sdrangel/sdrbase/dsp/spectrumvis.cpp

1133 wiersze
36 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
// written by Christian Daniel //
// Copyright (C) 2014 John Greb <karikoa@One.greyskull> //
// Copyright (C) 2015-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
// Copyright (C) 2022 Jiří Pinkava <jiri.pinkava@rossum.ai> //
// Copyright (C) 2023 Arne Jünemann <das-iro@das-iro.de> //
// Copyright (C) 2023 Vladimir Pleskonjic //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include "SWGGLSpectrum.h"
#include "SWGSpectrumServer.h"
#include "SWGSuccessResponse.h"
#include "glspectruminterface.h"
#include "dspcommands.h"
#include "dspengine.h"
#include "fftfactory.h"
#include "util/messagequeue.h"
#include "spectrumvis.h"
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureSpectrumVis, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureScalingFactor, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureWSpectrumOpenClose, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgConfigureWSpectrum, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgStartStop, Message)
MESSAGE_CLASS_DEFINITION(SpectrumVis::MsgFrequencyZooming, Message)
const Real SpectrumVis::m_mult = (10.0f / log2(10.0f));
SpectrumVis::SpectrumVis(Real scalef) :
BasebandSampleSink(),
m_running(true),
m_fft(nullptr),
m_fftEngineSequence(0),
m_fftBuffer(4096),
m_powerSpectrum(4096),
m_psd(4096),
m_fftBufferFill(0),
m_needMoreSamples(false),
m_frequencyZoomFactor(1.0f),
m_frequencyZoomPos(0.5f),
m_scalef(scalef),
m_glSpectrum(nullptr),
m_specMax(0.0f),
m_centerFrequency(0),
m_sampleRate(48000),
m_ofs(0),
m_powFFTDiv(1.0),
m_guiMessageQueue(nullptr)
{
setObjectName("SpectrumVis");
connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
applySettings(m_settings, true);
}
SpectrumVis::~SpectrumVis()
{
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftEngineSequence);
}
void SpectrumVis::setScalef(Real scalef)
{
MsgConfigureScalingFactor* cmd = new MsgConfigureScalingFactor(scalef);
m_inputMessageQueue.push(cmd);
}
void SpectrumVis::configureWSSpectrum(const QString& address, uint16_t port)
{
MsgConfigureWSpectrum* cmd = new MsgConfigureWSpectrum(address, port);
m_inputMessageQueue.push(cmd);
}
void SpectrumVis::feedTriggered(const SampleVector::const_iterator& triggerPoint, const SampleVector::const_iterator& end, bool positiveOnly)
{
feed(triggerPoint, end, positiveOnly); // normal feed from trigger point
/*
if (triggerPoint == end)
{
// the following piece of code allows to terminate the FFT that ends past the end of scope captured data
// that is the spectrum will include the captured data
// just do nothing if you want the spectrum to be included inside the scope captured data
// that is to drop the FFT that dangles past the end of captured data
if (m_needMoreSamples) {
feed(begin, end, positiveOnly);
m_needMoreSamples = false; // force finish
}
}
else
{
feed(triggerPoint, end, positiveOnly); // normal feed from trigger point
}*/
}
void SpectrumVis::feed(const Complex *begin, unsigned int length)
{
if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) {
return;
}
if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process
return;
}
Complex c;
Real v;
int fftMin = (m_frequencyZoomFactor == 1.0f) ?
0 : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_settings.m_fftSize;
int fftMax = (m_frequencyZoomFactor == 1.0f) ?
