kopia lustrzana https://github.com/f4exb/sdrangel
				
				
				
			
		
			
				
	
	
		
			425 wiersze
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			425 wiersze
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
// ----------------------------------------------------------------------------
 | 
						|
//	fftfilt.cxx  --  Fast convolution Overlap-Add filter
 | 
						|
//
 | 
						|
// Filter implemented using overlap-add FFT convolution method
 | 
						|
// h(t) characterized by Windowed-Sinc impulse response
 | 
						|
//
 | 
						|
// Reference:
 | 
						|
//	 "The Scientist and Engineer's Guide to Digital Signal Processing"
 | 
						|
//	 by Dr. Steven W. Smith, http://www.dspguide.com
 | 
						|
//	 Chapters 16, 18 and 21
 | 
						|
//
 | 
						|
// Copyright (C) 2006-2008 Dave Freese, W1HKJ
 | 
						|
//
 | 
						|
// This file is part of fldigi.
 | 
						|
//
 | 
						|
// Fldigi is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// Fldigi is distributed in the hope that it will be useful,
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
// GNU General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU General Public License
 | 
						|
// along with fldigi.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
// ----------------------------------------------------------------------------
 | 
						|
 | 
						|
#include <memory.h>
 | 
						|
#include <iostream>
 | 
						|
#include <fstream>
 | 
						|
#include <cstdlib>
 | 
						|
#include <cmath>
 | 
						|
#include <typeinfo>
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <unistd.h>
 | 
						|
#include <memory.h>
 | 
						|
 | 
						|
#include <dsp/misc.h>
 | 
						|
#include <dsp/fftfilt.h>
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// initialize the filter
 | 
						|
// create forward and reverse FFTs
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
 | 
						|
// Only need a single instance of g_fft, used for both forward and reverse
 | 
						|
void fftfilt::init_filter()
 | 
						|
{
 | 
						|
	flen2	= flen >> 1;
 | 
						|
	fft	= new g_fft<float>(flen);
 | 
						|
 | 
						|
	filter		= new cmplx[flen];
 | 
						|
    filterOpp   = new cmplx[flen];
 | 
						|
	data		= new cmplx[flen];
 | 
						|
	output		= new cmplx[flen2];
 | 
						|
	ovlbuf		= new cmplx[flen2];
 | 
						|
 | 
						|
	memset(filter, 0, flen * sizeof(cmplx));
 | 
						|
    memset(filterOpp, 0, flen * sizeof(cmplx));
 | 
						|
	memset(data, 0, flen * sizeof(cmplx));
 | 
						|
	memset(output, 0, flen2 * sizeof(cmplx));
 | 
						|
	memset(ovlbuf, 0, flen2 * sizeof(cmplx));
 | 
						|
 | 
						|
	inptr = 0;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
// fft filter
 | 
						|
// f1 < f2 ==> band pass filter
 | 
						|
// f1 > f2 ==> band reject filter
 | 
						|
// f1 == 0 ==> low pass filter
 | 
						|
// f2 == 0 ==> high pass filter
 | 
						|
//------------------------------------------------------------------------------
 | 
						|
fftfilt::fftfilt(float f1, float f2, int len)
 | 
						|
{
 | 
						|
	flen	= len;
 | 
						|
	init_filter();
 | 
						|
	create_filter(f1, f2);
 | 
						|
}
 | 
						|
 | 
						|
fftfilt::fftfilt(float f2, int len)
 | 
						|
{
 | 
						|
	flen	= len;
 | 
						|
	init_filter();
 | 
						|
	create_dsb_filter(f2);
 | 
						|
}
 | 
						|
 | 
						|
fftfilt::~fftfilt()
 | 
						|
{
 | 
						|
	if (fft) delete fft;
 | 
						|
 | 
						|
	if (filter) delete [] filter;
 | 
						|
    if (filterOpp) delete [] filterOpp;
 | 
						|
	if (data) delete [] data;
 | 
						|
	if (output) delete [] output;
 | 
						|
	if (ovlbuf) delete [] ovlbuf;
 | 
						|
}
 | 
						|
 | 
						|
void fftfilt::create_filter(float f1, float f2)
 | 
						|
{
 | 
						|
	// initialize the filter to zero
 | 
						|
	memset(filter, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
	// create the filter shape coefficients by fft
 | 
						|
	bool b_lowpass, b_highpass;
 | 
						|
	b_lowpass = (f2 != 0);
