sdrangel/wdsp/emnr.cpp

964 wiersze
32 KiB
C++

/* emnr.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2015 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "calculus.hpp"
#include "emnr.hpp"
#include "amd.hpp"
#include "anr.hpp"
#include "anf.hpp"
#include "snb.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
namespace WDSP {
/********************************************************************************************************
* *
* Special Functions *
* *
********************************************************************************************************/
// MODIFIED BESSEL FUNCTIONS OF THE 0TH AND 1ST ORDERS, Polynomial Approximations
// M. Abramowitz and I. Stegun, Eds., "Handbook of Mathematical Functions." Washington, DC: National
// Bureau of Standards, 1964.
// Shanjie Zhang and Jianming Jin, "Computation of Special Functions." New York, NY, John Wiley and Sons,
// Inc., 1996. [Sample code given in FORTRAN]
double EMNR::bessI0 (double x)
{
double res, p;
if (x == 0.0)
res = 1.0;
else
{
if (x < 0.0) x = -x;
if (x <= 3.75)
{
p = x / 3.75;
p = p * p;
res = ((((( 0.0045813 * p
+ 0.0360768) * p
+ 0.2659732) * p
+ 1.2067492) * p
+ 3.0899424) * p
+ 3.5156229) * p
+ 1.0;
}
else
{
p = 3.75 / x;
res = exp (x) / sqrt (x)
* (((((((( + 0.00392377 * p
- 0.01647633) * p
+ 0.02635537) * p
- 0.02057706) * p
+ 0.00916281) * p
- 0.00157565) * p
+ 0.00225319) * p
+ 0.01328592) * p
+ 0.39894228);
}
}
return res;
}
double EMNR::bessI1 (double x)
{
double res, p;
if (x == 0.0)
res = 0.0;
else
{
if (x < 0.0) x = -x;
if (x <= 3.75)
{
p = x / 3.75;
p = p * p;
res = x
* (((((( 0.00032411 * p
+ 0.00301532) * p
+ 0.02658733) * p
+ 0.15084934) * p
+ 0.51498869) * p
+ 0.87890594) * p
+ 0.5);
}
else
{
p = 3.75 / x;
res = exp (x) / sqrt (x)
* (((((((( - 0.00420059 * p
+ 0.01787654) * p
- 0.02895312) * p
+ 0.02282967) * p
- 0.01031555) * p
+ 0.00163801) * p
- 0.00362018) * p
- 0.03988024) * p
+ 0.39894228);
}
}
return res;
}
// EXPONENTIAL INTEGRAL, E1(x)
// M. Abramowitz and I. Stegun, Eds., "Handbook of Mathematical Functions." Washington, DC: National
// Bureau of Standards, 1964.
// Shanjie Zhang and Jianming Jin, "Computation of Special Functions." New York, NY, John Wiley and Sons,
// Inc., 1996. [Sample code given in FORTRAN]
double EMNR::e1xb (double x)
{
double e1, ga, r, t, t0;
int k, m;
if (x == 0.0)
e1 = 1.0e300;
else if (x <= 1.0)
{
e1 = 1.0;
r = 1.0;
for (k = 1; k <= 25; k++)
{
r = -r * k * x / ((k + 1.0)*(k + 1.0));
e1 = e1 + r;
if ( fabs (r) <= fabs (e1) * 1.0e-15 )
break;
}
ga = 0.5772156649015328;
e1 = - ga - log (x) + x * e1;
}
else
{
m = 20 + (int)(80.0 / x);
t0 = 0.0;
for (k = m; k >= 1; k--)
t0 = (double)k / (1.0 + k / (x + t0));
t = 1.0 / (x + t0);
e1 = exp (- x) * t;
}
return e1;
}
/********************************************************************************************************
* *
* Main Body of Code *
* *
********************************************************************************************************/
void EMNR::calc_window (EMNR *a)
{
int i;
double arg, sum, inv_coherent_gain;
switch (a->wintype)
