone1,
m_releasezone2,
m_releasezone3,
m_releasezone4,
m_postgain,
m_wet
);
}
float AudioCompressorSnd::compress(float sample)
{
float compressedSample;
if (m_sampleIndex >= AUDIOCOMPRESSORSND_SF_COMPRESSOR_CHUNKSIZE)
{
sf_compressor_process(&m_compressorState, AUDIOCOMPRESSORSND_SF_COMPRESSOR_CHUNKSIZE, m_storageBuffer, m_processedBuffer);
m_sampleIndex = 0;
}
compressedSample = m_processedBuffer[m_sampleIndex];
m_storageBuffer[m_sampleIndex] = sample;
m_sampleIndex++;
return compressedSample;
}
// populate the compressor state with advanced parameters
void AudioCompressorSnd::CompressorState::sf_advancecomp(
// these parameters are the same as the simple version above:
int rate, float pregain, float threshold, float knee, float ratio, float attack, float release,
// these are the advanced parameters:
float predelay, // seconds, length of the predelay buffer [0 to 1]
float releasezone1, // release zones should be increasing between 0 and 1, and are a fraction
float releasezone2, // of the release time depending on the input dB -- these parameters define
float releasezone3, // the adaptive release curve, which is discussed in further detail in the
float releasezone4, // demo: adaptive-release-curve.html
float postgain, // dB, amount of gain to apply after compression [0 to 100]
float wet) // amount to apply the effect [0 completely dry to 1 completely wet]
{
// setup the predelay buffer
int delaybufsize = rate * predelay;
if (delaybufsize < 1)
{
delaybufsize = 1;
}
else if (delaybufsize > AUDIOCOMPRESSORSND_SF_COMPRESSOR_MAXDELAY)
{
delaybufsize = AUDIOCOMPRESSORSND_SF_COMPRESSOR_MAXDELAY;
std::fill(delaybuf, delaybuf+delaybufsize, 0.0f);
}
// useful values
float linearpregain = db2lin(pregain);
float linearthreshold = db2lin(threshold);
float slope = 1.0f / ratio;
float attacksamples = rate * attack;
float attacksamplesinv = 1.0f / attacksamples;
float releasesamples = rate * release;
float satrelease = 0.0025f; // seconds
float satreleasesamplesinv = 1.0f / ((float)rate * satrelease);
float dry = 1.0f - wet;
// metering values (not used in core algorithm, but used to output a meter if desired)
float meterfalloff = 0.325f; // seconds
float meterrelease = 1.0f - expf(-1.0f / ((float)rate * meterfalloff));
// calculate knee curve parameters
float k = 5.0f; // initial guess
float kneedboffset = 0.0f;
float linearthresholdknee = 0.0f;
if (knee > 0.0f) // if a knee exists, search for a good k value
{
float xknee = db2lin(threshold + knee);
float mink = 0.1f;
float maxk = 10000.0f;
// search by comparing the knee slope at the current k guess, to the ideal slope
for (int i = 0; i < 15; i++)
{
if (kneeslope(xknee, k, linearthreshold) < slope) {
maxk = k;
} else {
mink = k;
}
k = sqrtf(mink * maxk);
}
kneedboffset = lin2db(kneecurve(xknee, k, linearthreshold));
linearthresholdknee = db2lin(threshold + knee);
}
// calculate a master gain based on what sounds good
float fulllevel = compcurve(1.0f, k, slope, linearthreshold, linearthresholdknee, threshold, knee, kneedboffset);
float mastergain = db2lin(postgain) * powf(1.0f / fulllevel, 0.6f);
// calculate the adaptive release curve parameters
// solve a,b,c,d in `y = a*x^3 + b*x^2 + c*x + d`
// interescting points (0, y1), (1, y2), (2, y3), (3, y4)
float y1 = releasesamples * releasezone1;
float y2 = releasesamples * releasezone2;
float y3 = releasesamples * releasezone3;
float y4 = releasesamples * releasezone4;
float a = (-y1 + 3.0f * y2 - 3.0f * y3 + y4) / 6.0f;
float b = y1 - 2.5f * y2 + 2.0f * y3 - 0.5f * y4;
float c = (-11.0f * y1 + 18.0f * y2 - 9.0f * y3 + 2.0f * y4) / 6.0f;
float d = y1;
// save everything
this->metergain = 1.0f; // large value overwritten immediately since it's always < 0
this->meterrelease = meterrelease;
this->threshold = threshold;
this->knee = knee;
this->wet = wet;
this->linearpregain = linearpregain;
this->linearthreshold = linearthreshold;
this->slope = slope;
this->attacksamplesinv = attacksamplesinv;
this->satreleasesamplesinv = satreleasesamplesinv;
this->dry = dry;
this->k = k;
this->kneedboffset = kneedboffset;
this->linearthresholdknee = linearthresholdknee;
this->mastergain = mastergain;
this->a = a;
this->b = b;
this->c = c;
this->d = d;
this->detectoravg = 0.0f;
this->compgain = 1.0f;
this->maxcompdiffdb = -1.0f;
this->delaybufsize = delaybufsize;