 | 
						|
	b_highpass = (f1 != 0);
 | 
						|
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		filter[i] = 0;
 | 
						|
	// lowpass @ f2
 | 
						|
		if (b_lowpass)
 | 
						|
			filter[i] += fsinc(f2, i, flen2);
 | 
						|
	// highighpass @ f1
 | 
						|
		if (b_highpass)
 | 
						|
			filter[i] -= fsinc(f1, i, flen2);
 | 
						|
	}
 | 
						|
	// highpass is delta[flen2/2] - h(t)
 | 
						|
	if (b_highpass && f2 < f1)
 | 
						|
		filter[flen2 / 2] += 1;
 | 
						|
 | 
						|
	for (int i = 0; i < flen2; i++)
 | 
						|
		filter[i] *= _blackman(i, flen2);
 | 
						|
 | 
						|
	fft->ComplexFFT(filter);
 | 
						|
 | 
						|
	// normalize the output filter for unity gain
 | 
						|
	float scale = 0, mag;
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		mag = abs(filter[i]);
 | 
						|
		if (mag > scale) scale = mag;
 | 
						|
	}
 | 
						|
	if (scale != 0) {
 | 
						|
		for (int i = 0; i < flen; i++)
 | 
						|
			filter[i] /= scale;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
 | 
						|
void fftfilt::create_dsb_filter(float f2)
 | 
						|
{
 | 
						|
	// initialize the filter to zero
 | 
						|
	memset(filter, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		filter[i] = fsinc(f2, i, flen2);
 | 
						|
		filter[i] *= _blackman(i, flen2);
 | 
						|
	}
 | 
						|
 | 
						|
	fft->ComplexFFT(filter);
 | 
						|
 | 
						|
	// normalize the output filter for unity gain
 | 
						|
	float scale = 0, mag;
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		mag = abs(filter[i]);
 | 
						|
		if (mag > scale) scale = mag;
 | 
						|
	}
 | 
						|
	if (scale != 0) {
 | 
						|
		for (int i = 0; i < flen; i++)
 | 
						|
			filter[i] /= scale;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
 | 
						|
// used with runAsym for in band / opposite band asymmetrical filtering. Can be used for vestigial sideband modulation.
 | 
						|
void fftfilt::create_asym_filter(float fopp, float fin)
 | 
						|
{
 | 
						|
    // in band
 | 
						|
    // initialize the filter to zero
 | 
						|
    memset(filter, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
    for (int i = 0; i < flen2; i++) {
 | 
						|
        filter[i] = fsinc(fin, i, flen2);
 | 
						|
        filter[i] *= _blackman(i, flen2);
 | 
						|
    }
 | 
						|
 | 
						|
    fft->ComplexFFT(filter);
 | 
						|
 | 
						|
    // normalize the output filter for unity gain
 | 
						|
    float scale = 0, mag;
 | 
						|
    for (int i = 0; i < flen2; i++) {
 | 
						|
        mag = abs(filter[i]);
 | 
						|
        if (mag > scale) scale = mag;
 | 
						|
    }
 | 
						|
    if (scale != 0) {
 | 
						|
        for (int i = 0; i < flen; i++)
 | 
						|
            filter[i] /= scale;
 | 
						|
    }
 | 
						|
 | 
						|
    // opposite band
 | 
						|
    // initialize the filter to zero
 | 
						|
    memset(filterOpp, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
    for (int i = 0; i < flen2; i++) {
 | 
						|
        filterOpp[i] = fsinc(fopp, i, flen2);
 | 
						|
        filterOpp[i] *= _blackman(i, flen2);
 | 
						|
    }
 | 
						|
 | 
						|
    fft->ComplexFFT(filterOpp);
 | 
						|
 | 
						|
    // normalize the output filter for unity gain
 | 
						|
    scale = 0;
 | 
						|
    for (int i = 0; i < flen2; i++) {
 | 
						|
        mag = abs(filterOpp[i]);
 | 
						|
        if (mag > scale) scale = mag;
 | 
						|
    }
 | 
						|
    if (scale != 0) {
 | 
						|
        for (int i = 0; i < flen; i++)
 | 
						|
            filterOpp[i] /= scale;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// test bypass
 | 
						|
int fftfilt::noFilt(const cmplx & in, cmplx **out)
 | 
						|
{
 | 
						|
	data[inptr++] = in;
 | 
						|
	if (inptr < flen2)
 | 
						|
		return 0;
 | 
						|
	inptr = 0;
 | 
						|
 | 
						|
	*out = data;
 | 
						|
	return flen2;
 | 
						|
}
 | 
						|
 | 
						|
// Filter with fast convolution (overlap-add algorithm).