{
case 0:
arg = 2.0 * PI / (double)a->fsize;
sum = 0.0;
for (i = 0; i < a->fsize; i++)
{
a->window[i] = sqrt (0.54 - 0.46 * cos((double)i * arg));
sum += a->window[i];
}
inv_coherent_gain = (double)a->fsize / sum;
for (i = 0; i < a->fsize; i++)
a->window[i] *= inv_coherent_gain;
break;
}
}
void EMNR::interpM (double* res, double x, int nvals, double* xvals, double* yvals)
{
if (x <= xvals[0])
*res = yvals[0];
else if (x >= xvals[nvals - 1])
*res = yvals[nvals - 1];
else
{
int idx = 0;
double xllow, xlhigh, frac;
while (x >= xvals[idx]) idx++;
xllow = log10 (xvals[idx - 1]);
xlhigh = log10(xvals[idx]);
frac = (log10 (x) - xllow) / (xlhigh - xllow);
*res = yvals[idx - 1] + frac * (yvals[idx] - yvals[idx - 1]);
}
}
void EMNR::calc_emnr(EMNR *a)
{
int i;
double Dvals[18] = { 1.0, 2.0, 5.0, 8.0, 10.0, 15.0, 20.0, 30.0, 40.0,
60.0, 80.0, 120.0, 140.0, 160.0, 180.0, 220.0, 260.0, 300.0 };
double Mvals[18] = { 0.000, 0.260, 0.480, 0.580, 0.610, 0.668, 0.705, 0.762, 0.800,
0.841, 0.865, 0.890, 0.900, 0.910, 0.920, 0.930, 0.935, 0.940 };
// double Hvals[18] = { 0.000, 0.150, 0.480, 0.780, 0.980, 1.550, 2.000, 2.300, 2.520,
// 3.100, 3.380, 4.150, 4.350, 4.250, 3.900, 4.100, 4.700, 5.000 };
a->incr = a->fsize / a->ovrlp;
a->gain = a->ogain / a->fsize / (double)a->ovrlp;
if (a->fsize > a->bsize)
a->iasize = a->fsize;
else
a->iasize = a->bsize + a->fsize - a->incr;
a->iainidx = 0;
a->iaoutidx = 0;
if (a->fsize > a->bsize)
{
if (a->bsize > a->incr) a->oasize = a->bsize;
else a->oasize = a->incr;
a->oainidx = (a->fsize - a->bsize - a->incr) % a->oasize;
}
else
{
a->oasize = a->bsize;
a->oainidx = a->fsize - a->incr;
}
a->init_oainidx = a->oainidx;
a->oaoutidx = 0;
a->msize = a->fsize / 2 + 1;
a->window = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->inaccum = new double[a->iasize]; // (double *)malloc0(a->iasize * sizeof(double));
a->forfftin = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->forfftout = new double[a->msize * 2]; // (double *)malloc0(a->msize * sizeof(complex));
a->mask = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->revfftin = new double[a->msize * 2]; // (double *)malloc0(a->msize * sizeof(complex));
a->revfftout = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->save = new double*[a->ovrlp]; // (double **)malloc0(a->ovrlp * sizeof(double *));
for (i = 0; i < a->ovrlp; i++)
a->save[i] = new double[a->fsize]; // (double *)malloc0(a->fsize * sizeof(double));
a->outaccum = new double[a->oasize]; // (double *)malloc0(a->oasize * sizeof(double));
a->nsamps = 0;
a->saveidx = 0;
a->Rfor = fftw_plan_dft_r2c_1d(a->fsize, a->forfftin, (fftw_complex *)a->forfftout, FFTW_ESTIMATE);
a->Rrev = fftw_plan_dft_c2r_1d(a->fsize, (fftw_complex *)a->revfftin, a->revfftout, FFTW_ESTIMATE);
calc_window(a);
a->g.msize = a->msize;
a->g.mask = a->mask;
a->g.y = a->forfftout;
a->g.lambda_y = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.lambda_d = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.prev_gamma = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.prev_mask = new double[a->msize]; // (double *)malloc0(a->msize * sizeof(double));