m_settings.m_fftSize : (m_frequencyZoomPos + (0.5f / m_frequencyZoomFactor)) * m_settings.m_fftSize;
if (m_settings.m_averagingMode == SpectrumSettings::AvgModeNone)
{
for (int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < (int) length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
m_psd[i] = v/m_powFFTDiv;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i] = v;
}
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
else if (m_settings.m_averagingMode == SpectrumSettings::AvgModeMoving)
{
for (int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < (int) length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i);
m_psd[i] = v/m_powFFTDiv;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i] = v;
}
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
m_movingAverage.nextAverage();
}
else if (m_settings.m_averagingMode == SpectrumSettings::AvgModeFixed)
{
double avg;
for (int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < (int) length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i))
{
m_psd[i] = avg/m_powFFTDiv;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2fapprox(avg) + m_ofs;
m_powerSpectrum[i] = avg;
}
}
// result available
if (m_fixedAverage.nextAverage())
{
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
else if (m_settings.m_averagingMode == SpectrumSettings::AvgModeMax)
{
double max;
for (int i = 0; i < m_settings.m_fftSize; i++)
{
if (i < (int) length) {
c = begin[i];
} else {
c = Complex{0,0};
}
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i))
{
m_psd[i] = max/m_powFFTDiv;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2fapprox(max) + m_ofs;
m_powerSpectrum[i] = max;
}
}
// result available
if (m_max.nextMax())
{
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
m_mutex.unlock();
}
void SpectrumVis::feed(const ComplexVector::const_iterator& cbegin, const ComplexVector::const_iterator& end, bool positiveOnly)
{
if (!m_running) {
return;
}
// if no visualisation is set, send the samples to /dev/null
if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) {
return;
}
if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process
return;
}
ComplexVector::const_iterator begin(cbegin);
while (begin < end)
{
std::size_t todo = end - begin;
std::size_t samplesNeeded = m_settings.m_fftSize - m_fftBufferFill;
if (todo >= samplesNeeded)
{
// fill up the buffer
std::copy(begin, begin + samplesNeeded, m_fftBuffer.begin() + m_fftBufferFill);
begin += samplesNeeded;
processFFT(positiveOnly);
// advance buffer respecting the fft overlap factor
// undefined bahavior if the memory regions overlap, valid code for 50% overlap
std::copy(m_fftBuffer.begin() + m_refillSize, m_fftBuffer.end(), m_fftBuffer.begin());
// start over
m_fftBufferFill = m_overlapSize;
m_needMoreSamples = false;
}
else
{
// not enough samples for FFT - just fill in new data and return
std::copy(begin, end, m_fftBuffer.begin() + m_fftBufferFill);
begin = end;
m_fftBufferFill += todo;
m_needMoreSamples = true;
}
}
m_mutex.unlock();
}
void SpectrumVis::feed(const SampleVector::const_iterator& cbegin, const SampleVector::const_iterator& end, bool positiveOnly)
{
if (!m_running) {
return;
}
// if no visualisation is set, send the samples to /dev/null
if (!m_glSpectrum && !m_wsSpectrum.socketOpened()) {
return;
}
if (!m_mutex.tryLock(0)) { // prevent conflicts with configuration process
return;
}
SampleVector::const_iterator begin(cbegin);
while (begin < end)
{
std::size_t todo = end - begin;
std::size_t samplesNeeded = m_settings.m_fftSize - m_fftBufferFill;
if (todo >= samplesNeeded)
{
// fill up the buffer
std::vector<Complex>::iterator it = m_fftBuffer.begin() + m_fftBufferFill;
for (std::size_t i = 0; i < samplesNeeded; ++i, ++begin) {
*it++ = Complex(begin->real() / m_scalef, begin->imag() / m_scalef);
}
processFFT(positiveOnly);
// advance buffer respecting the fft overlap factor
// undefined bahavior if the memory regions overlap, valid code for 50% overlap
std::copy(m_fftBuffer.begin() + m_refillSize, m_fftBuffer.end(), m_fftBuffer.begin());
// start over
m_fftBufferFill = m_overlapSize;
m_needMoreSamples = false;
}
else
{
// not enough samples for FFT - just fill in new data and return
for (std::vector<Complex>::iterator it = m_fftBuffer.begin() + m_fftBufferFill; begin < end; ++begin) {
*it++ = Complex(begin->real() / m_scalef, begin->imag() / m_scalef);
}
m_fftBufferFill += todo;
m_needMoreSamples = true;
}
}
m_mutex.unlock();
}
void SpectrumVis::processFFT(bool positiveOnly)
{
int fftMin = (m_frequencyZoomFactor == 1.0f) ?
0 : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_settings.m_fftSize;
int fftMax = (m_frequencyZoomFactor == 1.0f) ?