this->delaywritepos = 0;
this->delayreadpos = delaybufsize > 1 ? 1 : 0;
}
void AudioCompressorSnd::sf_compressor_process(AudioCompressorSnd::CompressorState *state, int size, float *input, float *output)
{
// pull out the state into local variables
float metergain = state->metergain;
float meterrelease = state->meterrelease;
float threshold = state->threshold;
float knee = state->knee;
float linearpregain = state->linearpregain;
float linearthreshold = state->linearthreshold;
float slope = state->slope;
float attacksamplesinv = state->attacksamplesinv;
float satreleasesamplesinv = state->satreleasesamplesinv;
float wet = state->wet;
float dry = state->dry;
float k = state->k;
float kneedboffset = state->kneedboffset;
float linearthresholdknee = state->linearthresholdknee;
float mastergain = state->mastergain;
float a = state->a;
float b = state->b;
float c = state->c;
float d = state->d;
float detectoravg = state->detectoravg;
float compgain = state->compgain;
float maxcompdiffdb = state->maxcompdiffdb;
int delaybufsize = state->delaybufsize;
int delaywritepos = state->delaywritepos;
int delayreadpos = state->delayreadpos;
float *delaybuf = state->delaybuf;
int samplesperchunk = AUDIOCOMPRESSORSND_SF_COMPRESSOR_SPU;
int chunks = size / samplesperchunk;
float ang90 = (float)M_PI * 0.5f;
float ang90inv = 2.0f / (float)M_PI;
int samplepos = 0;
float spacingdb = AUDIOCOMPRESSORSND_SF_COMPRESSOR_SPACINGDB;
for (int ch = 0; ch < chunks; ch++)
{
detectoravg = fixf(detectoravg, 1.0f);
float desiredgain = detectoravg;
float scaleddesiredgain = asinf(desiredgain) * ang90inv;
float compdiffdb = lin2db(compgain / scaleddesiredgain);
// calculate envelope rate based on whether we're attacking or releasing
float enveloperate;
if (compdiffdb < 0.0f)
{ // compgain < scaleddesiredgain, so we're releasing
compdiffdb = fixf(compdiffdb, -1.0f);
maxcompdiffdb = -1; // reset for a future attack mode
// apply the adaptive release curve
// scale compdiffdb between 0-3
float x = (clampf(compdiffdb, -12.0f, 0.0f) + 12.0f) * 0.25f;
float releasesamples = adaptivereleasecurve(x, a, b, c, d);
enveloperate = db2lin(spacingdb / releasesamples);
}
else
{ // compresorgain > scaleddesiredgain, so we're attacking
compdiffdb = fixf(compdiffdb, 1.0f);
if (maxcompdiffdb == -1 || maxcompdiffdb < compdiffdb)
maxcompdiffdb = compdiffdb;
float attenuate = maxcompdiffdb;
if (attenuate < 0.5f)
attenuate = 0.5f;
enveloperate = 1.0f - powf(0.25f / attenuate, attacksamplesinv);
}
// process the chunk
for (int chi = 0; chi < samplesperchunk; chi++, samplepos++,
delayreadpos = (delayreadpos + 1) % delaybufsize,
delaywritepos = (delaywritepos + 1) % delaybufsize)
{
float inputL = input[samplepos] * linearpregain;
delaybuf[delaywritepos] = inputL;
inputL = absf(inputL);
float inputmax = inputL;
float attenuation;
if (inputmax < 0.0001f)
attenuation = 1.0f;
else
{
float inputcomp = compcurve(inputmax, k, slope, linearthreshold,
linearthresholdknee, threshold, knee, kneedboffset);
attenuation = inputcomp / inputmax;
}
float rate;
if (attenuation > detectoravg)
{ // if releasing
float attenuationdb = -lin2db(attenuation);
if (attenuationdb < 2.0f)
attenuationdb = 2.0f;
float dbpersample = attenuationdb * satreleasesamplesinv;
rate = db2lin(dbpersample) - 1.0f;
}
else
rate = 1.0f;
detectoravg += (attenuation - detectoravg) * rate;
if (detectoravg > 1.0f)
detectoravg = 1.0f;
detectoravg = fixf(detectoravg, 1.0f);
if (enveloperate < 1) // attack, reduce gain
compgain += (scaleddesiredgain - compgain) * enveloperate;
else
{ // release, increase gain
compgain *= enveloperate;
if (compgain > 1.0f)
compgain = 1.0f;
}
// the final gain value!
float premixgain = sinf(ang90 * compgain);
float gain = dry + wet * mastergain * premixgain;
// calculate metering (not used in core algo, but used to output a meter if desired)
float premixgaindb = lin2db(premixgain);
if (premixgaindb < metergain)
metergain = premixgaindb; // spike immediately
else
metergain += (premixgaindb - metergain) * meterrelease; // fall slowly
// apply the gain
output[samplepos] = delaybuf[delayreadpos] * gain;
}
}
state->metergain = metergain;
state->detectoravg = detectoravg;
state->compgain = compgain;
state->maxcompdiffdb = maxcompdiffdb;
state->delaywritepos = delaywritepos;
state->delayreadpos = delayreadpos;
}