a->g.gf1p5 = sqrt(PI) / 2.0;
{
double tau = -128.0 / 8000.0 / log(0.98);
a->g.alpha = exp(-a->incr / a->rate / tau);
}
a->g.eps_floor = 1.0e-300;
a->g.gamma_max = 1000.0;
a->g.q = 0.2;
for (i = 0; i < a->g.msize; i++)
{
a->g.prev_mask[i] = 1.0;
a->g.prev_gamma[i] = 1.0;
}
a->g.gmax = 10000.0;
//
a->g.GG = new double[241 * 241]; // (double *)malloc0(241 * 241 * sizeof(double));
a->g.GGS = new double[241 * 241]; // (double *)malloc0(241 * 241 * sizeof(double));
if ((a->g.fileb = fopen("calculus", "rb")))
{
std::size_t lgg = fread(a->g.GG, sizeof(double), 241 * 241, a->g.fileb);
if (lgg != 241 * 241) {
fprintf(stderr, "GG file has an invalid size\n");
}
std::size_t lggs =fread(a->g.GGS, sizeof(double), 241 * 241, a->g.fileb);
if (lggs != 241 * 241) {
fprintf(stderr, "GGS file has an invalid size\n");
}
fclose(a->g.fileb);
}
else
{
memcpy (a->g.GG, Calculus::GG, 241 * 241 * sizeof(double));
memcpy (a->g.GGS, Calculus::GGS, 241 * 241 * sizeof(double));
}
//
a->np.incr = a->incr;
a->np.rate = a->rate;
a->np.msize = a->msize;
a->np.lambda_y = a->g.lambda_y;
a->np.lambda_d = a->g.lambda_d;
{
double tau = -128.0 / 8000.0 / log(0.7);
a->np.alphaCsmooth = exp(-a->np.incr / a->np.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.96);
a->np.alphaMax = exp(-a->np.incr / a->np.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.7);
a->np.alphaCmin = exp(-a->np.incr / a->np.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.3);
a->np.alphaMin_max_value = exp(-a->np.incr / a->np.rate / tau);
}
a->np.snrq = -a->np.incr / (0.064 * a->np.rate);
{
double tau = -128.0 / 8000.0 / log(0.8);
a->np.betamax = exp(-a->np.incr / a->np.rate / tau);
}
a->np.invQeqMax = 0.5;
a->np.av = 2.12;
a->np.Dtime = 8.0 * 12.0 * 128.0 / 8000.0;
a->np.U = 8;
a->np.V = (int)(0.5 + (a->np.Dtime * a->np.rate / (a->np.U * a->np.incr)));
if (a->np.V < 4) a->np.V = 4;
if ((a->np.U = (int)(0.5 + (a->np.Dtime * a->np.rate / (a->np.V * a->np.incr)))) < 1) a->np.U = 1;
a->np.D = a->np.U * a->np.V;
interpM(&a->np.MofD, a->np.D, 18, Dvals, Mvals);
interpM(&a->np.MofV, a->np.V, 18, Dvals, Mvals);
a->np.invQbar_points[0] = 0.03;
a->np.invQbar_points[1] = 0.05;
a->np.invQbar_points[2] = 0.06;
a->np.invQbar_points[3] = 1.0e300;
{
double db;
db = 10.0 * log10(8.0) / (12.0 * 128 / 8000);
a->np.nsmax[0] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate);
db = 10.0 * log10(4.0) / (12.0 * 128 / 8000);
a->np.nsmax[1] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate);
db = 10.0 * log10(2.0) / (12.0 * 128 / 8000);
a->np.nsmax[2] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate);
db = 10.0 * log10(1.2) / (12.0 * 128 / 8000);
a->np.nsmax[3] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate);
}
a->np.p = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.alphaOptHat = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.alphaHat = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.sigma2N = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.pbar = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.p2bar = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.Qeq = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.bmin = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.bmin_sub = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.k_mod = new int[a->np.msize]; // (int *)malloc0(a->np.msize * sizeof(int));
