sdrangel/wdsp/rmatch.cpp

746 wiersze
23 KiB
C++

/* rmatch.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2017, 2018, 2022 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include <chrono>
#include <thread>
#include "comm.hpp"
#include "varsamp.hpp"
#include "rmatch.hpp"
namespace WDSP {
MAV* MAV::create_mav (int ringmin, int ringmax, double nom_value)
{
MAV *a = new MAV;
a->ringmin = ringmin;
a->ringmax = ringmax;
a->nom_value = nom_value;
a->ring = new int[a->ringmax]; // (int *) malloc0 (a->ringmax * sizeof (int));
a->mask = a->ringmax - 1;
a->i = 0;
a->load = 0;
a->sum = 0;
return a;
}
void MAV::destroy_mav (MAV *a)
{
delete[] (a->ring);
delete (a);
}
void MAV::flush_mav (MAV *a)
{
memset (a->ring, 0, a->ringmax * sizeof (int));
a->i = 0;
a->load = 0;
a->sum = 0;
}
void MAV::xmav (MAV *a, int input, double* output)
{
if (a->load >= a->ringmax)
a->sum -= a->ring[a->i];
if (a->load < a->ringmax) a->load++;
a->ring[a->i] = input;
a->sum += a->ring[a->i];
if (a->load >= a->ringmin)
*output = (double)a->sum / (double)a->load;
else
*output = a->nom_value;
a->i = (a->i + 1) & a->mask;
}
AAMAV* AAMAV::create_aamav (int ringmin, int ringmax, double nom_ratio)
{
AAMAV *a = new AAMAV;
a->ringmin = ringmin;
a->ringmax = ringmax;
a->nom_ratio = nom_ratio;
a->ring = new int[a->ringmax]; // (int *) malloc0 (a->ringmax * sizeof (int));
a->mask = a->ringmax - 1;
a->i = 0;
a->load = 0;
a->pos = 0;
a->neg = 0;
return a;
}
void AAMAV::destroy_aamav (AAMAV *a)
{
delete[] (a->ring);
delete[] (a);
}
void AAMAV::flush_aamav (AAMAV *a)
{
memset (a->ring, 0, a->ringmax * sizeof (int));
a->i = 0;
a->load = 0;
a->pos = 0;
a->neg = 0;
}
void AAMAV::xaamav (AAMAV *a, int input, double* output)
{
if (a->load >= a->ringmax)
{
if (a->ring[a->i] >= 0)
a->pos -= a->ring[a->i];
else
a->neg += a->ring[a->i];
}
if (a->load <= a->ringmax) a->load++;
a->ring[a->i] = input;
if (a->ring[a->i] >= 0)
a->pos += a->ring[a->i];
else
a->neg -= a->ring[a->i];
if (a->load >= a->ringmin)
*output = (double)a->neg / (double)a->pos;
else if (a->neg > 0 && a->pos > 0)
{
double frac = (double)a->load / (double)a->ringmin;
*output = (1.0 - frac) * a->nom_ratio + frac * ((double)a->neg / (double)a->pos);
}
else
*output = a->nom_ratio;
a->i = (a->i + 1) & a->mask;
}
void RMATCH::calc_rmatch (RMATCH *a)
{
int m;
double theta, dtheta;
int max_ring_insize;
a->nom_ratio = (double)a->nom_outrate / (double)a->nom_inrate;
max_ring_insize = (int)(1.0 + (double)a->insize * (1.05 * a->nom_ratio));
if (a->ringsize < 2 * max_ring_insize) a->ringsize = 2 * max_ring_insize;
if (a->ringsize < 2 * a->outsize) a->ringsize = 2 * a->outsize;
a->ring = new double[a->ringsize * 2]; // (double *) malloc0 (a->ringsize * sizeof (complex));
a->rsize = a->ringsize;
a->n_ring = a->rsize / 2;
a->iin = a->rsize / 2;
a->iout = 0;
