sdrangel/sdrbase/audio/audiog722.cpp

406 wiersze
11 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB //
// written by Edouard Griffiths //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include "audiog722.h"
#define G722_SAMPLE_RATE_8000 1
#define G722_PACKED 2
const int AudioG722::q6[32] =
{
0, 35, 72, 110, 150, 190, 233, 276,
323, 370, 422, 473, 530, 587, 650, 714,
786, 858, 940, 1023, 1121, 1219, 1339, 1458,
1612, 1765, 1980, 2195, 2557, 2919, 0, 0
};
const int AudioG722::iln[32] =
{
0, 63, 62, 31, 30, 29, 28, 27,
26, 25, 24, 23, 22, 21, 20, 19,
18, 17, 16, 15, 14, 13, 12, 11,
10, 9, 8, 7, 6, 5, 4, 0
};
const int AudioG722::ilp[32] =
{
0, 61, 60, 59, 58, 57, 56, 55,
54, 53, 52, 51, 50, 49, 48, 47,
46, 45, 44, 43, 42, 41, 40, 39,
38, 37, 36, 35, 34, 33, 32, 0
};
const int AudioG722::wl[8] =
{
-60, -30, 58, 172, 334, 538, 1198, 3042
};
const int AudioG722::rl42[16] =
{
0, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 0
};
const int AudioG722::ilb[32] =
{
2048, 2093, 2139, 2186, 2233, 2282, 2332,
2383, 2435, 2489, 2543, 2599, 2656, 2714,
2774, 2834, 2896, 2960, 3025, 3091, 3158,
3228, 3298, 3371, 3444, 3520, 3597, 3676,
3756, 3838, 3922, 4008
};
const int AudioG722::qm4[16] =
{
0, -20456, -12896, -8968,
-6288, -4240, -2584, -1200,
20456, 12896, 8968, 6288,
4240, 2584, 1200, 0
};
const int AudioG722::qm2[4] =
{
-7408, -1616, 7408, 1616
};
const int AudioG722::qmf_coeffs[12] =
{
3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
};
const int AudioG722::ihn[3] = {0, 1, 0};
const int AudioG722::ihp[3] = {0, 3, 2};
const int AudioG722::wh[3] = {0, -214, 798};
const int AudioG722::rh2[4] = {2, 1, 2, 1};
AudioG722::g722_encode_state::g722_encode_state()
{
init(64000, 0);
}
void AudioG722::g722_encode_state::init(int rate, int options)
{
itu_test_mode = 0;
std::fill(x, x+24, 0);
in_buffer = 0;
in_bits = 0;
out_buffer = 0;
out_bits = 0;
char *pBand = (char *) band;
std::fill(pBand, pBand + sizeof(band), 0);
if (rate == 48000) {
bits_per_sample = 6;
} else if (rate == 56000) {
bits_per_sample = 7;
} else {
bits_per_sample = 8;
}
if ((options & G722_SAMPLE_RATE_8000)) {
eight_k = 1;
} else {
eight_k = 0;
}
if ((options & G722_PACKED) && bits_per_sample != 8) {
packed = 1;
} else {
packed = 0;
}
band[0].det = 32;
band[1].det = 8;
}
AudioG722::AudioG722()
{}
AudioG722::~AudioG722()
{}
void AudioG722::init(int rate, int options)
{
state.init(rate, options);
}
void AudioG722::block4(int band, int d)
{
int wd1;
int wd2;
int wd3;
int i;
/* Block 4, RECONS */
state.band[band].d[0] = d;
state.band[band].r[0] = saturate(state.band[band].s + d);
/* Block 4, PARREC */
state.band[band].p[0] = saturate(state.band[band].sz + d);
/* Block 4, UPPOL2 */
for (i = 0; i < 3; i++) {
state.band[band].sg[i] = state.band[band].p[i] >> 15;
}
wd1 = saturate(state.band[band].a[1] << 2);
wd2 = (state.band[band].sg[0] == state.band[band].sg[1]) ? -wd1 : wd1;
if (wd2 > 32767) {
wd2 = 32767;
}
wd3 = (wd2 >> 7) + ((state.band[band].sg[0] == state.band[band].sg[2]) ? 128 : -128);
wd3 += (state.band[band].a[2]*32512) >> 15;
if (wd3 > 12288) {
wd3 = 12288;
} else if (wd3 < -12288) {
wd3 = -12288;
}
state.band[band].ap[2] = wd3;
/* Block 4, UPPOL1 */
state.band[band].sg[0] = state.band[band].p[0] >> 15;
state.band[band].sg[1] = state.band[band].p[1] >> 15;
wd1 = (state.band[band].sg[0] == state.band[band].sg[1]) ? 192 : -192;
wd2 = (state.band[band].a[1]*32640) >> 15;
state.band[band].ap[1] = saturate(wd1 + wd2);
wd3 = saturate(15360 - state.band[band].ap[2]);
if (state.band[band].ap[1] > wd3) {
state.band[band].ap[1] = wd3;
} else if (state.band[band].ap[1] < -wd3) {
state.band[band].ap[1] = -wd3;
}
/* Block 4, UPZERO */
wd1 = (d == 0) ? 0 : 128;
state.band[band].sg[0] = d >> 15;
for (i = 1; i < 7; i++)
{
state.band[band].sg[i] = state.band[band].d[i] >> 15;
wd2 = (state.band[band].sg[i] == state.band[band].sg[0]) ? wd1 : -wd1;
wd3 = (state.band[band].b[i]*32640) >> 15;
state.band[band].bp[i] = saturate(wd2 + wd3);