a->np.actmin = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.actmin_sub = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.lmin_flag = new int[a->np.msize]; // (int *)malloc0(a->np.msize * sizeof(int));
a->np.pmin_u = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
a->np.actminbuff = new double*[a->np.U]; // (double**)malloc0(a->np.U * sizeof(double*));
for (i = 0; i < a->np.U; i++)
a->np.actminbuff[i] = new double[a->np.msize]; // (double *)malloc0(a->np.msize * sizeof(double));
{
int k, ku;
a->np.alphaC = 1.0;
a->np.subwc = a->np.V;
a->np.amb_idx = 0;
for (k = 0; k < a->np.msize; k++) a->np.lambda_y[k] = 0.5;
memcpy(a->np.p, a->np.lambda_y, a->np.msize * sizeof(double));
memcpy(a->np.sigma2N, a->np.lambda_y, a->np.msize * sizeof(double));
memcpy(a->np.pbar, a->np.lambda_y, a->np.msize * sizeof(double));
memcpy(a->np.pmin_u, a->np.lambda_y, a->np.msize * sizeof(double));
for (k = 0; k < a->np.msize; k++)
{
a->np.p2bar[k] = a->np.lambda_y[k] * a->np.lambda_y[k];
a->np.actmin[k] = 1.0e300;
a->np.actmin_sub[k] = 1.0e300;
for (ku = 0; ku < a->np.U; ku++)
a->np.actminbuff[ku][k] = 1.0e300;
}
memset(a->np.lmin_flag, 0, a->np.msize * sizeof(int));
}
a->nps.incr = a->incr;
a->nps.rate = a->rate;
a->nps.msize = a->msize;
a->nps.lambda_y = a->g.lambda_y;
a->nps.lambda_d = a->g.lambda_d;
{
double tau = -128.0 / 8000.0 / log(0.8);
a->nps.alpha_pow = exp(-a->nps.incr / a->nps.rate / tau);
}
{
double tau = -128.0 / 8000.0 / log(0.9);
a->nps.alpha_Pbar = exp(-a->nps.incr / a->nps.rate / tau);
}
a->nps.epsH1 = pow(10.0, 15.0 / 10.0);
a->nps.epsH1r = a->nps.epsH1 / (1.0 + a->nps.epsH1);
a->nps.sigma2N = new double[a->nps.msize]; // (double *)malloc0(a->nps.msize * sizeof(double));
a->nps.PH1y = new double[a->nps.msize]; // (double *)malloc0(a->nps.msize * sizeof(double));
a->nps.Pbar = new double[a->nps.msize]; // (double *)malloc0(a->nps.msize * sizeof(double));
a->nps.EN2y = new double[a->nps.msize]; // (double *)malloc0(a->nps.msize * sizeof(double));
for (i = 0; i < a->nps.msize; i++)
{
a->nps.sigma2N[i] = 0.5;
a->nps.Pbar[i] = 0.5;
}
a->ae.msize = a->msize;
a->ae.lambda_y = a->g.lambda_y;
a->ae.zetaThresh = 0.75;
a->ae.psi = 10.0;
a->ae.nmask = new double[a->ae.msize]; // (double *)malloc0(a->ae.msize * sizeof(double));
}
void EMNR::decalc_emnr(EMNR *a)
{
int i;
delete[] (a->ae.nmask);
delete[] (a->nps.EN2y);
delete[] (a->nps.Pbar);
delete[] (a->nps.PH1y);
delete[] (a->nps.sigma2N);
for (i = 0; i < a->np.U; i++)
delete[] (a->np.actminbuff[i]);
delete[] (a->np.actminbuff);
delete[] (a->np.pmin_u);
delete[] (a->np.lmin_flag);
delete[] (a->np.actmin_sub);
delete[] (a->np.actmin);
delete[] (a->np.k_mod);
delete[] (a->np.bmin_sub);
delete[] (a->np.bmin);
delete[] (a->np.Qeq);
delete[] (a->np.p2bar);
delete[] (a->np.pbar);
delete[] (a->np.sigma2N);