a->resout = new double[max_ring_insize * 2]; // (double *) malloc0 (max_ring_insize * sizeof (complex));
a->v = VARSAMP::create_varsamp (1, a->insize, a->in, a->resout, a->nom_inrate, a->nom_outrate,
a->fc_high, a->fc_low, a->R, a->gain, a->var, a->varmode);
a->ffmav = AAMAV::create_aamav (a->ff_ringmin, a->ff_ringmax, a->nom_ratio);
a->propmav = MAV::create_mav (a->prop_ringmin, a->prop_ringmax, 0.0);
a->pr_gain = a->prop_gain * 48000.0 / (double)a->nom_outrate; // adjust gain for rate
a->inv_nom_ratio = (double)a->nom_inrate / (double)a->nom_outrate;
a->feed_forward = 1.0;
a->av_deviation = 0.0;
a->ntslew = (int)(a->tslew * a->nom_outrate);
if (a->ntslew + 1 > a->rsize / 2) a->ntslew = a->rsize / 2 - 1;
a->cslew = new double[a->ntslew + 1]; // (double *) malloc0 ((a->ntslew + 1) * sizeof (double));
dtheta = PI / (double)a->ntslew;
theta = 0.0;
for (m = 0; m <= a->ntslew; m++)
{
a->cslew[m] = 0.5 * (1.0 - cos (theta));
theta += dtheta;
}
a->baux = new double[a->ringsize / 2 * 2]; // (double *) malloc0 (a->ringsize / 2 * sizeof (complex));
a->readsamps = 0;
a->writesamps = 0;
a->read_startup = (unsigned int)((double)a->nom_outrate * a->startup_delay);
a->write_startup = (unsigned int)((double)a->nom_inrate * a->startup_delay);
a->control_flag = 0;
// diagnostics
a->underflows = 0;
a->overflows = 0;
}
void RMATCH::decalc_rmatch (RMATCH *a)
{
delete[] (a->baux);
delete[] (a->cslew);
MAV::destroy_mav (a->propmav);
AAMAV::destroy_aamav (a->ffmav);
VARSAMP::destroy_varsamp (a->v);
delete[] (a->resout);
delete[] (a->ring);
}
RMATCH* RMATCH::create_rmatch (
int run, // 0 - input and output calls do nothing; 1 - operates normally
double* in, // pointer to input buffer
double* out, // pointer to output buffer
int insize, // size of input buffer
int outsize, // size of output buffer
int nom_inrate, // nominal input samplerate
int nom_outrate, // nominal output samplerate
double fc_high, // high cutoff frequency if lower than max
double fc_low, // low cutoff frequency if higher than zero
double gain, // gain to be applied during this process
double startup_delay, // time (seconds) to delay before beginning measurements to control variable resampler
int auto_ringsize, // 0 specified ringsize is used; 1 ringsize is auto-optimized - FEATURE NOT IMPLEMENTED!!
int ringsize, // specified ringsize; max ringsize if 'auto' is enabled
int R, // density factor for varsamp coefficients
double var, // initial value of variable resampler ratio (value of ~1.0)
int ffmav_min, // minimum feed-forward moving average size to put full weight on data in the ring
int ffmav_max, // maximum feed-forward moving average size - MUST BE A POWER OF TWO!
double ff_alpha, // feed-forward exponential averaging multiplier
int prop_ringmin, // proportional feedback min moving average ringsize
int prop_ringmax, // proportional feedback max moving average ringsize - MUST BE A POWER OF TWO!
