sdrangel/plugins/samplesink/xtrxoutput/xtrxoutput.cpp

1450 wiersze
53 KiB
C++

///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, 2018 Edouard Griffiths, F4EXB //
// Copyright (C) 2017 Sergey Kostanbaev, Fairwaves Inc. //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <cstddef>
#include <string.h>
#include "xtrx_api.h"
#include <QMutexLocker>
#include <QDebug>
#include <QNetworkReply>
#include <QBuffer>
#include "SWGDeviceSettings.h"
#include "SWGXtrxOutputSettings.h"
#include "SWGDeviceState.h"
#include "SWGDeviceReport.h"
#include "SWGXtrxOutputReport.h"
#include "device/deviceapi.h"
#include "dsp/dspcommands.h"
#include "xtrxoutput.h"
#include "xtrxoutputthread.h"
#include "xtrx/devicextrxparam.h"
#include "xtrx/devicextrxshared.h"
#include "xtrx/devicextrx.h"
MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgConfigureXTRX, Message)
MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgGetStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgGetDeviceInfo, Message)
MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgReportClockGenChange, Message)
MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgReportStreamInfo, Message)
MESSAGE_CLASS_DEFINITION(XTRXOutput::MsgStartStop, Message)
XTRXOutput::XTRXOutput(DeviceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_settings(),
m_XTRXOutputThread(0),
m_deviceDescription("XTRXOutput"),
m_running(false)
{
openDevice();
m_deviceAPI->setNbSinkStreams(1);
m_networkManager = new QNetworkAccessManager();
connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
}
XTRXOutput::~XTRXOutput()
{
disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*)));
delete m_networkManager;
if (m_running) {
stop();
}
closeDevice();
}
void XTRXOutput::destroy()
{
delete this;
}
bool XTRXOutput::openDevice()
{
m_sampleSourceFifo.resize(m_settings.m_devSampleRate/(1<<(m_settings.m_log2SoftInterp <= 4 ? m_settings.m_log2SoftInterp : 4)));
// look for Tx buddies and get reference to the device object
if (m_deviceAPI->getSinkBuddies().size() > 0) // then sink
{
qDebug("XTRXOutput::openDevice: look in Tx buddies");
DeviceAPI *sinkBuddy = m_deviceAPI->getSinkBuddies()[0];
DeviceXTRXShared *deviceXTRXShared = (DeviceXTRXShared*) sinkBuddy->getBuddySharedPtr();
if (deviceXTRXShared == 0)
{
qCritical("XTRXOutput::openDevice: the sink buddy shared pointer is null");
return false;
}
DeviceXTRX *device = deviceXTRXShared->m_dev;
if (device == 0)
{
qCritical("XTRXOutput::openDevice: cannot get device pointer from Tx buddy");
return false;
}
m_deviceShared.m_dev = device;
}
// look for Rx buddies and get reference to the device object
else if (m_deviceAPI->getSourceBuddies().size() > 0) // look source sibling first
{
qDebug("XTRXOutput::openDevice: look in Rx buddies");
DeviceAPI *sourceBuddy = m_deviceAPI->getSourceBuddies()[0];
DeviceXTRXShared *deviceXTRXShared = (DeviceXTRXShared*) sourceBuddy->getBuddySharedPtr();
if (deviceXTRXShared == 0)
{
qCritical("XTRXOutput::openDevice: the source buddy shared pointer is null");
return false;
}
DeviceXTRX *device = deviceXTRXShared->m_dev;
if (device == 0)
{
qCritical("XTRXOutput::openDevice: cannot get device pointer from Rx buddy");
return false;
}
m_deviceShared.m_dev = device;
}
// There are no buddies then create the first BladeRF2 device
else
{
qDebug("XTRXOutput::openDevice: open device here");
m_deviceShared.m_dev = new DeviceXTRX();
char serial[256];
strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial()));
if (!m_deviceShared.m_dev->open(serial))
{
qCritical("XTRXOutput::openDevice: cannot open BladeRF2 device");
return false;
}
}
m_deviceShared.m_channel = m_deviceAPI->getDeviceItemIndex(); // publicly allocate channel
m_deviceShared.m_sink = this;
m_deviceAPI->setBuddySharedPtr(&m_deviceShared); // propagate common parameters to API
return true;
}
void XTRXOutput::closeDevice()
{
if (m_deviceShared.m_dev == 0) { // was never open
return;
}
if (m_running) {
stop();
}
if (m_XTRXOutputThread) { // stills own the thread => transfer to a buddy
moveThreadToBuddy();
}
m_deviceShared.m_channel = -1; // publicly release channel
m_deviceShared.m_sink = 0;
// No buddies so effectively close the device
if ((m_deviceAPI->getSinkBuddies().size() == 0) && (m_deviceAPI->getSourceBuddies().size() == 0))
{
m_deviceShared.m_dev->close();
delete m_deviceShared.m_dev;
m_deviceShared.m_dev = 0;
}
}
void XTRXOutput::init()
{
applySettings(m_settings, true, false);
}
XTRXOutputThread *XTRXOutput::findThread()
{
if (m_XTRXOutputThread == 0) // this does not own the thread
{
XTRXOutputThread *xtrxOutputThread = 0;
// find a buddy that has allocated the thread
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
XTRXOutput *buddySink = ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink;
if (buddySink)
{
xtrxOutputThread = buddySink->getThread();
if (xtrxOutputThread) {
break;
}
}
}
return xtrxOutputThread;
}
else
{
return m_XTRXOutputThread; // own thread
}
}
void XTRXOutput::moveThreadToBuddy()
{
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
XTRXOutput *buddySink = ((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink;
if (buddySink)
{
buddySink->setThread(m_XTRXOutputThread);
m_XTRXOutputThread = 0; // zero for others
}
}
}
bool XTRXOutput::start()
{
// There is a single thread per physical device (Tx side). This thread is unique and referenced by a unique
// buddy in the group of sink buddies associated with this physical device.