delete[] (a->np.alphaHat);
delete[] (a->np.alphaOptHat);
delete[] (a->np.p);
delete[] (a->g.GGS);
delete[] (a->g.GG);
delete[] (a->g.prev_mask);
delete[] (a->g.prev_gamma);
delete[] (a->g.lambda_d);
delete[] (a->g.lambda_y);
fftw_destroy_plan(a->Rrev);
fftw_destroy_plan(a->Rfor);
delete[] (a->outaccum);
for (i = 0; i < a->ovrlp; i++)
delete[] (a->save[i]);
delete[] (a->save);
delete[] (a->revfftout);
delete[] (a->revfftin);
delete[] (a->mask);
delete[] (a->forfftout);
delete[] (a->forfftin);
delete[] (a->inaccum);
delete[] (a->window);
}
EMNR* EMNR::create_emnr (int run, int position, int size, double* in, double* out, int fsize, int ovrlp,
int rate, int wintype, double gain, int gain_method, int npe_method, int ae_run)
{
EMNR *a = new EMNR;
a->run = run;
a->position = position;
a->bsize = size;
a->in = in;
a->out = out;
a->fsize = fsize;
a->ovrlp = ovrlp;
a->rate = rate;
a->wintype = wintype;
a->ogain = gain;
a->g.gain_method = gain_method;
a->g.npe_method = npe_method;
a->g.ae_run = ae_run;
calc_emnr (a);
return a;
}
void EMNR::flush_emnr (EMNR *a)
{
int i;
memset (a->inaccum, 0, a->iasize * sizeof (double));
for (i = 0; i < a->ovrlp; i++)
memset (a->save[i], 0, a->fsize * sizeof (double));
memset (a->outaccum, 0, a->oasize * sizeof (double));
a->nsamps = 0;
a->iainidx = 0;
a->iaoutidx = 0;
a->oainidx = a->init_oainidx;
a->oaoutidx = 0;
a->saveidx = 0;
}
void EMNR::destroy_emnr (EMNR *a)
{
decalc_emnr (a);
delete[] (a);
}
void EMNR::LambdaD(EMNR *a)
{
int k;
double f0, f1, f2, f3;
double sum_prev_p;
double sum_lambda_y;
double alphaCtilda;
double sum_prev_sigma2N;
double alphaMin, SNR;
double beta, varHat, invQeq;
double invQbar;
double bc;
double QeqTilda, QeqTildaSub;
double noise_slope_max;
sum_prev_p = 0.0;
sum_lambda_y = 0.0;
sum_prev_sigma2N = 0.0;
for (k = 0; k < a->np.msize; k++)
{
sum_prev_p += a->np.p[k];
sum_lambda_y += a->np.lambda_y[k];
sum_prev_sigma2N += a->np.sigma2N[k];
}
for (k = 0; k < a->np.msize; k++)
{
f0 = a->np.p[k] / a->np.sigma2N[k] - 1.0;
a->np.alphaOptHat[k] = 1.0 / (1.0 + f0 * f0);
}
SNR = sum_prev_p / sum_prev_sigma2N;
alphaMin = std::min (a->np.alphaMin_max_value, pow (SNR, a->np.snrq));
for (k = 0; k < a->np.msize; k++)
if (a->np.alphaOptHat[k] < alphaMin) a->np.alphaOptHat[k] = alphaMin;
f1 = sum_prev_p / sum_lambda_y - 1.0;
alphaCtilda = 1.0 / (1.0 + f1 * f1);
a->np.alphaC = a->np.alphaCsmooth * a->np.alphaC + (1.0 - a->np.alphaCsmooth) * std::max (alphaCtilda, a->np.alphaCmin);
f2 = a->np.alphaMax * a->np.alphaC;
for (k = 0; k < a->np.msize; k++)
a->np.alphaHat[k] = f2 * a->np.alphaOptHat[k];
for (k = 0; k < a->np.msize; k++)
a->np.p[k] = a->np.alphaHat[k] * a->np.p[k] + (1.0 - a->np.alphaHat[k]) * a->np.lambda_y[k];
invQbar = 0.0;
for (k = 0; k < a->np.msize; k++)
{
beta = std::min (a->np.betamax, a->np.alphaHat[k] * a->np.alphaHat[k]);
a->np.pbar[k] = beta * a->np.pbar[k] + (1.0 - beta) * a->np.p[k];
a->np.p2bar[k] = beta * a->np.p2bar[k] + (1.0 - beta) * a->np.p[k] * a->np.p[k];
varHat = a->np.p2bar[k] - a->np.pbar[k] * a->np.pbar[k];
invQeq = varHat / (2.0 * a->np.sigma2N[k] * a->np.sigma2N[k]);