m_settings.m_fftSize : (m_frequencyZoomPos + (0.5f / m_frequencyZoomFactor)) * m_settings.m_fftSize;
// apply fft window (and copy from m_fftBuffer to m_fftIn)
m_window.apply(&m_fftBuffer[0], m_fft->in());
// calculate FFT
m_fft->transform();
// extract power spectrum and reorder buckets
const Complex* fftOut = m_fft->out();
Complex c;
Real v;
std::size_t halfSize = m_settings.m_fftSize / 2;
if (m_settings.m_averagingMode == SpectrumSettings::AvgModeNone)
{
m_specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
m_psd[i] = v/m_powFFTDiv;
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i * 2] = v;
m_powerSpectrum[i * 2 + 1] = v;
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
m_psd[i] = v/m_powFFTDiv;
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i] = v;
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
m_psd[i + halfSize] = v/m_powFFTDiv;
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i + halfSize] = v;
}
}
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
else if (m_settings.m_averagingMode == SpectrumSettings::AvgModeMoving)
{
m_specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i);
m_psd[i] = v/m_powFFTDiv;
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i * 2] = v;
m_powerSpectrum[i * 2 + 1] = v;
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i+halfSize);
m_psd[i] = v/m_powFFTDiv;
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i] = v;
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
v = m_movingAverage.storeAndGetAvg(v, i);
m_psd[i + halfSize] = v/m_powFFTDiv;
m_specMax = v > m_specMax ? v : m_specMax;
v = m_settings.m_linear ? v/m_powFFTDiv : m_mult * log2fapprox(v) + m_ofs;
m_powerSpectrum[i + halfSize] = v;
}
}
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
m_movingAverage.nextAverage();
}
else if (m_settings.m_averagingMode == SpectrumSettings::AvgModeFixed)
{
double avg;
Real specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i))
{
m_psd[i] = avg/m_powFFTDiv;
specMax = avg > specMax ? avg : specMax;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2fapprox(avg) + m_ofs;
m_powerSpectrum[i * 2] = avg;
m_powerSpectrum[i * 2 + 1] = avg;
}
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i+halfSize))
{
m_psd[i] = avg/m_powFFTDiv;
specMax = avg > specMax ? avg : specMax;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2fapprox(avg) + m_ofs;
m_powerSpectrum[i] = avg;
}
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_fixedAverage.storeAndGetAvg(avg, v, i))
{
m_psd[i + halfSize] = avg/m_powFFTDiv;
specMax = avg > specMax ? avg : specMax;
avg = m_settings.m_linear ? avg/m_powFFTDiv : m_mult * log2fapprox(avg) + m_ofs;
m_powerSpectrum[i + halfSize] = avg;
}
}
}
// result available
if (m_fixedAverage.nextAverage())
{
m_specMax = specMax;
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
else if (m_settings.m_averagingMode == SpectrumSettings::AvgModeMax)
{
double max;
Real specMax = 0.0f;
if ( positiveOnly )
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i))
{
m_psd[i] = max/m_powFFTDiv;
specMax = max > specMax ? max : specMax;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2fapprox(max) + m_ofs;
m_powerSpectrum[i * 2] = max;
m_powerSpectrum[i * 2 + 1] = max;
}
}
}
else
{
for (std::size_t i = 0; i < halfSize; i++)
{
c = fftOut[i + halfSize];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i+halfSize))
{
m_psd[i] = max/m_powFFTDiv;
specMax = max > specMax ? max : specMax;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2fapprox(max) + m_ofs;
m_powerSpectrum[i] = max;
}
c = fftOut[i];
v = c.real() * c.real() + c.imag() * c.imag();
// result available
if (m_max.storeAndGetMax(max, v, i))
{
m_psd[i + halfSize] = max/m_powFFTDiv;
specMax = max > specMax ? max : specMax;
max = m_settings.m_linear ? max/m_powFFTDiv : m_mult * log2fapprox(max) + m_ofs;
m_powerSpectrum[i + halfSize] = max;
}
}
}
// result available
if (m_max.nextMax())
{
m_specMax = specMax;
// send new data to visualisation
if (m_glSpectrum)
{
m_glSpectrum->newSpectrum(
&m_powerSpectrum.data()[fftMin],
fftMax - fftMin,
m_settings.m_fftSize
);
}
// web socket spectrum connections
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.newSpectrum(
m_powerSpectrum,
m_settings.m_fftSize,
m_centerFrequency,
m_sampleRate,
m_settings.m_linear,
m_settings.m_ssb,
m_settings.m_usb
);
}
}
}
}
void SpectrumVis::getZoomedPSDCopy(std::vector<Real>& copy) const
{
int fftMin = (m_frequencyZoomFactor == 1.0f) ?