//
// This start method is responsible for managing the thread when the streaming of a Tx channel is started
//
// It checks the following conditions
// - the thread is allocated or not (by itself or one of its buddies). If it is it grabs the thread pointer.
// - the requested channel is another channel (one is already streaming).
//
// The XTRX support library lets you work in two possible modes:
// - Single Output (SO) with only one channel streaming. This can be channel 0 or 1 (channels can be swapped - unlike with BladeRF2).
// - Multiple Output (MO) with two channels streaming using interleaved samples. It MUST be in this configuration if both channels are
// streaming.
//
// It manages the transition form SO where only one channel is running to the Multiple Input (MO) if the both channels are requested.
// To perform the transition it stops the thread, deletes it and creates a new one.
// It marks the thread as needing start.
//
// If there is no thread allocated it means we are in SO mode and it creates a new one with the requested channel.
// It marks the thread as needing start.
//
// Eventually it registers the FIFO in the thread. If the thread has to be started it enables the channels up to the number of channels
// allocated in the thread and starts the thread.
if (!m_deviceShared.m_dev || !m_deviceShared.m_dev->getDevice())
{
qDebug("XTRXOutput::start: no device object");
return false;
}
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
XTRXOutputThread *xtrxOutputThread = findThread();
bool needsStart = false;
if (xtrxOutputThread) // if thread is already allocated
{
qDebug("XTRXOutput::start: thread is already allocated");
unsigned int nbOriginalChannels = xtrxOutputThread->getNbChannels();
// if one channel is already allocated it must be the other one so we'll end up with both channels
// thus we expand by deleting and re-creating the thread
if (nbOriginalChannels != 0)
{
qDebug("XTRXOutput::start: expand channels. Re-allocate thread and take ownership");
SampleSourceFifo **fifos = new SampleSourceFifo*[2];
unsigned int *log2Interps = new unsigned int[2];
for (int i = 0; i < 2; i++) // save original FIFO references and data
{
fifos[i] = xtrxOutputThread->getFifo(i);
log2Interps[i] = xtrxOutputThread->getLog2Interpolation(i);
}
xtrxOutputThread->stopWork();
delete xtrxOutputThread;
xtrxOutputThread = new XTRXOutputThread(m_deviceShared.m_dev->getDevice(), 2); // MO mode (2 channels)
m_XTRXOutputThread = xtrxOutputThread; // take ownership
m_deviceShared.m_thread = xtrxOutputThread;
for (int i = 0; i < 2; i++) // restore original FIFO references
{
xtrxOutputThread->setFifo(i, fifos[i]);
xtrxOutputThread->setLog2Interpolation(i, log2Interps[i]);
}
// remove old thread address from buddies (reset in all buddies). The address being held only in the owning source.
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0);
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0;
}
// was used as temporary storage:
delete[] fifos;
delete[] log2Interps;
needsStart = true;
}
else
{
qDebug("XTRXOutput::start: keep buddy thread");
}
}
else // first allocation
{
qDebug("XTRXOutput::start: allocate thread and take ownership");
xtrxOutputThread = new XTRXOutputThread(m_deviceShared.m_dev->getDevice(), 1, requestedChannel);
m_XTRXOutputThread = xtrxOutputThread; // take ownership
m_deviceShared.m_thread = xtrxOutputThread;
needsStart = true;
}
xtrxOutputThread->setFifo(requestedChannel, &m_sampleSourceFifo);
xtrxOutputThread->setLog2Interpolation(requestedChannel, m_settings.m_log2SoftInterp);
applySettings(m_settings, true);
if (needsStart)
{
qDebug("XTRXOutput::start: (re)start thread");
xtrxOutputThread->startWork();
}
qDebug("XTRXOutput::start: started");
m_running = true;
return true;
}
void XTRXOutput::stop()
{
// This stop method is responsible for managing the thread when the streaming of a Rx channel is stopped
//
// If the thread is currently managing only one channel (SO mode). The thread can be just stopped and deleted.
// Then the channel is closed.
//
// If the thread is currently managing both channels (MO mode) then we are removing one channel. Thus we must
// transition from MO to SO. This transition is handled by stopping the thread, deleting it and creating a new one
// managing a single channel.
if (!m_running) {
return;
}
int removedChannel = m_deviceAPI->getDeviceItemIndex(); // channel to remove
int requestedChannel = removedChannel ^ 1; // channel to keep (opposite channel)
XTRXOutputThread *xtrxOutputThread = findThread();
if (xtrxOutputThread == 0) { // no thread allocated
return;
}
int nbOriginalChannels = xtrxOutputThread->getNbChannels();
if (nbOriginalChannels == 1) // SO mode => just stop and delete the thread
{
qDebug("XTRXOutput::stop: SO mode. Just stop and delete the thread");
xtrxOutputThread->stopWork();
delete xtrxOutputThread;
m_XTRXOutputThread = 0;
m_deviceShared.m_thread = 0;
// remove old thread address from buddies (reset in all buddies)
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0);
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0;
}
}
else if (nbOriginalChannels == 2) // Reduce from MO to SO by deleting and re-creating the thread
{
qDebug("XTRXOutput::stop: MO mode. Reduce by deleting and re-creating the thread");
xtrxOutputThread->stopWork();
delete xtrxOutputThread;
xtrxOutputThread = new XTRXOutputThread(m_deviceShared.m_dev->getDevice(), 1, requestedChannel);
m_XTRXOutputThread = xtrxOutputThread; // take ownership
m_deviceShared.m_thread = xtrxOutputThread;
xtrxOutputThread->setFifo(requestedChannel, &m_sampleSourceFifo);
xtrxOutputThread->setLog2Interpolation(requestedChannel, m_settings.m_log2SoftInterp);
// remove old thread address from buddies (reset in all buddies). The address being held only in the owning source.