if (invQeq > a->np.invQeqMax) invQeq = a->np.invQeqMax;
a->np.Qeq[k] = 1.0 / invQeq;
invQbar += invQeq;
}
invQbar /= (double)a->np.msize;
bc = 1.0 + a->np.av * sqrt (invQbar);
for (k = 0; k < a->np.msize; k++)
{
QeqTilda = (a->np.Qeq[k] - 2.0 * a->np.MofD) / (1.0 - a->np.MofD);
QeqTildaSub = (a->np.Qeq[k] - 2.0 * a->np.MofV) / (1.0 - a->np.MofV);
a->np.bmin[k] = 1.0 + 2.0 * (a->np.D - 1.0) / QeqTilda;
a->np.bmin_sub[k] = 1.0 + 2.0 * (a->np.V - 1.0) / QeqTildaSub;
}
memset (a->np.k_mod, 0, a->np.msize * sizeof (int));
for (k = 0; k < a->np.msize; k++)
{
f3 = a->np.p[k] * a->np.bmin[k] * bc;
if (f3 < a->np.actmin[k])
{
a->np.actmin[k] = f3;
a->np.actmin_sub[k] = a->np.p[k] * a->np.bmin_sub[k] * bc;
a->np.k_mod[k] = 1;
}
}
if (a->np.subwc == a->np.V)
{
if (invQbar < a->np.invQbar_points[0]) noise_slope_max = a->np.nsmax[0];
else if (invQbar < a->np.invQbar_points[1]) noise_slope_max = a->np.nsmax[1];
else if (invQbar < a->np.invQbar_points[2]) noise_slope_max = a->np.nsmax[2];
else noise_slope_max = a->np.nsmax[3];
for (k = 0; k < a->np.msize; k++)
{
int ku;
double min;
if (a->np.k_mod[k])
a->np.lmin_flag[k] = 0;
a->np.actminbuff[a->np.amb_idx][k] = a->np.actmin[k];
min = 1.0e300;
for (ku = 0; ku < a->np.U; ku++)
if (a->np.actminbuff[ku][k] < min) min = a->np.actminbuff[ku][k];
a->np.pmin_u[k] = min;
if ((a->np.lmin_flag[k] == 1)
&& (a->np.actmin_sub[k] < noise_slope_max * a->np.pmin_u[k])
&& (a->np.actmin_sub[k] > a->np.pmin_u[k]))
{
a->np.pmin_u[k] = a->np.actmin_sub[k];
for (ku = 0; ku < a->np.U; ku++)
a->np.actminbuff[ku][k] = a->np.actmin_sub[k];
}
a->np.lmin_flag[k] = 0;
a->np.actmin[k] = 1.0e300;
a->np.actmin_sub[k] = 1.0e300;
}
if (++a->np.amb_idx == a->np.U) a->np.amb_idx = 0;
a->np.subwc = 1;
}
else
{
if (a->np.subwc > 1)
{
for (k = 0; k < a->np.msize; k++)
{
if (a->np.k_mod[k])
{
a->np.lmin_flag[k] = 1;
a->np.sigma2N[k] = std::min (a->np.actmin_sub[k], a->np.pmin_u[k]);
a->np.pmin_u[k] = a->np.sigma2N[k];
}
}
}
++a->np.subwc;
}
memcpy (a->np.lambda_d, a->np.sigma2N, a->np.msize * sizeof (double));
}
void EMNR::LambdaDs (EMNR *a)
{
int k;
for (k = 0; k < a->nps.msize; k++)
{
a->nps.PH1y[k] = 1.0 / (1.0 + (1.0 + a->nps.epsH1) * exp (- a->nps.epsH1r * a->nps.lambda_y[k] / a->nps.sigma2N[k]));
a->nps.Pbar[k] = a->nps.alpha_Pbar * a->nps.Pbar[k] + (1.0 - a->nps.alpha_Pbar) * a->nps.PH1y[k];
if (a->nps.Pbar[k] > 0.99)
a->nps.PH1y[k] = std::min (a->nps.PH1y[k], 0.99);
a->nps.EN2y[k] = (1.0 - a->nps.PH1y[k]) * a->nps.lambda_y[k] + a->nps.PH1y[k] * a->nps.sigma2N[k];
a->nps.sigma2N[k] = a->nps.alpha_pow * a->nps.sigma2N[k] + (1.0 - a->nps.alpha_pow) * a->nps.EN2y[k];
}
memcpy (a->nps.lambda_d, a->nps.sigma2N, a->nps.msize * sizeof (double));
}
void EMNR::aepf(EMNR *a)
{
int k, m;
int N, n;
double sumPre, sumPost, zeta, zetaT;
sumPre = 0.0;
sumPost = 0.0;
for (k = 0; k < a->ae.msize; k++)
{
sumPre += a->ae.lambda_y[k];
sumPost += a->mask[k] * a->mask[k] * a->ae.lambda_y[k];
}
zeta = sumPost / sumPre;
if (zeta >= a->ae.zetaThresh)
zetaT = 1.0;
else
zetaT = zeta;
if (zetaT == 1.0)
N = 1;
else
N = 1 + 2 * (int)(0.5 + a->ae.psi * (1.0 - zetaT / a->ae.zetaThresh));