double prop_gain, // proportional feedback gain factor
int varmode, // 0 - use same var for all samples of the buffer; 1 - interpolate from old_var to this var
double tslew // slew/blend time (seconds)
)
{
RMATCH *a = new RMATCH;
a->run = run;
a->in = in;
a->out = out;
a->insize = insize;
a->outsize = outsize;
a->nom_inrate = nom_inrate;
a->nom_outrate = nom_outrate;
a->fc_high = fc_high;
a->fc_low = fc_low;
a->gain = gain;
a->startup_delay = startup_delay;
a->auto_ringsize = auto_ringsize;
a->ringsize = ringsize;
a->R = R;
a->var = var;
a->ff_ringmin = ffmav_min;
a->ff_ringmax = ffmav_max; // must be a power of two
a->ff_alpha = ff_alpha;
a->prop_ringmin = prop_ringmin;
a->prop_ringmax = prop_ringmax; // must be a power of two
a->prop_gain = prop_gain;
a->varmode = varmode;
a->tslew = tslew;
calc_rmatch(a);
return a;
}
void RMATCH::destroy_rmatch (RMATCH *a)
{
decalc_rmatch (a);
delete (a);
}
void RMATCH::reset_rmatch (RMATCH *a)
{
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
decalc_rmatch(a);
calc_rmatch (a);
a->run = 1;
}
void RMATCH::control (RMATCH *a, int change)
{
{
double current_ratio;
AAMAV::xaamav (a->ffmav, change, &current_ratio);
current_ratio *= a->inv_nom_ratio;
a->feed_forward = a->ff_alpha * current_ratio + (1.0 - a->ff_alpha) * a->feed_forward;
}
{
int deviation = a->n_ring - a->rsize / 2;
MAV::xmav (a->propmav, deviation, &a->av_deviation);
}
a->cs_var.lock();
a->var = a->feed_forward - a->pr_gain * a->av_deviation;
if (a->var > 1.04) a->var = 1.04;
if (a->var < 0.96) a->var = 0.96;
a->cs_var.unlock();
}
void RMATCH::blend (RMATCH *a)
{
int i, j;
for (i = 0, j = a->iout; i <= a->ntslew; i++, j = (j + 1) % a->rsize)
{
a->ring[2 * j + 0] = a->cslew[i] * a->ring[2 * j + 0] + (1.0 - a->cslew[i]) * a->baux[2 * i + 0];
a->ring[2 * j + 1] = a->cslew[i] * a->ring[2 * j + 1] + (1.0 - a->cslew[i]) * a->baux[2 * i + 1];
}
}
void RMATCH::upslew (RMATCH *a, int newsamps)
{
int i, j;
i = 0;
j = a->iin;
while (a->ucnt >= 0 && i < newsamps)
{
a->ring[2 * j + 0] *= a->cslew[a->ntslew - a->ucnt];
a->ring[2 * j + 1] *= a->cslew[a->ntslew - a->ucnt];
a->ucnt--;
i++;
j = (j + 1) % a->rsize;
}
}
void RMATCH::xrmatchIN (void* b, double* in)
{
RMATCH *a = (RMATCH*) b;
if (a->run == 1)
{
int newsamps, first, second, ovfl;
double var;
a->v->in = a->in = in;
a->cs_var.lock();
if (!a->force)
var = a->var;
else
var = a->fvar;
a->cs_var.unlock();
newsamps = VARSAMP::xvarsamp (a->v, var);
a->cs_ring.lock();
a->n_ring += newsamps;
if ((ovfl = a->n_ring - a->rsize) > 0)
{
a->overflows += 1;
// a->n_ring = a->rsize / 2;
a->n_ring = a->rsize; //
if ((a->ntslew + 1) > (a->rsize - a->iout))
{
first = a->rsize - a->iout;
second = (a->ntslew + 1) - first;
}
else
{
first = a->ntslew + 1;
second = 0;
}
memcpy (a->baux, a->ring + 2 * a->iout, first * sizeof (dcomplex));
memcpy (a->baux + 2 * first, a->ring, second * sizeof (dcomplex));
// a->iout = (a->iout + ovfl + a->rsize / 2) % a->rsize;
a->iout = (a->iout + ovfl) % a->rsize; //
}
if (newsamps > (a->rsize - a->iin))
{
first = a->rsize - a->iin;