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator it = sinkBuddies.begin();
for (; it != sinkBuddies.end(); ++it)
{
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_sink->setThread(0);
((DeviceXTRXShared*) (*it)->getBuddySharedPtr())->m_thread = 0;
}
applySettings(m_settings, true);
xtrxOutputThread->startWork();
}
m_running = false;
}
void XTRXOutput::suspendRxThread()
{
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
qDebug("XTRXOutput::suspendRxThread (%lu)", sourceBuddies.size());
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared *buddySharedPtr = (DeviceXTRXShared *) (*itSource)->getBuddySharedPtr();
if (buddySharedPtr->m_thread && buddySharedPtr->m_thread->isRunning())
{
buddySharedPtr->m_thread->stopWork();
buddySharedPtr->m_threadWasRunning = true;
}
else
{
buddySharedPtr->m_threadWasRunning = false;
}
}
}
void XTRXOutput::resumeRxThread()
{
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
qDebug("XTRXOutput::resumeRxThread (%lu)", sourceBuddies.size());
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared *buddySharedPtr = (DeviceXTRXShared *) (*itSource)->getBuddySharedPtr();
if (buddySharedPtr->m_threadWasRunning) {
buddySharedPtr->m_thread->startWork();
}
}
}
QByteArray XTRXOutput::serialize() const
{
return m_settings.serialize();
}
bool XTRXOutput::deserialize(const QByteArray& data)
{
bool success = true;
if (!m_settings.deserialize(data))
{
m_settings.resetToDefaults();
success = false;
}
MsgConfigureXTRX* message = MsgConfigureXTRX::create(m_settings, true);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureXTRX* messageToGUI = MsgConfigureXTRX::create(m_settings, true);
m_guiMessageQueue->push(messageToGUI);
}
return success;
}
const QString& XTRXOutput::getDeviceDescription() const
{
return m_deviceDescription;
}
int XTRXOutput::getSampleRate() const
{
double rate = m_settings.m_devSampleRate;
if (m_deviceShared.m_dev) {
rate = m_deviceShared.m_dev->getActualOutputRate();
}
return (int)((rate / (1<<m_settings.m_log2SoftInterp)));
}
uint32_t XTRXOutput::getDevSampleRate() const
{
uint32_t devSampleRate = m_settings.m_devSampleRate;
if (m_deviceShared.m_dev) {
devSampleRate = m_deviceShared.m_dev->getActualOutputRate();
}
return devSampleRate;
}
uint32_t XTRXOutput::getLog2HardInterp() const
{
uint32_t log2HardInterp = m_settings.m_log2HardInterp;
if (m_deviceShared.m_dev && (m_deviceShared.m_dev->getActualOutputRate() != 0.0)) {
log2HardInterp = log2(m_deviceShared.m_dev->getClockGen() / m_deviceShared.m_dev->getActualOutputRate() / 4);
}
return log2HardInterp;
}
double XTRXOutput::getClockGen() const
{
if (m_deviceShared.m_dev) {
return m_deviceShared.m_dev->getClockGen();
} else {
return 0.0;
}
}
quint64 XTRXOutput::getCenterFrequency() const
{
return m_settings.m_centerFrequency + (m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0);
}
void XTRXOutput::setCenterFrequency(qint64 centerFrequency)
{
XTRXOutputSettings settings = m_settings;
settings.m_centerFrequency = centerFrequency - (m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0);
MsgConfigureXTRX* message = MsgConfigureXTRX::create(settings, false);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue)
{
MsgConfigureXTRX* messageToGUI = MsgConfigureXTRX::create(settings, false);
m_guiMessageQueue->push(messageToGUI);
}
}
std::size_t XTRXOutput::getChannelIndex()
{
return m_deviceShared.m_channel;
}
void XTRXOutput::getLORange(float& minF, float& maxF, float& stepF) const
{
minF = 29e6;
maxF = 3840e6;
stepF = 10;
qDebug("XTRXOutput::getLORange: min: %f max: %f step: %f",
minF, maxF, stepF);
}
void XTRXOutput::getSRRange(float& minF, float& maxF, float& stepF) const
{
minF = 100e3;
maxF = 120e6;
stepF = 10;
qDebug("XTRXOutput::getSRRange: min: %f max: %f step: %f",
minF, maxF, stepF);
}
void XTRXOutput::getLPRange(float& minF, float& maxF, float& stepF) const
{
minF = 500e3;
maxF = 130e6;
stepF = 10;
qDebug("XTRXOutput::getLPRange: min: %f max: %f step: %f",
minF, maxF, stepF);
}
bool XTRXOutput::handleMessage(const Message& message)
{
if (MsgConfigureXTRX::match(message))
{
MsgConfigureXTRX& conf = (MsgConfigureXTRX&) message;
qDebug() << "XTRXOutput::handleMessage: MsgConfigureXTRX";
if (!applySettings(conf.getSettings(), conf.getForce()))
{
qDebug("XTRXOutput::handleMessage config error");
}
return true;
}
else if (DeviceXTRXShared::MsgReportBuddyChange::match(message))
{
DeviceXTRXShared::MsgReportBuddyChange& report = (DeviceXTRXShared::MsgReportBuddyChange&) message;
if (!report.getRxElseTx())
{
m_settings.m_devSampleRate = report.getDevSampleRate();
m_settings.m_log2HardInterp = report.getLog2HardDecimInterp();
m_settings.m_centerFrequency = report.getCenterFrequency();
}
else
{
m_settings.m_devSampleRate = m_deviceShared.m_dev->getActualOutputRate();
m_settings.m_log2HardInterp = getLog2HardInterp();