n = N / 2;
for (k = n; k < (a->ae.msize - n); k++)
{
a->ae.nmask[k] = 0.0;
for (m = k - n; m <= (k + n); m++)
a->ae.nmask[k] += a->mask[m];
a->ae.nmask[k] /= (double)N;
}
memcpy (a->mask + n, a->ae.nmask, (a->ae.msize - 2 * n) * sizeof (double));
}
double EMNR::getKey(double* type, double gamma, double xi)
{
int ngamma1, ngamma2, nxi1, nxi2;
double tg, tx, dg, dx;
const double dmin = 0.001;
const double dmax = 1000.0;
if (gamma <= dmin)
{
ngamma1 = ngamma2 = 0;
tg = 0.0;
}
else if (gamma >= dmax)
{
ngamma1 = ngamma2 = 240;
tg = 60.0;
}
else
{
tg = 10.0 * log10(gamma / dmin);
ngamma1 = (int)(4.0 * tg);
ngamma2 = ngamma1 + 1;
}
if (xi <= dmin)
{
nxi1 = nxi2 = 0;
tx = 0.0;
}
else if (xi >= dmax)
{
nxi1 = nxi2 = 240;
tx = 60.0;
}
else
{
tx = 10.0 * log10(xi / dmin);
nxi1 = (int)(4.0 * tx);
nxi2 = nxi1 + 1;
}
dg = (tg - 0.25 * ngamma1) / 0.25;
dx = (tx - 0.25 * nxi1) / 0.25;
return (1.0 - dg) * (1.0 - dx) * type[241 * nxi1 + ngamma1]
+ (1.0 - dg) * dx * type[241 * nxi2 + ngamma1]
+ dg * (1.0 - dx) * type[241 * nxi1 + ngamma2]
+ dg * dx * type[241 * nxi2 + ngamma2];
}
void EMNR::calc_gain (EMNR *a)
{
int k;
for (k = 0; k < a->g.msize; k++)
{
a->g.lambda_y[k] = a->g.y[2 * k + 0] * a->g.y[2 * k + 0] + a->g.y[2 * k + 1] * a->g.y[2 * k + 1];
}
switch (a->g.npe_method)
{
case 0:
LambdaD(a);
break;
case 1:
LambdaDs(a);
break;
}
switch (a->g.gain_method)
{
case 0:
{
double gamma, eps_hat, v;
for (k = 0; k < a->msize; k++)
{
gamma = std::min (a->g.lambda_y[k] / a->g.lambda_d[k], a->g.gamma_max);
eps_hat = a->g.alpha * a->g.prev_mask[k] * a->g.prev_mask[k] * a->g.prev_gamma[k]
+ (1.0 - a->g.alpha) * std::max (gamma - 1.0, a->g.eps_floor);
v = (eps_hat / (1.0 + eps_hat)) * gamma;
a->g.mask[k] = a->g.gf1p5 * sqrt (v) / gamma * exp (- 0.5 * v)
* ((1.0 + v) * bessI0 (0.5 * v) + v * bessI1 (0.5 * v));
{
double v2 = std::min (v, 700.0);
double eta = a->g.mask[k] * a->g.mask[k] * a->g.lambda_y[k] / a->g.lambda_d[k];
double eps = eta / (1.0 - a->g.q);
double witchHat = (1.0 - a->g.q) / a->g.q * exp (v2) / (1.0 + eps);
a->g.mask[k] *= witchHat / (1.0 + witchHat);
}
if (a->g.mask[k] > a->g.gmax) a->g.mask[k] = a->g.gmax;
if (a->g.mask[k] != a->g.mask[k]) a->g.mask[k] = 0.01;
a->g.prev_gamma[k] = gamma;
a->g.prev_mask[k] = a->g.mask[k];
}
break;
}
case 1:
{
double gamma, eps_hat, v, ehr;
for (k = 0; k < a->g.msize; k++)
{
gamma = std::min (a->g.lambda_y[k] / a->g.lambda_d[k], a->g.gamma_max);
eps_hat = a->g.alpha * a->g.prev_mask[k] * a->g.prev_mask[k] * a->g.prev_gamma[k]
+ (1.0 - a->g.alpha) * std::max (gamma - 1.0, a->g.eps_floor);
ehr = eps_hat / (1.0 + eps_hat);
v = ehr * gamma;
if((a->g.mask[k] = ehr * exp (std::min (700.0, 0.5 * e1xb(v)))) > a->g.gmax) a->g.mask[k] = a->g.gmax;
if (a->g.mask[k] != a->g.mask[k])a->g.mask[k] = 0.01;
a->g.prev_gamma[k] = gamma;
a->g.prev_mask[k] = a->g.mask[k];
}
break;
}
case 2:
{
double gamma, eps_hat, eps_p;
for (k = 0; k < a->msize; k++)
{
gamma = std::min(a->g.lambda_y[k] / a->g.lambda_d[k], a->g.gamma_max);
eps_hat = a->g.alpha * a->g.prev_mask[k] * a->g.prev_mask[k] * a->g.prev_gamma[k]
