kopia lustrzana https://github.com/f4exb/sdrangel
				
				
				
			
		
			
				
	
	
		
			471 wiersze
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			471 wiersze
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com>               //
 | |
| // Copyright (C) 2023 Jon Beniston, M7RCE <jon@beniston.com>                     //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <QDebug>
 | |
| 
 | |
| #include <complex.h>
 | |
| 
 | |
| #include "dsp/dspengine.h"
 | |
| #include "dsp/scopevis.h"
 | |
| #include "util/stepfunctions.h"
 | |
| #include "util/db.h"
 | |
| 
 | |
| #include "ilsdemod.h"
 | |
| #include "ilsdemodsink.h"
 | |
| 
 | |
| ILSDemodSink::ILSDemodSink(ILSDemod *ilsDemod) :
 | |
|         m_spectrumSink(nullptr),
 | |
|         m_scopeSink(nullptr),
 | |
|         m_ilsDemod(ilsDemod),
 | |
|         m_channel(nullptr),
 | |
|         m_channelSampleRate(ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE),
 | |
|         m_channelFrequencyOffset(0),
 | |
|         m_audioSampleRate(0),
 | |
|         m_magsqSum(0.0f),
 | |
|         m_magsqPeak(0.0f),
 | |
|         m_magsqCount(0),
 | |
|         m_messageQueueToChannel(nullptr),
 | |
|         m_fftSequence(-1),
 | |
|         m_fft(nullptr),
 | |
|         m_fftCounter(0),
 | |
|         m_squelchLevel(0.001f),
 | |
|         m_squelchCount(0),
 | |
|         m_squelchOpen(false),
 | |
|         m_squelchDelayLine(9600),
 | |
|         m_volumeAGC(0.003),
 | |
|         m_audioFifo(48000),
 | |
|         m_sampleBufferIndex(0)
 | |
| {
 | |
| 	m_audioBuffer.resize(1<<14);
 | |
| 	m_audioBufferFill = 0;
 | |
| 
 | |
|     m_magsq = 0.0;
 | |
| 
 | |
|     m_sampleBuffer.resize(m_sampleBufferSize);
 | |
|     m_spectrumSampleBuffer.resize(m_sampleBufferSize);
 | |
| 
 | |
|     applySettings(m_settings, true);
 | |
|     applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
 | |
| 
 | |
|     FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
 | |
|     if (m_fftSequence >= 0) {
 | |
|         fftFactory->releaseEngine(m_fftSize, false, m_fftSequence);
 | |
|     }
 | |
|     m_fftSequence = fftFactory->getEngine(m_fftSize, false, &m_fft);
 | |
|     m_fftCounter = 0;
 | |
|     m_fftWindow.create(FFTWindow::Flattop, m_fftSize);
 | |
| }
 | |
| 
 | |
| ILSDemodSink::~ILSDemodSink()
 | |
| {
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::sampleToScope(Complex sample, Real demod)
 | |
| {
 | |
|     Real r = std::real(sample) * SDR_RX_SCALEF;
 | |
|     Real i = std::imag(sample) * SDR_RX_SCALEF;
 | |
|     m_sampleBuffer[m_sampleBufferIndex] = Sample(r, i);
 | |
|     m_spectrumSampleBuffer[m_sampleBufferIndex] = Sample(demod * SDR_RX_SCALEF, 0);
 | |
|     m_sampleBufferIndex++;
 | |
| 
 | |
|     if (m_sampleBufferIndex == m_sampleBufferSize)
 | |
|     {
 | |
|         if (m_scopeSink)
 | |
|         {
 | |
|             std::vector<SampleVector::const_iterator> vbegin;
 | |
|             vbegin.push_back(m_sampleBuffer.begin());
 | |
|             m_scopeSink->feed(vbegin, m_sampleBufferSize);
 | |
|         }
 | |
|         if (m_spectrumSink)
 | |
|         {
 | |
| 		    m_spectrumSink->feed(m_spectrumSampleBuffer.begin(), m_spectrumSampleBuffer.end(), false);
 | |
|         }
 | |
|         m_sampleBufferIndex = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
 | |
| {
 | |
|     Complex ci;
 | |
| 
 | |
|     for (SampleVector::const_iterator it = begin; it != end; ++it)
 | |
|     {
 | |
|         Complex c(it->real(), it->imag());
 | |
|         c *= m_nco.nextIQ();
 | |
| 
 | |
|         if (m_interpolatorDistance < 1.0f) // interpolate
 | |
|         {
 | |
|             while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
 | |
|             {
 | |
|                 processOneSample(ci);
 | |
|                 m_interpolatorDistanceRemain += m_interpolatorDistance;
 | |
|             }
 | |
|         }
 | |
|         else // decimate
 | |
|         {
 | |
|             if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
 | |
|             {
 | |
|                 processOneSample(ci);
 | |