qDebug() << "XTRXOutput::handleMessage: MsgReportBuddyChange:"
<< " host_Hz: " << m_deviceShared.m_dev->getActualOutputRate()
<< " dac_Hz: " << m_deviceShared.m_dev->getClockGen() / 4
<< " m_log2HardInterp: " << m_settings.m_log2HardInterp;
}
if (m_settings.m_ncoEnable) // need to reset NCO after sample rate change
{
applySettings(m_settings, false, true);
}
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
DSPSignalNotification *notif = new DSPSignalNotification(
m_settings.m_devSampleRate/(1<<m_settings.m_log2SoftInterp),
m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
DeviceXTRXShared::MsgReportBuddyChange *reportToGUI = DeviceXTRXShared::MsgReportBuddyChange::create(
m_settings.m_devSampleRate, m_settings.m_log2HardInterp, m_settings.m_centerFrequency, true);
getMessageQueueToGUI()->push(reportToGUI);
}
return true;
}
else if (DeviceXTRXShared::MsgReportClockSourceChange::match(message))
{
DeviceXTRXShared::MsgReportClockSourceChange& report = (DeviceXTRXShared::MsgReportClockSourceChange&) message;
m_settings.m_extClock = report.getExtClock();
m_settings.m_extClockFreq = report.getExtClockFeq();
if (getMessageQueueToGUI())
{
DeviceXTRXShared::MsgReportClockSourceChange *reportToGUI = DeviceXTRXShared::MsgReportClockSourceChange::create(
m_settings.m_extClock, m_settings.m_extClockFreq);
getMessageQueueToGUI()->push(reportToGUI);
}
return true;
}
else if (MsgGetStreamInfo::match(message))
{
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
uint64_t fifolevel = 0;
if (m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice()) {
xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_TX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevel);
}
MsgReportStreamInfo *report = MsgReportStreamInfo::create(
true,
true,
fifolevel,
65536);
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue()) {
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
return true;
}
else if (MsgGetDeviceInfo::match(message))
{
double board_temp = 0.0;
bool gps_locked = false;
if (!m_deviceShared.m_dev->getDevice() || ((board_temp = m_deviceShared.get_board_temperature() / 256.0) == 0.0)) {
qDebug("XTRXOutput::handleMessage: MsgGetDeviceInfo: cannot get board temperature");
}
if (!m_deviceShared.m_dev->getDevice()) {
qDebug("XTRXOutput::handleMessage: MsgGetDeviceInfo: cannot get GPS lock status");
} else {
gps_locked = m_deviceShared.get_gps_status();
}
// send to oneself
if (m_deviceAPI->getSamplingDeviceGUIMessageQueue())
{
DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked);
m_deviceAPI->getSamplingDeviceGUIMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
if ((*itSink)->getSamplingDeviceGUIMessageQueue())
{
DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked);
(*itSink)->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
if ((*itSource)->getSamplingDeviceGUIMessageQueue())
{
DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked);
(*itSource)->getSamplingDeviceGUIMessageQueue()->push(report);
}
}
return true;
}
else if (MsgStartStop::match(message))
{
MsgStartStop& cmd = (MsgStartStop&) message;
qDebug() << "XTRXOutput::handleMessage: MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop");
if (cmd.getStartStop())
{
if (m_deviceAPI->initDeviceEngine())
{
m_deviceAPI->startDeviceEngine();
}
}
else
{
m_deviceAPI->stopDeviceEngine();
}
return true;
}
else
{
return false;
}
}
bool XTRXOutput::applySettings(const XTRXOutputSettings& settings, bool force, bool forceNCOFrequency)
{
int requestedChannel = m_deviceAPI->getDeviceItemIndex();
XTRXOutputThread *outputThread = findThread();
QList<QString> reverseAPIKeys;
bool forwardChangeOwnDSP = false;
bool forwardChangeTxDSP = false;
bool forwardChangeAllDSP = false;
bool forwardClockSource = false;
bool txThreadWasRunning = false;
bool doLPCalibration = false;
bool doChangeSampleRate = false;
bool doChangeFreq = false;
// apply settings
qDebug() << "XTRXOutput::applySettings: m_centerFrequency: " << m_settings.m_centerFrequency
<< " m_devSampleRate: " << m_settings.m_devSampleRate
<< " m_log2SoftInterp: " << m_settings.m_log2SoftInterp
<< " m_gain: " << m_settings.m_gain
<< " m_lpfBW: " << m_settings.m_lpfBW
<< " m_pwrmode: " << m_settings.m_pwrmode
<< " m_ncoEnable: " << m_settings.m_ncoEnable
<< " m_ncoFrequency: " << m_settings.m_ncoFrequency
<< " m_antennaPath: " << m_settings.m_antennaPath
<< " m_extClock: " << m_settings.m_extClock
<< " m_extClockFreq: " << m_settings.m_extClockFreq
<< " force: " << force;
if ((m_settings.m_pwrmode != settings.m_pwrmode))
{
reverseAPIKeys.append("pwrmode");
if (m_deviceShared.m_dev->getDevice() != 0)
{
if (xtrx_val_set(m_deviceShared.m_dev->getDevice(),
XTRX_TRX,
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
XTRX_LMS7_PWR_MODE,
settings.m_pwrmode) < 0) {
qCritical("XTRXOutput::applySettings: could not set power mode %d", settings.m_pwrmode);
}
}
}