second = newsamps - first;
}
else
{
first = newsamps;
second = 0;
}
memcpy (a->ring + 2 * a->iin, a->resout, first * sizeof (dcomplex));
memcpy (a->ring, a->resout + 2 * first, second * sizeof (dcomplex));
if (a->ucnt >= 0) upslew(a, newsamps);
a->iin = (a->iin + newsamps) % a->rsize;
if (ovfl > 0) blend (a);
if (!a->control_flag)
{
a->writesamps += a->insize;
if ((a->readsamps >= a->read_startup) && (a->writesamps >= a->write_startup))
a->control_flag = 1;
}
if (a->control_flag) control (a, a->insize);
a->cs_ring.unlock();
}
}
void RMATCH::dslew (RMATCH *a)
{
int i, j, k, n;
int zeros, first, second;
if (a->n_ring > a->ntslew + 1)
{
i = (a->iout + (a->n_ring - (a->ntslew + 1))) % a->rsize;
j = a->ntslew;
k = a->ntslew + 1;
n = a->n_ring - (a->ntslew + 1);
}
else
{
i = a->iout;
j = a->ntslew;
k = a->n_ring;
n = 0;
}
while (k > 0 && j >= 0)
{
if (k == 1)
{
a->dlast[0] = a->ring[2 * i + 0];
a->dlast[1] = a->ring[2 * i + 1];
}
a->ring[2 * i + 0] *= a->cslew[j];
a->ring[2 * i + 1] *= a->cslew[j];
i = (i + 1) % a->rsize;
j--;
k--;
n++;
}
while (j >= 0)
{
a->ring[2 * i + 0] = a->dlast[0] * a->cslew[j];
a->ring[2 * i + 1] = a->dlast[1] * a->cslew[j];
i = (i + 1) % a->rsize;
j--;
n++;
}
// zeros = a->outsize + a->rsize / 2 - n;
if ((zeros = a->outsize - n) > 0) //
{ //
if (zeros > a->rsize - i)
{
first = a->rsize - i;
second = zeros - first;
}
else
{
first = zeros;
second = 0;
}
memset (a->ring + 2 * i, 0, first * sizeof (dcomplex));
memset (a->ring, 0, second * sizeof (dcomplex));
n += zeros; //
} //
// a->n_ring = a->outsize + a->rsize / 2;
a->n_ring = n; //
// a->iin = (a->iout + a->outsize + a->rsize/2) % a->rsize;
a->iin = (a->iout + a->n_ring) % a->rsize; //
}
void RMATCH::xrmatchOUT (void* b, double* out)
{
RMATCH *a = (RMATCH*) b;
if (a->run == 1)
{
int first, second;
a->out = out;
a->cs_ring.lock();
if (a->n_ring < a->outsize)
{
dslew (a);
a->ucnt = a->ntslew;
a->underflows += 1;
}
if (a->outsize > (a->rsize - a->iout))
{
first = a->rsize - a->iout;
second = a->outsize - first;
}
else
{
first = a->outsize;
second = 0;
}
memcpy (a->out, a->ring + 2 * a->iout, first * sizeof (dcomplex));
memcpy (a->out + 2 * first, a->ring, second * sizeof (dcomplex));
a->iout = (a->iout + a->outsize) % a->rsize;
a->n_ring -= a->outsize;
a->dlast[0] = a->out[2 * (a->outsize - 1) + 0];
a->dlast[1] = a->out[2 * (a->outsize - 1) + 1];
if (!a->control_flag)
{
a->readsamps += a->outsize;
if ((a->readsamps >= a->read_startup) && (a->writesamps >= a->write_startup))
a->control_flag = 1;
}
if (a->control_flag) control (a, -(a->outsize));
a->cs_ring.unlock();
}
}
void RMATCH::getRMatchDiags (void* b, int* underflows, int* overflows, double* var, int* ringsize, int* nring)
{
RMATCH *a = (RMATCH*) b;
*underflows = a->underflows;
*overflows = a->overflows;
a->underflows &= 0xFFFFFFFF;
a->overflows &= 0xFFFFFFFF;
a->cs_var.lock();
*var = a->var;
*ringsize = a->ringsize;
*nring = a->n_ring;
a->cs_var.unlock();
}
void RMATCH::resetRMatchDiags (void*)
{
// RMATCH *a = (RMATCH*) b;
// InterlockedExchange (&a->underflows, 0);
