sdrangel/wdsp/anf.cpp

244 wiersze
6.2 KiB
C++

/* anf.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2012, 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "amd.hpp"
#include "snb.hpp"
#include "emnr.hpp"
#include "anr.hpp"
#include "anf.hpp"
#include "bandpass.hpp"
#include "RXA.hpp"
namespace WDSP {
ANF* ANF::create_anf(
int run,
int position,
int buff_size,
double *in_buff,
double *out_buff,
int dline_size,
int n_taps,
int delay,
double two_mu,
double gamma,
double lidx,
double lidx_min,
double lidx_max,
double ngamma,
double den_mult,
double lincr,
double ldecr
)
{
ANF *a = new ANF;
a->run = run;
a->position = position;
a->buff_size = buff_size;
a->in_buff = in_buff;
a->out_buff = out_buff;
a->dline_size = dline_size;
a->mask = dline_size - 1;
a->n_taps = n_taps;
a->delay = delay;
a->two_mu = two_mu;
a->gamma = gamma;
a->in_idx = 0;
a->lidx = lidx;
a->lidx_min = lidx_min;
a->lidx_max = lidx_max;
a->ngamma = ngamma;
a->den_mult = den_mult;
a->lincr = lincr;
a->ldecr = ldecr;
memset (a->d, 0, sizeof(double) * ANF_DLINE_SIZE);
memset (a->w, 0, sizeof(double) * ANF_DLINE_SIZE);
return a;
}
void ANF::destroy_anf (ANF *a)
{
delete a;
}
void ANF::xanf(ANF *a, int position)
{
int i, j, idx;
double c0, c1;
double y, error, sigma, inv_sigp;
double nel, nev;
if (a->run && (a->position == position))
{
for (i = 0; i < a->buff_size; i++)
{
a->d[a->in_idx] = a->in_buff[2 * i + 0];
y = 0;
sigma = 0;
for (j = 0; j < a->n_taps; j++)
{
idx = (a->in_idx + j + a->delay) & a->mask;
y += a->w[j] * a->d[idx];
sigma += a->d[idx] * a->d[idx];
}
inv_sigp = 1.0 / (sigma + 1e-10);
error = a->d[a->in_idx] - y;
a->out_buff[2 * i + 0] = error;
a->out_buff[2 * i + 1] = 0.0;
if((nel = error * (1.0 - a->two_mu * sigma * inv_sigp)) < 0.0) nel = -nel;
if((nev = a->d[a->in_idx] - (1.0 - a->two_mu * a->ngamma) * y - a->two_mu * error * sigma * inv_sigp) < 0.0) nev = -nev;
if (nev < nel)
{
if ((a->lidx += a->lincr) > a->lidx_max) a->lidx = a->lidx_max;
}
else
{
if ((a->lidx -= a->ldecr) < a->lidx_min) a->lidx = a->lidx_min;
}
a->ngamma = a->gamma * (a->lidx * a->lidx) * (a->lidx * a->lidx) * a->den_mult;
c0 = 1.0 - a->two_mu * a->ngamma;
c1 = a->two_mu * error * inv_sigp;
for (j = 0; j < a->n_taps; j++)
{
idx = (a->in_idx + j + a->delay) & a->mask;
a->w[j] = c0 * a->w[j] + c1 * a->d[idx];
}
a->in_idx = (a->in_idx + a->mask) & a->mask;
}
}
else if (a->in_buff != a->out_buff)
memcpy (a->out_buff, a->in_buff, a->buff_size * sizeof (dcomplex));
}
void ANF::flush_anf (ANF *a)
{
memset (a->d, 0, sizeof(double) * ANF_DLINE_SIZE);
memset (a->w, 0, sizeof(double) * ANF_DLINE_SIZE);
a->in_idx = 0;
}
void ANF::setBuffers_anf (ANF *a, double* in, double* out)
{
a->in_buff = in;
a->out_buff = out;
}
void ANF::setSamplerate_anf (ANF *a, int)
{
flush_anf (a);
}
void ANF::setSize_anf (ANF *a, int size)
{
a->buff_size = size;
flush_anf (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void ANF::SetANFRun (RXA& rxa, int run)
{
ANF *a = rxa.anf.p;
if (a->run != run)
{
RXA::bp1Check (rxa, rxa.amd.p->run, rxa.snba.p->run,
rxa.emnr.p->run, run, rxa.anr.p->run);
rxa.csDSP.lock();
a->run = run;
RXA::bp1Set (rxa);
flush_anf (a);
rxa.csDSP.unlock();
}
}
void ANF::SetANFVals (RXA& rxa, int taps, int delay, double gain, double leakage)
{
rxa.csDSP.lock();
rxa.anf.p->n_taps = taps;
rxa.anf.p->delay = delay;
rxa.anf.p->two_mu = gain; //try two_mu = 1e-4
rxa.anf.p->gamma = leakage; //try gamma = 0.10
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFTaps (RXA& rxa, int taps)
{
rxa.csDSP.lock();
rxa.anf.p->n_taps = taps;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFDelay (RXA& rxa, int delay)
{
rxa.csDSP.lock();
rxa.anf.p->delay = delay;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFGain (RXA& rxa, double gain)
{
rxa.csDSP.lock();
rxa.anf.p->two_mu = gain;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFLeakage (RXA& rxa, double leakage)
{
rxa.csDSP.lock();
rxa.anf.p->gamma = leakage;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
void ANF::SetANFPosition (RXA& rxa, int position)
{
rxa.csDSP.lock();
rxa.anf.p->position = position;
rxa.bp1.p->position = position;
flush_anf (rxa.anf.p);
rxa.csDSP.unlock();
}
} // namespace WDSP