if ((m_settings.m_extClock != settings.m_extClock) || force) {
reverseAPIKeys.append("extClock");
}
if ((m_settings.m_extClockFreq != settings.m_extClockFreq) || force) {
reverseAPIKeys.append("extClockFreq");
}
if ((m_settings.m_extClock != settings.m_extClock)
|| (settings.m_extClock && (m_settings.m_extClockFreq != settings.m_extClockFreq)) || force)
{
if (m_deviceShared.m_dev->getDevice() != 0)
{
xtrx_set_ref_clk(m_deviceShared.m_dev->getDevice(),
(settings.m_extClock) ? settings.m_extClockFreq : 0,
(settings.m_extClock) ? XTRX_CLKSRC_EXT : XTRX_CLKSRC_INT);
{
forwardClockSource = true;
doChangeSampleRate = true;
doChangeFreq = true;
qDebug("XTRXOutput::applySettings: clock set to %s (Ext: %d Hz)",
settings.m_extClock ? "external" : "internal",
settings.m_extClockFreq);
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force) {
reverseAPIKeys.append("devSampleRate");
}
if ((m_settings.m_log2HardInterp != settings.m_log2HardInterp) || force) {
reverseAPIKeys.append("log2HardInterp");
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate)
|| (m_settings.m_log2HardInterp != settings.m_log2HardInterp) || force)
{
forwardChangeAllDSP = true; //m_settings.m_devSampleRate != settings.m_devSampleRate;
if (m_deviceShared.m_dev->getDevice() != 0) {
doChangeSampleRate = true;
}
}
if ((m_settings.m_gain != settings.m_gain) || force)
{
reverseAPIKeys.append("gain");
if (m_deviceShared.m_dev->getDevice() != 0)
{
if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(),
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
XTRX_TX_PAD_GAIN,
settings.m_gain,
0) < 0) {
qDebug("XTRXOutput::applySettings: xtrx_set_gain(PAD) failed");
} else {
qDebug() << "XTRXOutput::applySettings: Gain (PAD) set to " << settings.m_gain;
}
}
}
if ((m_settings.m_lpfBW != settings.m_lpfBW) || force)
{
reverseAPIKeys.append("lpfBW");
if (m_deviceShared.m_dev->getDevice() != 0) {
doLPCalibration = true;
}
}
#if 0
if ((m_settings.m_lpfFIRBW != settings.m_lpfFIRBW) ||
(m_settings.m_lpfFIREnable != settings.m_lpfFIREnable) || force)
{
if (m_deviceShared.m_deviceParams->getDevice() != 0 && m_channelAcquired)
{
if (LMS_SetGFIRLPF(m_deviceShared.m_deviceParams->getDevice(),
LMS_CH_RX,
m_deviceShared.m_channel,
settings.m_lpfFIREnable,
settings.m_lpfFIRBW) < 0)
{
qCritical("XTRXOutput::applySettings: could %s and set LPF FIR to %f Hz",
settings.m_lpfFIREnable ? "enable" : "disable",
settings.m_lpfFIRBW);
}
else
{
//doCalibration = true;
qDebug("XTRXOutput::applySettings: %sd and set LPF FIR to %f Hz",
settings.m_lpfFIREnable ? "enable" : "disable",
settings.m_lpfFIRBW);
}
}
}
#endif
if ((m_settings.m_log2SoftInterp != settings.m_log2SoftInterp) || force)
{
reverseAPIKeys.append("log2SoftInterp");
forwardChangeOwnDSP = true;
if (outputThread != 0)
{
outputThread->setLog2Interpolation(requestedChannel, settings.m_log2SoftInterp);
qDebug() << "XTRXOutput::applySettings: set soft interpolation to " << (1<<settings.m_log2SoftInterp);
}
}
if ((m_settings.m_antennaPath != settings.m_antennaPath) || force)
{
reverseAPIKeys.append("antennaPath");
if (m_deviceShared.m_dev->getDevice() != 0)
{
if (xtrx_set_antenna(m_deviceShared.m_dev->getDevice(), settings.m_antennaPath) < 0) {
qCritical("XTRXOutput::applySettings: could not set antenna path to %d", (int) settings.m_antennaPath);
} else {
qDebug("XTRXOutput::applySettings: set antenna path to %d", (int) settings.m_antennaPath);
}
}
}
if ((m_settings.m_centerFrequency != settings.m_centerFrequency) || force)
{
reverseAPIKeys.append("centerFrequency");
doChangeFreq = true;
}
if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency) || force) {
reverseAPIKeys.append("ncoFrequency");
}
if ((m_settings.m_ncoEnable != settings.m_ncoEnable) || force) {
reverseAPIKeys.append("ncoEnable");
}
if ((m_settings.m_ncoFrequency != settings.m_ncoFrequency)
|| (m_settings.m_ncoEnable != settings.m_ncoEnable) || force)
{
forceNCOFrequency = true;
}
if (settings.m_useReverseAPI)
{
bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) ||
(m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) ||
(m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) ||
(m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex);
webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force);
}
m_settings = settings;
if (doChangeSampleRate)
{
XTRXOutputThread *txThread = findThread();
if (txThread && txThread->isRunning())
{
txThread->stopWork();
txThreadWasRunning = true;
}
suspendRxThread();
double master = (settings.m_log2HardInterp == 0) ? 0 : (settings.m_devSampleRate * 4 * (1 << settings.m_log2HardInterp));
if (m_deviceShared.m_dev->set_samplerate(settings.m_devSampleRate,
master, //(settings.m_devSampleRate<<settings.m_log2HardDecim)*4,
true) < 0)
{
qCritical("XTRXOutput::applySettings: could not set sample rate to %f with oversampling of %d",
settings.m_devSampleRate,