// InterlockedExchange (&a->overflows, 0);
}
void RMATCH::forceRMatchVar (void* b, int force, double fvar)
{
RMATCH *a = (RMATCH*) b;
a->cs_var.lock();
a->force = force;
a->fvar = fvar;
a->cs_var.unlock();
}
void* RMATCH::create_rmatchV(int in_size, int out_size, int nom_inrate, int nom_outrate, int ringsize, double var)
{
return (void*)create_rmatch (
1, // run
0, // input buffer, stuffed in other calls
0, // output buffer, stuffed in other calls
in_size, // input buffer size (complex samples)
out_size, // output buffer size (complex samples)
nom_inrate, // nominal input sample-rate
nom_outrate, // nominal output sample-rate
0.0, // fc_high (0.0 -> automatic)
-1.0, // fc_low (-1.0 -> no low cutoff)
1.0, // gain
3.0, // startup delay (seconds)
1, // automatic ring-size [not implemented yet]
ringsize, // ringsize
1024, // R, coefficient density
var, // initial variable ratio
4096, // feed-forward moving average min size
262144, // feed-forward moving average max size - POWER OF TWO!
0.01, // feed-forward exponential smoothing
4096, // proportional feedback min moving av ringsize
16384, // proportional feedback max moving av ringsize - POWER OF TWO!
4.0e-06, // proportional feedback gain
1, // linearly interpolate cvar by sample
0.003 ); // slew time (seconds)
}
void RMATCH::destroy_rmatchV (void* ptr)
{
RMATCH *a = (RMATCH*) ptr;
destroy_rmatch (a);
}
void RMATCH::setRMatchInsize (void* ptr, int insize)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
decalc_rmatch(a);
a->insize = insize;
calc_rmatch (a);
a->run = 1;
}
void RMATCH::setRMatchOutsize (void* ptr, int outsize)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
decalc_rmatch(a);
a->outsize = outsize;
calc_rmatch (a);
a->run = 1;
}
void RMATCH::setRMatchNomInrate (void* ptr, int nom_inrate)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
decalc_rmatch(a);
a->nom_inrate = nom_inrate;
calc_rmatch (a);
a->run = 1;
}
void RMATCH::setRMatchNomOutrate (void* ptr, int nom_outrate)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
decalc_rmatch(a);
a->nom_outrate = nom_outrate;
calc_rmatch (a);
a->run = 1;
}
void RMATCH::setRMatchRingsize (void* ptr, int ringsize)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
decalc_rmatch(a);
a->ringsize = ringsize;
calc_rmatch (a);
a->run = 1;
}
void RMATCH::setRMatchFeedbackGain (void* b, double feedback_gain)
{
RMATCH *a = (RMATCH*) b;
a->cs_var.lock();
a->prop_gain = feedback_gain;
a->pr_gain = a->prop_gain * 48000.0 / (double)a->nom_outrate;
a->cs_var.unlock();
}
void RMATCH::setRMatchSlewTime (void* b, double slew_time)
{
RMATCH *a = (RMATCH*) b;
a->run = 0; // InterlockedBitTestAndReset(&a->run, 0); // turn OFF new data coming into the rmatch
// Sleep(10); // wait for processing to cease
decalc_rmatch(a); // deallocate all memory EXCEPT the data structure holding all current parameters
a->tslew = slew_time; // change the value of 'slew_time'
calc_rmatch(a); // recalculate/reallocate everything in the RMATCH
a->run = 1; // InterlockedBitTestAndSet(&a->run, 0); // turn ON the dataflow
}
