kopia lustrzana https://github.com/f4exb/sdrangel
				
				
				
			
		
			
				
	
	
		
			215 wiersze
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			215 wiersze
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
 | 
						|
// written by Christian Daniel                                                   //
 | 
						|
// Copyright (C) 2015-2017, 2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com>    //
 | 
						|
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com>                      //
 | 
						|
// Copyright (C) 2023 Jon Beniston, M7RCE <jon@beniston.com>                     //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#ifndef INCLUDE_DSP_PHASEDISCRI_H_
 | 
						|
#define INCLUDE_DSP_PHASEDISCRI_H_
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include "dsp/dsptypes.h"
 | 
						|
 | 
						|
class PhaseDiscriminators
 | 
						|
{
 | 
						|
public:
 | 
						|
 | 
						|
    PhaseDiscriminators() :
 | 
						|
        m_fmScaling(1.0f)
 | 
						|
    {
 | 
						|
        reset();
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
	 * Reset stored values
 | 
						|
	 */
 | 
						|
	void reset()
 | 
						|
	{
 | 
						|
		m_m1Sample = 0;
 | 
						|
		m_m2Sample = 0;
 | 
						|
        m_fltPreviousI = 0.0f;
 | 
						|
        m_fltPreviousQ = 0.0f;
 | 
						|
        m_fltPreviousI2 = 0.0f;
 | 
						|
        m_fltPreviousQ2 = 0.0f;
 | 
						|
        m_prevArg = 0.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Scaling factor so that resulting excursion maps to [-1,+1]
 | 
						|
	 */
 | 
						|
	void setFMScaling(Real fmScaling)
 | 
						|
	{
 | 
						|
		m_fmScaling = fmScaling;
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Standard discriminator using atan2. On modern processors this is as efficient as the non atan2 one.
 | 
						|
	 * This is better for high fidelity.
 | 
						|
	 */
 | 
						|
	Real phaseDiscriminator(const Complex& sample)
 | 
						|
	{
 | 
						|
		Complex d(std::conj(m_m1Sample) * sample);
 | 
						|
		m_m1Sample = sample;
 | 
						|
		return (std::atan2(d.imag(), d.real()) / M_PI) * m_fmScaling;
 | 
						|
	}
 | 
						|
 | 
						|
    /**
 | 
						|
     * Discriminator with phase detection using atan2 and frequency by derivation.
 | 
						|
     * This yields a precise deviation to sample rate ratio: Sample rate => +/-1.0
 | 
						|
     */
 | 
						|
    Real phaseDiscriminatorDelta(const Complex& sample, double& magsq, Real& fmDev)
 | 
						|
    {
 | 
						|
        Real fltI = sample.real();
 | 
						|
        Real fltQ = sample.imag();
 | 
						|
        magsq = fltI*fltI + fltQ*fltQ;
 | 
						|
 | 
						|
        Real curArg = atan2_approximation2((float) fltQ, (float) fltI);
 | 
						|
        fmDev = (curArg - m_prevArg) / M_PI;
 | 
						|
        m_prevArg = curArg;
 | 
						|
 | 
						|
        if (fmDev < -1.0f) {
 | 
						|
            fmDev += 2.0f;
 | 
						|
        } else if (fmDev > 1.0f) {
 | 
						|
            fmDev -= 2.0f;
 | 
						|
        }
 | 
						|
 | 
						|
        return fmDev * m_fmScaling;
 | 
						|
    }
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Alternative without atan at the expense of a slight distortion on very wideband signals
 | 
						|
	 * http://www.embedded.com/design/configurable-systems/4212086/DSP-Tricks--Frequency-demodulation-algorithms-
 | 
						|
	 * in addition it needs scaling by instantaneous magnitude squared and volume (0..10) adjustment factor
 | 
						|
	 */
 | 
						|
	Real phaseDiscriminator2(const Complex& sample)
 | 
						|
	{
 | 
						|
		Real ip = sample.real() - m_m2Sample.real();
 | 
						|
		Real qp = sample.imag() - m_m2Sample.imag();
 | 
						|
		Real h1 = m_m1Sample.real() * qp;
 | 
						|
		Real h2 = m_m1Sample.imag() * ip;
 | 
						|
 | 
						|
		m_m2Sample = m_m1Sample;
 | 
						|