1<<settings.m_log2HardInterp);
}
else
{
doChangeFreq = true;
forceNCOFrequency = true;
forwardChangeAllDSP = true;
qDebug("XTRXOutput::applySettings: sample rate set to %f with oversampling of %d",
m_deviceShared.m_dev->getActualOutputRate(),
1 << getLog2HardInterp());
}
resumeRxThread();
if (txThreadWasRunning) {
txThread->startWork();
}
}
if (doLPCalibration)
{
if (xtrx_tune_tx_bandwidth(m_deviceShared.m_dev->getDevice(),
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
m_settings.m_lpfBW,
0) < 0) {
qCritical("XTRXOutput::applySettings: could not set LPF to %f Hz", m_settings.m_lpfBW);
} else {
qDebug("XTRXOutput::applySettings: LPF set to %f Hz", m_settings.m_lpfBW);
}
}
if (doChangeFreq)
{
forwardChangeTxDSP = true;
if (m_deviceShared.m_dev->getDevice() != 0)
{
if (xtrx_tune(m_deviceShared.m_dev->getDevice(),
XTRX_TUNE_TX_FDD,
settings.m_centerFrequency,
0) < 0) {
qCritical("XTRXOutput::applySettings: could not set frequency to %lu", settings.m_centerFrequency);
} else {
//doCalibration = true;
qDebug("XTRXOutput::applySettings: frequency set to %lu", settings.m_centerFrequency);
}
}
}
if (forceNCOFrequency)
{
if (m_deviceShared.m_dev->getDevice() != 0)
{
if (xtrx_tune_ex(m_deviceShared.m_dev->getDevice(),
XTRX_TUNE_BB_TX,
m_deviceShared.m_channel == 0 ? XTRX_CH_A : XTRX_CH_B,
(settings.m_ncoEnable) ? settings.m_ncoFrequency : 0,
NULL) < 0)
{
qCritical("XTRXOutput::applySettings: could not %s and set NCO to %d Hz",
settings.m_ncoEnable ? "enable" : "disable",
settings.m_ncoFrequency);
}
else
{
forwardChangeOwnDSP = true;
qDebug("XTRXOutput::applySettings: %sd and set NCO to %d Hz",
settings.m_ncoEnable ? "enable" : "disable",
settings.m_ncoFrequency);
}
}
}
// forward changes to buddies or oneself
if (forwardChangeAllDSP)
{
qDebug("XTRXOutput::applySettings: forward change to all buddies");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
MsgReportClockGenChange *report = MsgReportClockGenChange::create();
getMessageQueueToGUI()->push(report);
}
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create(
getDevSampleRate(), getLog2HardInterp(), m_settings.m_centerFrequency, true);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create(
getDevSampleRate(), getLog2HardInterp(), m_settings.m_centerFrequency, true);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
else if (forwardChangeTxDSP)
{
qDebug("XTRXOutput::applySettings: forward change to Tx buddies");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
// send to self first
DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
MsgReportClockGenChange *report = MsgReportClockGenChange::create();
getMessageQueueToGUI()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared::MsgReportBuddyChange *report = DeviceXTRXShared::MsgReportBuddyChange::create(
getDevSampleRate(), getLog2HardInterp(), m_settings.m_centerFrequency, true);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
else if (forwardChangeOwnDSP)
{
qDebug("XTRXOutput::applySettings: forward change to self only");
int ncoShift = m_settings.m_ncoEnable ? m_settings.m_ncoFrequency : 0;
DSPSignalNotification *notif = new DSPSignalNotification(getSampleRate(), m_settings.m_centerFrequency + ncoShift);
m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif);
if (getMessageQueueToGUI())
{
MsgReportClockGenChange *report = MsgReportClockGenChange::create();
getMessageQueueToGUI()->push(report);
}
}
if (forwardClockSource)
{
// send to source buddies
const std::vector<DeviceAPI*>& sourceBuddies = m_deviceAPI->getSourceBuddies();
std::vector<DeviceAPI*>::const_iterator itSource = sourceBuddies.begin();
for (; itSource != sourceBuddies.end(); ++itSource)
{
DeviceXTRXShared::MsgReportClockSourceChange *report = DeviceXTRXShared::MsgReportClockSourceChange::create(
m_settings.m_extClock, m_settings.m_extClockFreq);
(*itSource)->getSamplingDeviceInputMessageQueue()->push(report);
}
// send to sink buddies
const std::vector<DeviceAPI*>& sinkBuddies = m_deviceAPI->getSinkBuddies();
std::vector<DeviceAPI*>::const_iterator itSink = sinkBuddies.begin();
for (; itSink != sinkBuddies.end(); ++itSink)
{
DeviceXTRXShared::MsgReportClockSourceChange *report = DeviceXTRXShared::MsgReportClockSourceChange::create(
m_settings.m_extClock, m_settings.m_extClockFreq);
(*itSink)->getSamplingDeviceInputMessageQueue()->push(report);
}
}
qDebug() << "XTRXOutput::applySettings:"
<< " device stream sample rate: " << getDevSampleRate() << "S/s"
<< " sample rate with soft interpolation: " << getSampleRate() << "S/s"
<< " forceNCOFrequency: " << forceNCOFrequency
<< " doLPCalibration: " << doLPCalibration
<< " doChangeFreq: " << doChangeFreq
<< " doChangeSampleRate: " << doChangeSampleRate;
return true;
}
int XTRXOutput::webapiSettingsGet(
SWGSDRangel::SWGDeviceSettings& response,
QString& errorMessage)
{
(void) errorMessage;