0 : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_settings.m_fftSize;
int fftMax = (m_frequencyZoomFactor == 1.0f) ?
m_settings.m_fftSize : (m_frequencyZoomPos + (0.5f / m_frequencyZoomFactor)) * m_settings.m_fftSize;
copy.assign(m_psd.begin() + fftMin, m_psd.begin() + fftMax);
}
void SpectrumVis::start()
{
setRunning(true);
if (getMessageQueueToGUI()) // propagate to GUI if any
{
MsgStartStop *msg = MsgStartStop::create(true);
getMessageQueueToGUI()->push(msg);
}
}
void SpectrumVis::stop()
{
setRunning(false);
if (getMessageQueueToGUI()) // propagate to GUI if any
{
MsgStartStop *msg = MsgStartStop::create(false);
getMessageQueueToGUI()->push(msg);
}
}
void SpectrumVis::pushMessage(Message *msg)
{
m_inputMessageQueue.push(msg);
}
QString SpectrumVis::getSinkName()
{
return objectName();
}
void SpectrumVis::handleInputMessages()
{
Message* message;
while ((message = m_inputMessageQueue.pop()) != 0)
{
if (handleMessage(*message)) {
delete message;
}
}
}
bool SpectrumVis::handleMessage(const Message& message)
{
if (DSPSignalNotification::match(message))
{
// This is coming from device engine and will apply to main spectrum
DSPSignalNotification& notif = (DSPSignalNotification&) message;
qDebug() << "SpectrumVis::handleMessage: DSPSignalNotification:"
<< " centerFrequency: " << notif.getCenterFrequency()
<< " sampleRate: " << notif.getSampleRate();
handleConfigureDSP(notif.getCenterFrequency(), notif.getSampleRate());
return true;
}
else if (MsgConfigureSpectrumVis::match(message))
{
MsgConfigureSpectrumVis& cfg = (MsgConfigureSpectrumVis&) message;
qDebug() << "SpectrumVis::handleMessage: MsgConfigureSpectrumVis";
applySettings(cfg.getSettings(), cfg.getForce());
return true;
}
else if (MsgConfigureScalingFactor::match(message))
{
MsgConfigureScalingFactor& conf = (MsgConfigureScalingFactor&) message;
handleScalef(conf.getScalef());
return true;
}
else if (MsgConfigureWSpectrumOpenClose::match(message))
{
MsgConfigureWSpectrumOpenClose& conf = (MsgConfigureWSpectrumOpenClose&) message;
handleWSOpenClose(conf.getOpenClose());
return true;
}
else if (MsgConfigureWSpectrum::match(message)) {
MsgConfigureWSpectrum& conf = (MsgConfigureWSpectrum&) message;
handleConfigureWSSpectrum(conf.getAddress(), conf.getPort());
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
setRunning(cmd.getStartStop());
return true;
}
else if (MsgFrequencyZooming::match(message))
{
MsgFrequencyZooming& cmd = (MsgFrequencyZooming&) message;
m_frequencyZoomFactor = cmd.getFrequencyZoomFactor();
m_frequencyZoomPos = cmd.getFrequencyZoomPos();
return true;
}
else
{
return false;
}
}
void SpectrumVis::applySettings(const SpectrumSettings& settings, bool force)
{
QMutexLocker mutexLocker(&m_mutex);
int fftSize = settings.m_fftSize > (1<<SpectrumSettings::m_log2FFTSizeMax) ?
(1<<SpectrumSettings::m_log2FFTSizeMax) :
settings.m_fftSize < (1<<SpectrumSettings::m_log2FFTSizeMin) ?