 | 
						|
int fftfilt::runFilt(const cmplx & in, cmplx **out)
 | 
						|
{
 | 
						|
	data[inptr++] = in;
 | 
						|
	if (inptr < flen2)
 | 
						|
		return 0;
 | 
						|
	inptr = 0;
 | 
						|
 | 
						|
	fft->ComplexFFT(data);
 | 
						|
	for (int i = 0; i < flen; i++)
 | 
						|
		data[i] *= filter[i];
 | 
						|
 | 
						|
	fft->InverseComplexFFT(data);
 | 
						|
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		output[i] = ovlbuf[i] + data[i];
 | 
						|
		ovlbuf[i] = data[flen2 + i];
 | 
						|
	}
 | 
						|
	memset (data, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
	*out = output;
 | 
						|
	return flen2;
 | 
						|
}
 | 
						|
 | 
						|
// Second version for single sideband
 | 
						|
int fftfilt::runSSB(const cmplx & in, cmplx **out, bool usb, bool getDC)
 | 
						|
{
 | 
						|
	data[inptr++] = in;
 | 
						|
	if (inptr < flen2)
 | 
						|
		return 0;
 | 
						|
	inptr = 0;
 | 
						|
 | 
						|
	fft->ComplexFFT(data);
 | 
						|
 | 
						|
	// get or reject DC component
 | 
						|
	data[0] = getDC ? data[0]*filter[0] : 0;
 | 
						|
 | 
						|
	// Discard frequencies for ssb
 | 
						|
	if (usb)
 | 
						|
	{
 | 
						|
		for (int i = 1; i < flen2; i++) {
 | 
						|
			data[i] *= filter[i];
 | 
						|
			data[flen2 + i] = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		for (int i = 1; i < flen2; i++) {
 | 
						|
			data[i] = 0;
 | 
						|
			data[flen2 + i] *= filter[flen2 + i];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// in-place FFT: freqdata overwritten with filtered timedata
 | 
						|
	fft->InverseComplexFFT(data);
 | 
						|
 | 
						|
	// overlap and add
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		output[i] = ovlbuf[i] + data[i];
 | 
						|
		ovlbuf[i] = data[i+flen2];
 | 
						|
	}
 | 
						|
	memset (data, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
	*out = output;
 | 
						|
	return flen2;
 | 
						|
}
 | 
						|
 | 
						|
// Version for double sideband. You have to double the FFT size used for SSB.
 | 
						|
int fftfilt::runDSB(const cmplx & in, cmplx **out)
 | 
						|
{
 | 
						|
	data[inptr++] = in;
 | 
						|
	if (inptr < flen2)
 | 
						|
		return 0;
 | 
						|
	inptr = 0;
 | 
						|
 | 
						|
	fft->ComplexFFT(data);
 | 
						|
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		data[i] *= filter[i];
 | 
						|
		data[flen2 + i] *= filter[flen2 + i];
 | 
						|
	}
 | 
						|
 | 
						|
	// in-place FFT: freqdata overwritten with filtered timedata
 | 
						|
	fft->InverseComplexFFT(data);
 | 
						|
 | 
						|
	// overlap and add
 | 
						|
	for (int i = 0; i < flen2; i++) {
 | 
						|
		output[i] = ovlbuf[i] + data[i];
 | 
						|
		ovlbuf[i] = data[i+flen2];
 | 
						|
	}
 | 
						|
 | 
						|
	memset (data, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
	*out = output;
 | 
						|
	return flen2;
 | 
						|
}
 | 
						|
 | 
						|
// Version for asymmetrical sidebands. You have to double the FFT size used for SSB.