|                 m_interpolatorDistanceRemain += m_interpolatorDistance;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::processOneSample(Complex &ci)
 | |
| {
 | |
|     Complex ca;
 | |
| 
 | |
|     // Calculate average and peak levels for level meter
 | |
|     double magsqRaw = ci.real()*ci.real() + ci.imag()*ci.imag();;
 | |
|     Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED);
 | |
|     m_movingAverage(magsq);
 | |
|     m_magsq = m_movingAverage.asDouble();
 | |
|     m_magsqSum += magsq;
 | |
|     if (magsq > m_magsqPeak)
 | |
|     {
 | |
|         m_magsqPeak = magsq;
 | |
|     }
 | |
|     m_magsqCount++;
 | |
| 
 | |
|     ci /= SDR_RX_SCALEF;
 | |
| 
 | |
|     // AM demodulation
 | |
|     Complex demod = std::abs(ci);
 | |
| 
 | |
|     // Resample as audio
 | |
|     if (m_audioInterpolatorDistance < 1.0f) // interpolate
 | |
|     {
 | |
|         while (!m_audioInterpolator.interpolate(&m_audioInterpolatorDistanceRemain, demod, &ca))
 | |
|         {
 | |
|             processOneAudioSample(ca);
 | |
|             m_audioInterpolatorDistanceRemain += m_audioInterpolatorDistance;
 | |
|         }
 | |
|     }
 | |
|     else // decimate
 | |
|     {
 | |
|         if (m_audioInterpolator.decimate(&m_audioInterpolatorDistanceRemain, demod, &ca))
 | |
|         {
 | |
|             processOneAudioSample(ca);
 | |
|             m_audioInterpolatorDistanceRemain += m_audioInterpolatorDistance;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Decimate again for spectral analysis
 | |
|     Complex demodDecim;
 | |
|     if (m_decimator.decimate(demod, demodDecim))
 | |
|     {
 | |
| 
 | |
|         // Use FFT to calculate sidebands modulation depth
 | |
|         m_fft->in()[m_fftCounter] = demodDecim;
 | |
|         m_fftCounter++;
 | |
|         if (m_fftCounter == m_fftSize)
 | |
|         {
 | |
|             calcDDM();
 | |
|             m_fftCounter = 0;
 | |
| 
 | |
|             // Send results to GUI
 | |
|             if (getMessageQueueToChannel())
 | |
|             {
 | |
|                 Real modDepth90, modDepth150, sdm, ddm;
 | |
|                 if (m_settings.m_average)
 | |
|                 {
 | |
|                     modDepth90 = m_modDepth90Average.instantAverage();
 | |
|                     modDepth150 = m_modDepth150Average.instantAverage();
 | |
|                     sdm = m_sdmAverage.instantAverage();
 | |
|                     ddm = m_ddmAverage.instantAverage();
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     modDepth90 = m_modDepth90;
 | |
|                     modDepth150 = m_modDepth150;
 | |
|                     sdm = m_sdm;
 | |
|                     ddm = m_ddm;
 | |
|                 }
 | |
| 
 | |
|                 Real angle;
 | |
|                 if (m_settings.m_mode == ILSDemodSettings::LOC)
 | |
|                 {
 | |
|                     // For localiser, angle depends on runway length
 | |
|                     // At ILS datum (over threshold) (or ILS point B for short runways (<=1200m), which is 1050m from threshold)
 | |
|                     // the displacement sensitivity is 0.00145 DDM/metre (3.1.3.7)
 | |
|                     // The points at which DDM is 0.155 (i.e a displacement of 0.155/0.00154=~105m) define the course sector (3.1.3.7.3 Note 1)
 | |
|                     // And this must be <= 6 degrees (typically between 3-6degrees) (3.1.3.7.1)
 | |
|                     // Localilzer to threshold distances (geometric angle)
 | |
|                     // EGKK 3150m (3.8deg), EGKB 1840m (6.5deg), EGLL 3960m (3.0deg), EGLC 1570m(27) 1510m(09) (7.6/8deg) EGJJ 1710m (7deg)
 | |
|                     // FAS data for EGJJ https://nats-uk.ead-it.com/cms-nats/export/sites/default/en/Publications/AIP/Current-AIRAC/graphics/196515.pdf
 | |
|                     // LTP (Landing threshold point) 491231.8010N  0021105.6645W    =  49.20883361 -2.18490681
 | |
|                     // FPAP                          491224.8745N  0021228.7365W    =  49.20690958 -2.20798236
 | |
|                     // Length offset                 136m  (distance from near threshold??)