(1<<SpectrumSettings::m_log2FFTSizeMin) :
settings.m_fftSize;
qDebug() << "SpectrumVis::applySettings:"
<< " m_fftSize: " << fftSize
<< " m_fftWindow: " << settings.m_fftWindow
<< " m_fftOverlap: " << settings.m_fftOverlap
<< " m_averagingIndex: " << settings.m_averagingIndex
<< " m_averagingMode: " << settings.m_averagingMode
<< " m_refLevel: " << settings.m_refLevel
<< " m_powerRange: " << settings.m_powerRange
<< " m_fpsPeriodMs: " << settings.m_fpsPeriodMs
<< " m_linear: " << settings.m_linear
<< " m_ssb: " << settings.m_ssb
<< " m_usb: " << settings.m_usb
<< " m_wsSpectrumAddress: " << settings.m_wsSpectrumAddress
<< " m_wsSpectrumPort: " << settings.m_wsSpectrumPort
<< " force: " << force;
if ((fftSize != m_settings.m_fftSize) || force)
{
FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
// release previous engine allocation if any
if (m_fft) {
fftFactory->releaseEngine(m_settings.m_fftSize, false, m_fftEngineSequence);
}
m_fftEngineSequence = fftFactory->getEngine(fftSize, false, &m_fft);
m_ofs = 20.0f * log10f(1.0f / fftSize);
m_powFFTDiv = fftSize * fftSize;
if (fftSize > m_settings.m_fftSize)
{
m_fftBuffer.resize(fftSize);
m_powerSpectrum.resize(fftSize);
m_psd.resize(fftSize);
}
}
if ((fftSize != m_settings.m_fftSize)
|| (settings.m_fftWindow != m_settings.m_fftWindow) || force)
{
m_window.create(settings.m_fftWindow, fftSize);
}
if ((fftSize != m_settings.m_fftSize)
|| (settings.m_fftOverlap != m_settings.m_fftOverlap) || force)
{
m_overlapSize = settings.m_fftOverlap < 0 ? 0 :
settings.m_fftOverlap < fftSize ? settings.m_fftOverlap : (fftSize - 1);
m_refillSize = fftSize - m_overlapSize;
m_fftBufferFill = m_overlapSize;
}
if ((fftSize != m_settings.m_fftSize)
|| (settings.m_averagingIndex != m_settings.m_averagingIndex)
|| (settings.m_averagingMode != m_settings.m_averagingMode) || force)
{
unsigned int averagingValue = SpectrumSettings::getAveragingValue(settings.m_averagingIndex, settings.m_averagingMode);
averagingValue = averagingValue > SpectrumSettings::getMaxAveragingValue(fftSize, settings.m_averagingMode) ?
SpectrumSettings::getMaxAveragingValue(fftSize, settings.m_averagingMode) : averagingValue; // Capping to avoid out of memory condition
m_movingAverage.resize(fftSize, averagingValue);
m_fixedAverage.resize(fftSize, averagingValue);
m_max.resize(fftSize, averagingValue);
}
if ((settings.m_wsSpectrumAddress != m_settings.m_wsSpectrumAddress)
|| (settings.m_wsSpectrumPort != m_settings.m_wsSpectrumPort) || force) {
handleConfigureWSSpectrum(settings.m_wsSpectrumAddress, settings.m_wsSpectrumPort);
}
m_settings = settings;
m_settings.m_fftSize = fftSize;
if (m_guiMessageQueue)
{
MsgConfigureSpectrumVis *msg = MsgConfigureSpectrumVis::create(m_settings, false);
m_guiMessageQueue->push(msg);
}
}
void SpectrumVis::handleConfigureDSP(uint64_t centerFrequency, int sampleRate)
{
QMutexLocker mutexLocker(&m_mutex);
m_centerFrequency = centerFrequency;
m_sampleRate = sampleRate;
}
void SpectrumVis::handleScalef(Real scalef)
{
QMutexLocker mutexLocker(&m_mutex);
m_scalef = scalef;
}
void SpectrumVis::handleWSOpenClose(bool openClose)
{
QMutexLocker mutexLocker(&m_mutex);
if (openClose) {
m_wsSpectrum.openSocket();
} else {
m_wsSpectrum.closeSocket();
}
}
void SpectrumVis::handleConfigureWSSpectrum(const QString& address, uint16_t port)
{
m_wsSpectrum.setListeningAddress(address);
m_wsSpectrum.setPort(port);
if (m_wsSpectrum.socketOpened())
{
m_wsSpectrum.closeSocket();
m_wsSpectrum.openSocket();
}
}
int SpectrumVis::webapiSpectrumSettingsGet(SWGSDRangel::SWGGLSpectrum& response, QString& errorMessage) const
{
(void) errorMessage;
response.init();
webapiFormatSpectrumSettings(response, m_settings);
return 200;
}
int SpectrumVis::webapiSpectrumSettingsPutPatch(
bool force,
const QStringList& spectrumSettingsKeys,
SWGSDRangel::SWGGLSpectrum& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
SpectrumSettings settings = m_settings;
webapiUpdateSpectrumSettings(settings, spectrumSettingsKeys, response);
MsgConfigureSpectrumVis *msg = MsgConfigureSpectrumVis::create(settings, force);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureSpectrumVis *msgToGUI = MsgConfigureSpectrumVis::create(settings, force);