 | 
						|
int fftfilt::runAsym(const cmplx & in, cmplx **out, bool usb)
 | 
						|
{
 | 
						|
    data[inptr++] = in;
 | 
						|
    if (inptr < flen2)
 | 
						|
        return 0;
 | 
						|
    inptr = 0;
 | 
						|
 | 
						|
    fft->ComplexFFT(data);
 | 
						|
 | 
						|
    data[0] *= filter[0]; // always keep DC
 | 
						|
 | 
						|
    if (usb)
 | 
						|
    {
 | 
						|
        for (int i = 1; i < flen2; i++)
 | 
						|
        {
 | 
						|
            data[i] *= filter[i]; // usb
 | 
						|
            data[flen2 + i] *= filterOpp[flen2 + i]; // lsb is the opposite
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        for (int i = 1; i < flen2; i++)
 | 
						|
        {
 | 
						|
            data[i] *= filterOpp[i]; // usb is the opposite
 | 
						|
            data[flen2 + i] *= filter[flen2 + i]; // lsb
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // in-place FFT: freqdata overwritten with filtered timedata
 | 
						|
    fft->InverseComplexFFT(data);
 | 
						|
 | 
						|
    // overlap and add
 | 
						|
    for (int i = 0; i < flen2; i++) {
 | 
						|
        output[i] = ovlbuf[i] + data[i];
 | 
						|
        ovlbuf[i] = data[i+flen2];
 | 
						|
    }
 | 
						|
 | 
						|
    memset (data, 0, flen * sizeof(cmplx));
 | 
						|
 | 
						|
    *out = output;
 | 
						|
    return flen2;
 | 
						|
}
 | 
						|
 | 
						|
/* Sliding FFT from Fldigi */
 | 
						|
 | 
						|
struct sfft::vrot_bins_pair {
 | 
						|
	cmplx vrot;
 | 
						|
	cmplx bins;
 | 
						|
} ;
 | 
						|
 | 
						|
sfft::sfft(int len)
 | 
						|
{
 | 
						|
	vrot_bins = new vrot_bins_pair[len];
 | 
						|
	delay  = new cmplx[len];
 | 
						|
	fftlen = len;
 | 
						|
	first = 0;
 | 
						|
	last = len - 1;
 | 
						|
	ptr = 0;
 | 
						|
	double phi = 0.0, tau = 2.0 * M_PI/ len;
 | 
						|
	k2 = 1.0;
 | 
						|
	for (int i = 0; i < len; i++) {
 | 
						|
		vrot_bins[i].vrot = cmplx( K1 * cos (phi), K1 * sin (phi) );
 | 
						|
		phi += tau;
 | 
						|
		delay[i] = vrot_bins[i].bins = 0.0;
 | 
						|
		k2 *= K1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
sfft::~sfft()
 | 
						|
{
 | 
						|
	delete [] vrot_bins;
 | 
						|
	delete [] delay;
 | 
						|
}
 | 
						|
 | 
						|
// Sliding FFT, cmplx input, cmplx output
 | 
						|
// FFT is computed for each value from first to last
 | 
						|
// Values are not stable until more than "len" samples have been processed.
 | 
						|
void sfft::run(const cmplx& input)
 | 
						|
{
 | 
						|
	cmplx & de = delay[ptr];
 | 
						|
	const cmplx z( input.real() - k2 * de.real(), input.imag() - k2 * de.imag());
 | 
						|
	de = input;
 | 
						|
 | 
						|
	if (++ptr >= fftlen)
 | 
						|
		ptr = 0;
 | 
						|
 | 
						|
	for (vrot_bins_pair *itr = vrot_bins + first, *end = vrot_bins + last; itr != end ; ++itr)
 | 
						|
		itr->bins = (itr->bins + z) * itr->vrot;
 | 
						|
}
 | 
						|
 | 
						|
// Copies the frequencies to a pointer.
 | 
						|
void sfft::fetch(float *result)
 | 
						|
{
 | 
						|
	for (vrot_bins_pair *itr = vrot_bins, *end = vrot_bins + last;  itr != end; ++itr, ++result)
 | 
						|
		*result = itr->bins.real() * itr->bins.real()
 | 
						|
                        + itr->bins.imag() * itr->bins.imag();
 | 
						|
}
 | 
						|
 |