void RMATCH::setRMatchSlewTime1(void* b, double slew_time)
{
RMATCH *a = (RMATCH*) b;
double theta, dtheta;
int m;
a->run = 0;
// Sleep(10);
delete[](a->cslew);
a->tslew = slew_time;
a->ntslew = (int)(a->tslew * a->nom_outrate);
if (a->ntslew + 1 > a->rsize / 2) a->ntslew = a->rsize / 2 - 1;
a->cslew = new double[a->ntslew + 1]; // (double*)malloc0((a->ntslew + 1) * sizeof(double));
dtheta = PI / (double)a->ntslew;
theta = 0.0;
for (m = 0; m <= a->ntslew; m++)
{
a->cslew[m] = 0.5 * (1.0 - cos(theta));
theta += dtheta;
}
a->run = 1;
}
void RMATCH::setRMatchPropRingMin(void* ptr, int prop_min)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
// Sleep(10);
decalc_rmatch(a);
a->prop_ringmin = prop_min;
calc_rmatch(a);
a->run = 1;
}
void RMATCH::setRMatchPropRingMax(void* ptr, int prop_max)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
// Sleep(10);
decalc_rmatch(a);
a->prop_ringmax = prop_max; // must be a power of two
calc_rmatch(a);
a->run = 1;
}
void RMATCH::setRMatchFFRingMin(void* ptr, int ff_ringmin)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
// Sleep(10);
decalc_rmatch(a);
a->ff_ringmin = ff_ringmin;
calc_rmatch(a);
a->run = 1;
}
void RMATCH::setRMatchFFRingMax(void* ptr, int ff_ringmax)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
// Sleep(10);
decalc_rmatch(a);
a->ff_ringmax = ff_ringmax; // must be a power of two
calc_rmatch(a);
a->run = 1;
}
void RMATCH::setRMatchFFAlpha(void* ptr, double ff_alpha)
{
RMATCH *a = (RMATCH*) ptr;
a->run = 0;
std::this_thread::sleep_for(std::chrono::seconds(10));
a->ff_alpha = ff_alpha;
a->run = 1;
}
void RMATCH::getControlFlag(void* ptr, int* control_flag)
{
RMATCH *a = (RMATCH*) ptr;
a->cs_ring.lock();
*control_flag = a->control_flag;
a->cs_ring.unlock();
}
// the following function is DEPRECATED
// it is intended for Legacy PowerSDR use only
void* RMATCH::create_rmatchLegacyV(int in_size, int out_size, int nom_inrate, int nom_outrate, int ringsize)
{
return (void*) create_rmatch(
1, // run
0, // input buffer, stuffed in other calls
0, // output buffer, stuffed in other calls
in_size, // input buffer size (complex samples)
out_size, // output buffer size (complex samples)
nom_inrate, // nominal input sample-rate
nom_outrate, // nominal output sample-rate
0.0, // fc_high (0.0 -> automatic)
-1.0, // fc_low (-1.0 -> no low cutoff)
1.0, // gain
3.0, // startup delay (seconds)
1, // automatic ring-size [not implemented yet]
ringsize, // ringsize
1024, // R, coefficient density
1.0, // initial variable ratio
4096, // feed-forward moving average min size
262144, // feed-forward moving average max size - POWER OF TWO!
0.01, // feed-forward exponential smoothing
4096, // proportional feedback min moving av ringsize
16384, // proportional feedback max moving av ringsize - POWER OF TWO!
1.0e-06, // proportional feedback gain ***W4WMT - reduce loop gain a bit for PowerSDR to help Primary buffers > 512
0, // linearly interpolate cvar by sample ***W4WMT - set varmode = 0 for PowerSDR (doesn't work otherwise!?!)
0.003); // slew time (seconds)
}
} // namespace WDSP