}
/* Block 4, DELAYA */
for (i = 6; i > 0; i--)
{
state.band[band].d[i] = state.band[band].d[i - 1];
state.band[band].b[i] = state.band[band].bp[i];
}
for (i = 2; i > 0; i--)
{
state.band[band].r[i] = state.band[band].r[i - 1];
state.band[band].p[i] = state.band[band].p[i - 1];
state.band[band].a[i] = state.band[band].ap[i];
}
/* Block 4, FILTEP */
wd1 = saturate(state.band[band].r[1] + state.band[band].r[1]);
wd1 = (state.band[band].a[1]*wd1) >> 15;
wd2 = saturate(state.band[band].r[2] + state.band[band].r[2]);
wd2 = (state.band[band].a[2]*wd2) >> 15;
state.band[band].sp = saturate(wd1 + wd2);
/* Block 4, FILTEZ */
state.band[band].sz = 0;
for (i = 6; i > 0; i--)
{
wd1 = saturate(state.band[band].d[i] + state.band[band].d[i]);
state.band[band].sz += (state.band[band].b[i]*wd1) >> 15;
}
state.band[band].sz = saturate(state.band[band].sz);
/* Block 4, PREDIC */
state.band[band].s = saturate(state.band[band].sp + state.band[band].sz);
}
int AudioG722::encode(uint8_t g722_data[], const int16_t amp[], int len)
{
int dlow;
int dhigh;
int el;
int wd;
int wd1;
int ril;
int wd2;
int il4;
int ih2;
int wd3;
int eh;
int mih;
int i;
int j;
/* Low and high band PCM from the QMF */
int xlow;
int xhigh;
int g722_bytes;
/* Even and odd tap accumulators */
int sumeven;
int sumodd;
int ihigh;
int ilow;
int code;
g722_bytes = 0;
xhigh = 0;
for (j = 0; j < len; )
{
if (state.itu_test_mode)
{
xhigh = amp[j++] >> 1;
xlow = xhigh;
}
else
{
if (state.eight_k)
{
xlow = amp[j++] >> 1;
}
else
{
/* Apply the transmit QMF */
/* Shuffle the buffer down */
for (i = 0; i < 22; i++) {
state.x[i] = state.x[i + 2];
}
state.x[22] = amp[j++];
state.x[23] = amp[j++];
/* Discard every other QMF output */
sumeven = 0;
sumodd = 0;
for (i = 0; i < 12; i++)
{
sumodd += state.x[2*i]*qmf_coeffs[i];
sumeven += state.x[2*i + 1]*qmf_coeffs[11 - i];
}
xlow = (sumeven + sumodd) >> 14;
xhigh = (sumeven - sumodd) >> 14;
}
}
/* Block 1L, SUBTRA */
el = saturate(xlow - state.band[0].s);
/* Block 1L, QUANTL */
wd = (el >= 0) ? el : -(el + 1);
for (i = 1; i < 30; i++)
{
wd1 = (q6[i]*state.band[0].det) >> 12;
if (wd < wd1) {
break;
}
}
ilow = (el < 0) ? iln[i] : ilp[i];
/* Block 2L, INVQAL */
ril = ilow >> 2;
wd2 = qm4[ril];
dlow = (state.band[0].det*wd2) >> 15;
/* Block 3L, LOGSCL */
il4 = rl42[ril];
wd = (state.band[0].nb*127) >> 7;
state.band[0].nb = wd + wl[il4];
if (state.band[0].nb < 0) {
state.band[0].nb = 0;
} else if (state.band[0].nb > 18432) {
state.band[0].nb = 18432;
}
/* Block 3L, SCALEL */
wd1 = (state.band[0].nb >> 6) & 31;
wd2 = 8 - (state.band[0].nb >> 11);
wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2);
state.band[0].det = wd3 << 2;
block4(0, dlow);
if (state.eight_k)
{
/* Just leave the high bits as zero */
code = (0xC0 | ilow) >> (8 - state.bits_per_sample);
}
else
{
/* Block 1H, SUBTRA */
eh = saturate(xhigh - state.band[1].s);
/* Block 1H, QUANTH */
wd = (eh >= 0) ? eh : -(eh + 1);
wd1 = (564*state.band[1].det) >> 12;
mih = (wd >= wd1) ? 2 : 1;
ihigh = (eh < 0) ? ihn[mih] : ihp[mih];
/* Block 2H, INVQAH */
wd2 = qm2[ihigh];
dhigh = (state.band[1].det*wd2) >> 15;
/* Block 3H, LOGSCH */
ih2 = rh2[ihigh];
wd = (state.band[1].nb*127) >> 7;
state.band[1].nb = wd + wh[ih2];
if (state.band[1].nb < 0) {
state.band[1].nb = 0;
} else if (state.band[1].nb > 22528) {
state.band[1].nb = 22528;
}
/* Block 3H, SCALEH */
wd1 = (state.band[1].nb >> 6) & 31;
wd2 = 10 - (state.band[1].nb >> 11);
wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2);
state.band[1].det = wd3 << 2;
block4(1, dhigh);
code = ((ihigh << 6) | ilow) >> (8 - state.bits_per_sample);
}
if (state.packed)
{
/* Pack the code bits */
state.out_buffer |= (code << state.out_bits);
state.out_bits += state.bits_per_sample;
if (state.out_bits >= 8)
{
g722_data[g722_bytes++] = (uint8_t) (state.out_buffer & 0xFF);
state.out_bits -= 8;
state.out_buffer >>= 8;
}
}
else
{
g722_data[g722_bytes++] = (uint8_t) code;
}
}
return g722_bytes;
}