 | |
|                     // LTP-FPAP=1690m   D=1690+305=1995   (GARP is 305m/1000ft from FPAP)
 | |
|                     // EGJJ angle for 1995m = 6deg
 | |
|                     angle = ddm / 0.155f * (m_settings.m_courseWidth / 2.0f);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // For glide slope, sector is 0.175 DDM = 0.7 degrees
 | |
|                     // Displacement sensitivity 0.0875 at 0.12*theta (0.12*3=0.36deg) (3.1.5.6.2)
 | |
|                     // GP coverage is from 0.45*theta to 1.75*theta (5.25-1.35=4.9deg for 3deg GP)
 | |
|                     angle = 0.12f * m_settings.m_glidePath * ddm / 0.0875f;
 | |
|                 }
 | |
| 
 | |
|                 ILSDemod::MsgAngleEstimate *msg = ILSDemod::MsgAngleEstimate::create(m_powerCarrier, m_power90, m_power150, modDepth90, modDepth150, sdm, ddm, angle);
 | |
|                 getMessageQueueToChannel()->push(msg);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Select signals to feed to scope
 | |
|         Complex scopeSample;
 | |
|         switch (m_settings.m_scopeCh1)
 | |
|         {
 | |
|         case 0:
 | |
|             scopeSample.real(ci.real());
 | |
|             break;
 | |
|         case 1:
 | |
|             scopeSample.real(ci.imag());
 | |
|             break;
 | |
|         case 2:
 | |
|             scopeSample.real(demod.real());
 | |
|             break;
 | |
|         }
 | |
|         switch (m_settings.m_scopeCh2)
 | |
|         {
 | |
|         case 0:
 | |
|             scopeSample.imag(ci.real());
 | |
|             break;
 | |
|         case 1:
 | |
|             scopeSample.imag(ci.imag());
 | |
|             break;
 | |
|         case 2:
 | |
|             scopeSample.imag(demod.real());
 | |
|             break;
 | |
|         }
 | |
|         sampleToScope(scopeSample, demod.real());
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::processOneAudioSample(Complex &ci)
 | |
| {
 | |
|     Real re = ci.real();
 | |
|     Real im = ci.imag();
 | |
|     Real magsq = re*re + im*im;
 | |
|     m_audioMovingAverage(magsq);
 | |
|     double magsqAvg = m_movingAverage.asDouble();
 | |
| 
 | |
|     m_squelchDelayLine.write(magsq);
 | |
| 
 | |
|     if (magsqAvg < m_squelchLevel)
 | |
|     {
 | |
|         if (m_squelchCount > 0) {
 | |
|             m_squelchCount--;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (m_squelchCount < (unsigned int)m_audioSampleRate / 10) {
 | |
|             m_squelchCount++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qint16 sample;
 | |
| 
 | |
|     m_squelchOpen = (m_squelchCount >= (unsigned int)m_audioSampleRate / 20);
 | |
| 
 | |
|     if (m_squelchOpen && !m_settings.m_audioMute)
 | |
|     {
 | |
|         Real demod;
 | |
| 
 | |
|         {
 | |
|             demod = sqrt(m_squelchDelayLine.readBack(m_audioSampleRate/20));
 | |
|             m_volumeAGC.feed(demod);
 | |
|             demod = (demod - m_volumeAGC.getValue()) / m_volumeAGC.getValue();
 | |
|         }
 | |
| 
 | |
|         demod = m_bandpass.filter(demod);
 | |
| 
 | |
|         Real attack = (m_squelchCount - 0.05f * m_audioSampleRate) / (0.05f * m_audioSampleRate);
 | |
|         sample = demod * StepFunctions::smootherstep(attack) * (m_audioSampleRate/24) * m_settings.m_volume;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         sample = 0;
 | |
|     }
 | |
| 
 | |