response.setXtrxOutputSettings(new SWGSDRangel::SWGXtrxOutputSettings());
response.getXtrxOutputSettings()->init();
webapiFormatDeviceSettings(response, m_settings);
return 200;
}
int XTRXOutput::webapiSettingsPutPatch(
bool force,
const QStringList& deviceSettingsKeys,
SWGSDRangel::SWGDeviceSettings& response, // query + response
QString& errorMessage)
{
(void) errorMessage;
XTRXOutputSettings settings = m_settings;
if (deviceSettingsKeys.contains("centerFrequency")) {
settings.m_centerFrequency = response.getXtrxOutputSettings()->getCenterFrequency();
}
if (deviceSettingsKeys.contains("devSampleRate")) {
settings.m_devSampleRate = response.getXtrxOutputSettings()->getDevSampleRate();
}
if (deviceSettingsKeys.contains("log2HardInterp")) {
settings.m_log2HardInterp = response.getXtrxOutputSettings()->getLog2HardInterp();
}
if (deviceSettingsKeys.contains("log2SoftInterp")) {
settings.m_log2SoftInterp = response.getXtrxOutputSettings()->getLog2SoftInterp();
}
if (deviceSettingsKeys.contains("lpfBW")) {
settings.m_lpfBW = response.getXtrxOutputSettings()->getLpfBw();
}
if (deviceSettingsKeys.contains("gain")) {
settings.m_gain = response.getXtrxOutputSettings()->getGain();
}
if (deviceSettingsKeys.contains("ncoEnable")) {
settings.m_ncoEnable = response.getXtrxOutputSettings()->getNcoEnable() != 0;
}
if (deviceSettingsKeys.contains("ncoFrequency")) {
settings.m_ncoFrequency = response.getXtrxOutputSettings()->getNcoFrequency();
}
if (deviceSettingsKeys.contains("antennaPath")) {
settings.m_antennaPath = (xtrx_antenna_t) response.getXtrxOutputSettings()->getAntennaPath();
}
if (deviceSettingsKeys.contains("extClock")) {
settings.m_extClock = response.getXtrxOutputSettings()->getExtClock() != 0;
}
if (deviceSettingsKeys.contains("extClockFreq")) {
settings.m_extClockFreq = response.getXtrxOutputSettings()->getExtClockFreq();
}
if (deviceSettingsKeys.contains("pwrmode")) {
settings.m_pwrmode = response.getXtrxOutputSettings()->getPwrmode();
}
if (deviceSettingsKeys.contains("useReverseAPI")) {
settings.m_useReverseAPI = response.getXtrxOutputSettings()->getUseReverseApi() != 0;
}
if (deviceSettingsKeys.contains("reverseAPIAddress")) {
settings.m_reverseAPIAddress = *response.getXtrxOutputSettings()->getReverseApiAddress();
}
if (deviceSettingsKeys.contains("reverseAPIPort")) {
settings.m_reverseAPIPort = response.getXtrxOutputSettings()->getReverseApiPort();
}
if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) {
settings.m_reverseAPIDeviceIndex = response.getXtrxOutputSettings()->getReverseApiDeviceIndex();
}
MsgConfigureXTRX *msg = MsgConfigureXTRX::create(settings, force);
m_inputMessageQueue.push(msg);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgConfigureXTRX *msgToGUI = MsgConfigureXTRX::create(settings, force);
m_guiMessageQueue->push(msgToGUI);
}
webapiFormatDeviceSettings(response, settings);
return 200;
}
void XTRXOutput::webapiFormatDeviceSettings(SWGSDRangel::SWGDeviceSettings& response, const XTRXOutputSettings& settings)
{
response.getXtrxOutputSettings()->setCenterFrequency(settings.m_centerFrequency);
response.getXtrxOutputSettings()->setDevSampleRate(settings.m_devSampleRate);
response.getXtrxOutputSettings()->setLog2HardInterp(settings.m_log2HardInterp);
response.getXtrxOutputSettings()->setLog2SoftInterp(settings.m_log2SoftInterp);
response.getXtrxOutputSettings()->setLpfBw(settings.m_lpfBW);
response.getXtrxOutputSettings()->setGain(settings.m_gain);
response.getXtrxOutputSettings()->setNcoEnable(settings.m_ncoEnable ? 1 : 0);
response.getXtrxOutputSettings()->setNcoFrequency(settings.m_ncoFrequency);
response.getXtrxOutputSettings()->setAntennaPath((int) settings.m_antennaPath);
response.getXtrxOutputSettings()->setExtClock(settings.m_extClock ? 1 : 0);
response.getXtrxOutputSettings()->setExtClockFreq(settings.m_extClockFreq);
response.getXtrxOutputSettings()->setPwrmode(settings.m_pwrmode);
response.getXtrxOutputSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0);
if (response.getXtrxOutputSettings()->getReverseApiAddress()) {
*response.getXtrxOutputSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress;
} else {
response.getXtrxOutputSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress));
}
response.getXtrxOutputSettings()->setReverseApiPort(settings.m_reverseAPIPort);
response.getXtrxOutputSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex);
}
int XTRXOutput::webapiReportGet(
SWGSDRangel::SWGDeviceReport& response,
QString& errorMessage)
{
(void) errorMessage;
response.setXtrxOutputReport(new SWGSDRangel::SWGXtrxOutputReport());
response.getXtrxOutputReport()->init();
webapiFormatDeviceReport(response);
return 200;
}
int XTRXOutput::webapiRunGet(
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
return 200;
}
int XTRXOutput::webapiRun(
bool run,
SWGSDRangel::SWGDeviceState& response,
QString& errorMessage)
{
(void) errorMessage;