		m_m1Sample = sample;
 | 
						|
 | 
						|
		//return ((h1 - h2) / M_PI_2) * m_fmScaling;
 | 
						|
		return (h1 - h2) * m_fmScaling;
 | 
						|
	}
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Second alternative
 | 
						|
	 */
 | 
						|
    Real phaseDiscriminator3(const Complex& sample, long double& magsq, Real& fltVal)
 | 
						|
    {
 | 
						|
        Real fltI = sample.real();
 | 
						|
        Real fltQ = sample.imag();
 | 
						|
        double fltNorm;
 | 
						|
        Real fltNormI;
 | 
						|
        Real fltNormQ;
 | 
						|
        //Real fltVal;
 | 
						|
 | 
						|
        magsq = fltI*fltI + fltQ*fltQ;
 | 
						|
        fltNorm = std::sqrt(magsq);
 | 
						|
 | 
						|
        fltNormI= fltI/fltNorm;
 | 
						|
        fltNormQ= fltQ/fltNorm;
 | 
						|
 | 
						|
        fltVal = m_fltPreviousI*(fltNormQ - m_fltPreviousQ2);
 | 
						|
        fltVal -= m_fltPreviousQ*(fltNormI - m_fltPreviousI2);
 | 
						|
        fltVal += 2.0f;
 | 
						|
        fltVal /= 4.0f; // normally it is /4
 | 
						|
 | 
						|
        m_fltPreviousQ2 = m_fltPreviousQ;
 | 
						|
        m_fltPreviousI2 = m_fltPreviousI;
 | 
						|
 | 
						|
        m_fltPreviousQ = fltNormQ;
 | 
						|
        m_fltPreviousI = fltNormI;
 | 
						|
 | 
						|
        return fltVal * m_fmScaling;
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
	Complex m_m1Sample;
 | 
						|
	Complex m_m2Sample;
 | 
						|
	Real m_fmScaling;
 | 
						|
	Real m_fltPreviousI;
 | 
						|
	Real m_fltPreviousQ;
 | 
						|
    Real m_fltPreviousI2;
 | 
						|
    Real m_fltPreviousQ2;
 | 
						|
    Real m_prevArg;
 | 
						|
 | 
						|
    float atan2_approximation1(float y, float x)
 | 
						|
    {
 | 
						|
        //http://pubs.opengroup.org/onlinepubs/009695399/functions/atan2.html
 | 
						|
        //Volkan SALMA
 | 
						|
 | 
						|
        const float ONEQTR_PI = M_PI / 4.0;
 | 
						|
        const float THRQTR_PI = 3.0 * M_PI / 4.0;
 | 
						|
        float r, angle;
 | 
						|
        float abs_y = std::fabs(y) + 1e-10f;      // kludge to prevent 0/0 condition
 | 
						|
        if ( x < 0.0f )
 | 
						|
        {
 | 
						|
            r = (x + abs_y) / (abs_y - x);
 | 
						|
            angle = THRQTR_PI;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            r = (x - abs_y) / (x + abs_y);
 | 
						|
            angle = ONEQTR_PI;
 | 
						|
        }
 | 
						|
        angle += (0.1963f * r * r - 0.9817f) * r;
 | 
						|
        if ( y < 0.0f )
 | 
						|
            return( -angle );     // negate if in quad III or IV
 | 
						|
        else
 | 
						|
            return( angle );
 | 
						|
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    #define PI_FLOAT     float(M_PI)
 | 
						|
    #define PIBY2_FLOAT  float(M_PI_2)
 | 
						|
    // |error| < 0.005
 | 
						|
    float atan2_approximation2( float y, float x )
 | 
						|
    {
 | 
						|
        if ( x == 0.0f )
 | 
						|
        {
 | 
						|
            if ( y > 0.0f ) return PIBY2_FLOAT;
 | 
						|
            if ( y == 0.0f ) return 0.0f;
 | 
						|
            return -PIBY2_FLOAT;
 | 
						|
        }
 | 
						|
        float atan;
 | 
						|
        float z = y/x;
 | 
						|
        if ( std::fabs( z ) < 1.0f )
 | 
						|
        {
 | 
						|
            atan = z/(1.0f + 0.28f*z*z);
 | 
						|
            if ( x < 0.0f )
 | 
						|
            {
 | 
						|
                if ( y < 0.0f ) return atan - PI_FLOAT;
 | 
						|
                return atan + PI_FLOAT;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            atan = PIBY2_FLOAT - z/(z*z + 0.28f);
 | 
						|
            if ( y < 0.0f ) return atan - PI_FLOAT;
 | 
						|
        }
 | 
						|
        return atan;
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
#endif /* INCLUDE_DSP_PHASEDISCRI_H_ */
 |