|     m_audioBuffer[m_audioBufferFill].l = sample;
 | |
|     m_audioBuffer[m_audioBufferFill].r = sample;
 | |
|     ++m_audioBufferFill;
 | |
| 
 | |
|     if (m_audioBufferFill >= m_audioBuffer.size())
 | |
|     {
 | |
|         std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size()));
 | |
| 
 | |
|         if (res != m_audioBufferFill)
 | |
|         {
 | |
|             qDebug("ILSDemodSink::processOneAudioSample: %lu/%lu audio samples written", res, m_audioBufferFill);
 | |
|             m_audioFifo.clear();
 | |
|         }
 | |
| 
 | |
|         m_audioBufferFill = 0;
 | |
|     }
 | |
| 
 | |
|     m_morseDemod.processOneSample(ci);
 | |
| }
 | |
| 
 | |
| Real ILSDemodSink::magSq(int bin) const
 | |
| {
 | |
|     Complex c = m_fft->out()[bin];
 | |
|     Real v = c.real() * c.real() + c.imag() * c.imag();
 | |
|     Real magsq = v / (m_fftSize * m_fftSize);
 | |
|     return magsq;
 | |
| }
 | |
| 
 | |
| // Calculate the difference in the depth of modulation (DDM)
 | |
| void ILSDemodSink::calcDDM()
 | |
| {
 | |
|     // 3.1.3.5.3 - the modulating tones shall be 90 Hz and 150 Hz within plus or minus 2.5 per cent
 | |
|     // At 88/92Hz, some energy is lost in adjacent bin, so we use flat top windowing for accurate
 | |
|     // amplitude measurement, which is what is needed for calculating depth of modulation
 | |
|     m_fftWindow.apply(m_fft->in());
 | |
| 
 | |
|     // Perform FFT
 | |
|     m_fft->transform();
 | |
| 
 | |
|     // Convert bin to frequency offset
 | |
|     double frequencyResolution = ILSDemodSettings::ILSDEMOD_SPECTRUM_SAMPLE_RATE / (double)m_fftSize;
 | |
|     int bin90 = 90.0 / frequencyResolution;
 | |
|     int bin150 = 150.0 / frequencyResolution;
 | |
| 
 | |
|     double mag90, mag150;
 | |
|     double magSqCarrier = magSq(0);
 | |
|     double magCarrier = sqrt(magSqCarrier);
 | |
| 
 | |
|     // Add both sidebands
 | |
|     mag90 = sqrt(magSq(bin90)) + sqrt(magSq(m_fftSize-bin90));
 | |
|     mag150 = sqrt(magSq(bin150)) + sqrt(magSq(m_fftSize-bin150));
 | |
| 
 | |
|     // Calculate power in dB
 | |
|     m_powerCarrier = CalcDb::dbPower(magSqCarrier);
 | |
|     m_power90 =  CalcDb::dbPower(mag90 * mag90);
 | |
|     m_power150 =  CalcDb::dbPower(mag150 * mag150);
 | |
| 
 | |
|     // Calculate modulation depth as % of carrier
 | |
|     m_modDepth90 = mag90 / magCarrier * 100.0;
 | |
|     m_modDepth150 = mag150 / magCarrier * 100.0;
 | |
| 
 | |
|     // Calculate modulation depth difference (https://www.youtube.com/watch?v=71iww_ERoYc)
 | |
|     m_ddm = (m_modDepth90 - m_modDepth150) / 100.0;
 | |
| 
 | |
|     // Calculate sum of difference of modulation
 | |
|     m_sdm = (m_modDepth90 + m_modDepth150) / 100.0;
 | |
| 
 | |
|     // Calculate moving averages
 | |
|     m_modDepth90Average(m_modDepth90);
 | |
|     m_modDepth150Average(m_modDepth150);
 | |
|     m_sdmAverage(m_sdm);
 | |
|     m_ddmAverage(m_ddm);
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
 | |
| {
 | |
|     qDebug() << "ILSDemodSink::applyChannelSettings:"
 | |
|             << " channelSampleRate: " << channelSampleRate
 | |
|             << " channelFrequencyOffset: " << channelFrequencyOffset;
 | |
| 
 | |
|     if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
 | |
|         (m_channelSampleRate != channelSampleRate) || force)
 | |
|     {
 | |