m_deviceAPI->getDeviceEngineStateStr(*response.getState());
MsgStartStop *message = MsgStartStop::create(run);
m_inputMessageQueue.push(message);
if (m_guiMessageQueue) // forward to GUI if any
{
MsgStartStop *msgToGUI = MsgStartStop::create(run);
m_guiMessageQueue->push(msgToGUI);
}
return 200;
}
void XTRXOutput::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response)
{
int ret;
bool success = false;
double temp = 0.0;
bool gpsStatus = false;
uint64_t fifolevel = 0;
uint32_t fifosize = 1<<16;
if (m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice())
{
ret = xtrx_val_get(m_deviceShared.m_dev->getDevice(),
XTRX_TX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevel);
success = (ret >= 0);
temp = m_deviceShared.get_board_temperature() / 256.0;
gpsStatus = m_deviceShared.get_gps_status();
}
response.getXtrxOutputReport()->setSuccess(success ? 1 : 0);
response.getXtrxOutputReport()->setFifoSize(fifosize);
response.getXtrxOutputReport()->setFifoFill(fifolevel);
response.getXtrxOutputReport()->setTemperature(temp);
response.getXtrxOutputReport()->setGpsLock(gpsStatus ? 1 : 0);
}
void XTRXOutput::webapiReverseSendSettings(QList<QString>& deviceSettingsKeys, const XTRXOutputSettings& settings, bool force)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(1); // Single Tx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("XTRX"));
swgDeviceSettings->setXtrxOutputSettings(new SWGSDRangel::SWGXtrxOutputSettings());
SWGSDRangel::SWGXtrxOutputSettings *swgXtrxOutputSettings = swgDeviceSettings->getXtrxOutputSettings();
// transfer data that has been modified. When force is on transfer all data except reverse API data
if (deviceSettingsKeys.contains("centerFrequency") || force) {
swgXtrxOutputSettings->setCenterFrequency(settings.m_centerFrequency);
}
if (deviceSettingsKeys.contains("devSampleRate") || force) {
swgXtrxOutputSettings->setDevSampleRate(settings.m_devSampleRate);
}
if (deviceSettingsKeys.contains("log2HardInterp") || force) {
swgXtrxOutputSettings->setLog2HardInterp(settings.m_log2HardInterp);
}
if (deviceSettingsKeys.contains("log2SoftInterp") || force) {
swgXtrxOutputSettings->setLog2SoftInterp(settings.m_log2SoftInterp);
}
if (deviceSettingsKeys.contains("ncoEnable") || force) {
swgXtrxOutputSettings->setNcoEnable(settings.m_ncoEnable ? 1 : 0);
}
if (deviceSettingsKeys.contains("ncoFrequency") || force) {
swgXtrxOutputSettings->setNcoFrequency(settings.m_ncoFrequency);
}
if (deviceSettingsKeys.contains("lpfBW") || force) {
swgXtrxOutputSettings->setLpfBw(settings.m_lpfBW);
}
if (deviceSettingsKeys.contains("antennaPath") || force) {
swgXtrxOutputSettings->setAntennaPath((int) settings.m_antennaPath);
}
if (deviceSettingsKeys.contains("gain") || force) {
swgXtrxOutputSettings->setGain(settings.m_gain);
}
if (deviceSettingsKeys.contains("extClock") || force) {
swgXtrxOutputSettings->setExtClock(settings.m_extClock ? 1 : 0);
}
if (deviceSettingsKeys.contains("extClockFreq") || force) {
swgXtrxOutputSettings->setExtClockFreq(settings.m_extClockFreq);
}
if (deviceSettingsKeys.contains("pwrmode") || force) {
swgXtrxOutputSettings->setPwrmode(settings.m_pwrmode);
}
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings")
.arg(settings.m_reverseAPIAddress)
.arg(settings.m_reverseAPIPort)
.arg(settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer=new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
// Always use PATCH to avoid passing reverse API settings
m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer);
delete swgDeviceSettings;
}
void XTRXOutput::webapiReverseSendStartStop(bool start)
{
SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings();
swgDeviceSettings->setDirection(1); // Single Tx
swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex());
swgDeviceSettings->setDeviceHwType(new QString("XTRX"));
QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run")
.arg(m_settings.m_reverseAPIAddress)
.arg(m_settings.m_reverseAPIPort)
.arg(m_settings.m_reverseAPIDeviceIndex);
m_networkRequest.setUrl(QUrl(deviceSettingsURL));
m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json");
QBuffer *buffer=new QBuffer();
buffer->open((QBuffer::ReadWrite));
buffer->write(swgDeviceSettings->asJson().toUtf8());
buffer->seek(0);
if (start) {
m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer);
} else {
m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer);
}
}
void XTRXOutput::networkManagerFinished(QNetworkReply *reply)
{
QNetworkReply::NetworkError replyError = reply->error();
if (replyError)
{
qWarning() << "XTRXOutput::networkManagerFinished:"
<< " error(" << (int) replyError
<< "): " << replyError
<< ": " << reply->errorString();
return;
}
QString answer = reply->readAll();
answer.chop(1); // remove last \n
qDebug("XTRXOutput::networkManagerFinished: reply:\n%s", answer.toStdString().c_str());
}