+ (1.0 - a->g.alpha) * std::max(gamma - 1.0, a->g.eps_floor);
eps_p = eps_hat / (1.0 - a->g.q);
a->g.mask[k] = getKey(a->g.GG, gamma, eps_hat) * getKey(a->g.GGS, gamma, eps_p);
a->g.prev_gamma[k] = gamma;
a->g.prev_mask[k] = a->g.mask[k];
}
break;
}
}
if (a->g.ae_run) aepf(a);
}
void EMNR::xemnr (EMNR *a, int pos)
{
if (a->run && pos == a->position)
{
int i, j, k, sbuff, sbegin;
double g1;
for (i = 0; i < 2 * a->bsize; i += 2)
{
a->inaccum[a->iainidx] = a->in[i];
a->iainidx = (a->iainidx + 1) % a->iasize;
}
a->nsamps += a->bsize;
while (a->nsamps >= a->fsize)
{
for (i = 0, j = a->iaoutidx; i < a->fsize; i++, j = (j + 1) % a->iasize)
a->forfftin[i] = a->window[i] * a->inaccum[j];
a->iaoutidx = (a->iaoutidx + a->incr) % a->iasize;
a->nsamps -= a->incr;
fftw_execute (a->Rfor);
calc_gain(a);
for (i = 0; i < a->msize; i++)
{
g1 = a->gain * a->mask[i];
a->revfftin[2 * i + 0] = g1 * a->forfftout[2 * i + 0];
a->revfftin[2 * i + 1] = g1 * a->forfftout[2 * i + 1];
}
fftw_execute (a->Rrev);
for (i = 0; i < a->fsize; i++)
a->save[a->saveidx][i] = a->window[i] * a->revfftout[i];
for (i = a->ovrlp; i > 0; i--)
{
sbuff = (a->saveidx + i) % a->ovrlp;
sbegin = a->incr * (a->ovrlp - i);
for (j = sbegin, k = a->oainidx; j < a->incr + sbegin; j++, k = (k + 1) % a->oasize)
{
if ( i == a->ovrlp)
a->outaccum[k] = a->save[sbuff][j];
else
a->outaccum[k] += a->save[sbuff][j];
}
}
a->saveidx = (a->saveidx + 1) % a->ovrlp;
a->oainidx = (a->oainidx + a->incr) % a->oasize;
}
for (i = 0; i < a->bsize; i++)
{
a->out[2 * i + 0] = a->outaccum[a->oaoutidx];
a->out[2 * i + 1] = 0.0;
a->oaoutidx = (a->oaoutidx + 1) % a->oasize;
}
}
else if (a->out != a->in)
memcpy (a->out, a->in, a->bsize * sizeof (dcomplex));
}
void EMNR::setBuffers_emnr (EMNR *a, double* in, double* out)
{
a->in = in;
a->out = out;
}
void EMNR::setSamplerate_emnr (EMNR *a, int rate)
{
decalc_emnr (a);
a->rate = rate;
calc_emnr (a);
}
void EMNR::setSize_emnr (EMNR *a, int size)
{
decalc_emnr (a);
a->bsize = size;
calc_emnr (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void EMNR::SetEMNRRun (RXA& rxa, int run)
{
EMNR *a = rxa.emnr.p;
if (a->run != run)
{
RXA::bp1Check (rxa, rxa.amd.p->run, rxa.snba.p->run,
run, rxa.anf.p->run, rxa.anr.p->run);
rxa.csDSP.lock();
a->run = run;
RXA::bp1Set (rxa);
rxa.csDSP.unlock();
}
}
void EMNR::SetEMNRgainMethod (RXA& rxa, int method)
{
rxa.csDSP.lock();
rxa.emnr.p->g.gain_method = method;
rxa.csDSP.unlock();
}
void EMNR::SetEMNRnpeMethod (RXA& rxa, int method)
{
rxa.csDSP.lock();
rxa.emnr.p->g.npe_method = method;
rxa.csDSP.unlock();
}
void EMNR::SetEMNRaeRun (RXA& rxa, int run)
{
rxa.csDSP.lock();
rxa.emnr.p->g.ae_run = run;
rxa.csDSP.unlock();
}
void EMNR::SetEMNRPosition (RXA& rxa, int position)
{
rxa.csDSP.lock();
rxa.emnr.p->position = position;
rxa.bp1.p->position = position;
rxa.csDSP.unlock();
}
void EMNR::SetEMNRaeZetaThresh (RXA& rxa, double zetathresh)
{
rxa.csDSP.lock();
rxa.emnr.p->ae.zetaThresh = zetathresh;
rxa.csDSP.unlock();
}
void EMNR::SetEMNRaePsi (RXA& rxa, double psi)
{
rxa.csDSP.lock();
rxa.emnr.p->ae.psi = psi;
rxa.csDSP.unlock();
}
} // namespace WDSP