|         m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
 | |
|     }
 | |
| 
 | |
|     if ((m_channelSampleRate != channelSampleRate) || force)
 | |
|     {
 | |
|         m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2);
 | |
|         m_interpolatorDistance = (Real) channelSampleRate / (Real) ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE;
 | |
|         m_interpolatorDistanceRemain = m_interpolatorDistance;
 | |
|     }
 | |
| 
 | |
|     m_channelSampleRate = channelSampleRate;
 | |
|     m_channelFrequencyOffset = channelFrequencyOffset;
 | |
| 
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::applySettings(const ILSDemodSettings& settings, bool force)
 | |
| {
 | |
|     qDebug() << "ILSDemodSink::applySettings:"
 | |
|             << " m_rfBandwidth: " << settings.m_rfBandwidth
 | |
|             << " m_volume: " << settings.m_volume
 | |
|             << " m_squelch: " << settings.m_squelch
 | |
|             << " m_audioMute: " << settings.m_audioMute
 | |
|             << " m_audioDeviceName: " << settings.m_audioDeviceName
 | |
|             << " force: " << force;
 | |
| 
 | |
|     if ((m_settings.m_squelch != settings.m_squelch) || force) {
 | |
|         m_squelchLevel = CalcDb::powerFromdB(settings.m_squelch);
 | |
|     }
 | |
| 
 | |
|     if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force)
 | |
|     {
 | |
|         m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2);
 | |
|         m_interpolatorDistance = (Real) m_channelSampleRate / (Real) ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE;
 | |
|         m_interpolatorDistanceRemain = m_interpolatorDistance;
 | |
|     }
 | |
| 
 | |
|     if ((settings.m_identThreshold != m_settings.m_identThreshold) || force) {
 | |
|         m_morseDemod.applySettings(settings.m_identThreshold);
 | |
|     }
 | |
| 
 | |
|     if (force)
 | |
|     {
 | |
|         m_modDepth90Average.reset();
 | |
|         m_modDepth150Average.reset();
 | |
|         m_ddmAverage.reset();
 | |
|         m_decimator.setLog2Decim(ILSDemodSettings::ILSDEMOD_SPECTRUM_DECIM_LOG2);
 | |
|     }
 | |
| 
 | |
|     m_settings = settings;
 | |
| }
 | |
| 
 | |
| void ILSDemodSink::applyAudioSampleRate(int sampleRate)
 | |
| {
 | |
|     if (sampleRate < 0)
 | |
|     {
 | |
|         qWarning("ILSDemodSink::applyAudioSampleRate: invalid sample rate: %d", sampleRate);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qDebug("ILSDemodSink::applyAudioSampleRate: sampleRate: %d channelSampleRate: %d", sampleRate, ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE);
 | |
| 
 | |
|     if (sampleRate != m_audioSampleRate)
 | |
|     {
 | |
|         m_audioInterpolator.create(16, ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE, 3500.0f);
 | |
|         m_audioInterpolatorDistanceRemain = 0;
 | |
|         m_audioInterpolatorDistance = (Real) ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE / (Real) sampleRate;
 | |
|         m_bandpass.create(301, sampleRate, 300.0f, 3000.0f);
 | |
|         //m_bandpass.printTaps("audio_bpf");
 | |
|         m_audioFifo.setSize(sampleRate);
 | |
|         m_squelchDelayLine.resize(sampleRate/5);
 | |
| 
 | |
|         m_volumeAGC.resizeNew(sampleRate/10, 0.003f);
 | |
|         m_morseDemod.applyChannelSettings(sampleRate);
 | |
|     }
 | |
| 
 | |
|     m_audioSampleRate = sampleRate;
 | |
| }
 | |
| 
 |