getMessageQueueToGUI()->push(msgToGUI);
}
webapiFormatSpectrumSettings(response, settings);
return 200;
}
int SpectrumVis::webapiSpectrumServerGet(SWGSDRangel::SWGSpectrumServer& response, QString& errorMessage) const
{
(void) errorMessage;
bool serverRunning = m_wsSpectrum.socketOpened();
QList<QHostAddress> peerHosts;
QList<quint16> peerPorts;
m_wsSpectrum.getPeers(peerHosts, peerPorts);
response.init();
response.setRun(serverRunning ? 1 : 0);
QHostAddress serverAddress = m_wsSpectrum.getListeningAddress();
if (serverAddress != QHostAddress::Null) {
response.setListeningAddress(new QString(serverAddress.toString()));
}
uint16_t serverPort = m_wsSpectrum.getListeningPort();
if (serverPort != 0) {
response.setListeningPort(serverPort);
}
if (peerHosts.size() > 0)
{
response.setClients(new QList<SWGSDRangel::SWGSpectrumServer_clients*>);
for (int i = 0; i < peerHosts.size(); i++)
{
response.getClients()->push_back(new SWGSDRangel::SWGSpectrumServer_clients);
response.getClients()->back()->setAddress(new QString(peerHosts.at(i).toString()));
response.getClients()->back()->setPort(peerPorts.at(i));
}
}
return 200;
}
int SpectrumVis::webapiSpectrumServerPost(SWGSDRangel::SWGSuccessResponse& response, QString& errorMessage)
{
(void) errorMessage;
MsgConfigureWSpectrumOpenClose *msg = MsgConfigureWSpectrumOpenClose::create(true);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureWSpectrumOpenClose *msgToGui = MsgConfigureWSpectrumOpenClose::create(true);
getMessageQueueToGUI()->push(msgToGui);
}
response.setMessage(new QString("Websocket spectrum server started"));
return 200;
}
int SpectrumVis::webapiSpectrumServerDelete(SWGSDRangel::SWGSuccessResponse& response, QString& errorMessage)
{
(void) errorMessage;
MsgConfigureWSpectrumOpenClose *msg = MsgConfigureWSpectrumOpenClose::create(false);
m_inputMessageQueue.push(msg);
if (getMessageQueueToGUI()) // forward to GUI if any
{
MsgConfigureWSpectrumOpenClose *msgToGui = MsgConfigureWSpectrumOpenClose::create(false);
getMessageQueueToGUI()->push(msgToGui);
}
response.setMessage(new QString("Websocket spectrum server stopped"));
return 200;
}
void SpectrumVis::webapiFormatSpectrumSettings(SWGSDRangel::SWGGLSpectrum& response, const SpectrumSettings& settings)
{
settings.formatTo(&response);
}
void SpectrumVis::webapiUpdateSpectrumSettings(
SpectrumSettings& settings,
const QStringList& spectrumSettingsKeys,
SWGSDRangel::SWGGLSpectrum& response)
{
QStringList prefixedKeys;
for (const auto &key : spectrumSettingsKeys) {
prefixedKeys.append(tr("spectrumConfig.%1").arg(key));
}
settings.updateFrom(prefixedKeys, &response);
}
// To calculate power, the usual equation:
// 10*log10(V1/V2), where V2=fftSize^2
// is calculated using log2 instead, with:
// ofs=20.0f * log10f(1.0f / fftSize)
// mult=(10.0f / log2(10.0f))
// dB = m_mult * log2f(v) + m_ofs
// However, while the gcc version of log2f is twice as fast as log10f,
// MSVC version is 6x slower.
// Also, we don't need full accuracy of log2f for calculating the power for the spectrum,
// so we can use the following approximation to get a good speed-up for both compilers:
// https://www.vplesko.com/posts/replacing_log2f.html
// https://www.vplesko.com/assets/replacing_log2f/main.c.txt
float SpectrumVis::log2fapprox(float x) const
{
// IEEE 754 representation constants.
const int32_t mantissaLen = 23;
const int32_t mantissaMask = (1 << mantissaLen) - 1;
const int32_t baseExponent = -127;
// Reinterpret x as int in a standard compliant way.
int32_t xi;
memcpy(&xi, &x, sizeof(xi));
// Calculate exponent of x.
float e = (float)((xi >> mantissaLen) + baseExponent);
// Calculate mantissa of x. It will be in range [1, 2).
float m;
int32_t mxi = (xi & mantissaMask) | ((-baseExponent) << mantissaLen);
memcpy(&m, &mxi, sizeof(m));
// Use Remez algorithm-generated approximation polynomial
// for log2(a) where a is in range [1, 2].
float l = 0.15824871f;
l = l * m + -1.051875f;
l = l * m + 3.0478842f;
l = l * m + -2.1536207f;
// Add exponent to the calculation.
// Final log is log2(m*2^e)=log2(m)+e.
l += e;
return l;
}