kopia lustrzana https://github.com/f4exb/sdrangel
647 wiersze
23 KiB
C++
647 wiersze
23 KiB
C++
/*
|
|
* Reed-Solomon -- Reed-Solomon encoder / decoder library
|
|
*
|
|
* Copyright (c) 2014 Hard Consulting Corporation.
|
|
* Copyright (c) 2006 Phil Karn, KA9Q
|
|
*
|
|
* It may be used under the terms of the GNU Lesser General Public License (LGPL).
|
|
*
|
|
* Simplified version of https://github.com/pjkundert/ezpwd-reed-solomon which
|
|
* seems to be the fastest open-source decoder.
|
|
*
|
|
*/
|
|
|
|
#ifndef REEDSOLOMON_H
|
|
#define REEDSOLOMON_H
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
// Preprocessor defines available:
|
|
//
|
|
// EZPWD_NO_MOD_TAB -- define to force no "modnn" Galois modulo table acceleration
|
|
//
|
|
//#define EZPWD_NO_MOD_TAB
|
|
|
|
namespace ReedSolomon {
|
|
|
|
//
|
|
// reed_solomon_base - Reed-Solomon codec generic base class
|
|
//
|
|
class reed_solomon_base {
|
|
public:
|
|
virtual size_t datum() const = 0; // a data element's bits
|
|
virtual size_t symbol() const = 0; // a symbol's bits
|
|
virtual int size() const = 0; // R-S block size (maximum total symbols)
|
|
virtual int nroots() const = 0; // R-S roots (parity symbols)
|
|
virtual int load() const = 0; // R-S net payload (data symbols)
|
|
|
|
virtual ~reed_solomon_base() {}
|
|
|
|
reed_solomon_base() {}
|
|
|
|
//
|
|
// {en,de}code -- Compute/Correct errors/erasures in a Reed-Solomon encoded container
|
|
//
|
|
/// For decode, optionally specify some known erasure positions (up to nroots()). If
|
|
/// non-empty 'erasures' is provided, it contains the positions of each erasure. If a
|
|
/// non-zero pointer to a 'position' vector is provided, its capacity will be increased to
|
|
/// be capable of storing up to 'nroots()' ints; the actual deduced error locations will be
|
|
/// returned.
|
|
///
|
|
/// RETURN VALUE
|
|
///
|
|
/// Return -1 on error. The encode returns the number of parity symbols produced;
|
|
/// decode returns the number of symbols corrected. Both errors and erasures are included,
|
|
/// so long as they are actually different than the deduced value. In other words, if a
|
|
/// symbol is marked as an erasure but it actually turns out to be correct, it's index will
|
|
/// NOT be included in the returned count, nor the modified erasure vector!
|
|
///
|
|
|
|
virtual int encode(const uint8_t *data, int len, uint8_t *parity) const = 0;
|
|
|
|
virtual int decode1(uint8_t *data, int len, uint8_t *parity,
|
|
const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const = 0;
|
|
|
|
int decode(uint8_t *data,
|
|
int len,
|
|
int pad = 0, // ignore 'pad' symbols at start of array
|
|
const std::vector<int> &erasure = std::vector<int>(),
|
|
std::vector<int> *position = 0) const
|
|
{
|
|
return decode1((uint8_t*)(data + pad), len, (uint8_t*)(data + len), erasure, position);
|
|
}
|
|
|
|
};
|
|
|
|
//
|
|
// gfpoly - default field polynomial generator functor.
|
|
//
|
|
template <int PLY>
|
|
struct gfpoly {
|
|
int operator()(int sr) const
|
|
{
|
|
if (sr == 0) {
|
|
sr = 1;
|
|
} else {
|
|
sr <<= 1;
|
|
if (sr & (1 << 8))
|
|
sr ^= PLY;
|
|
sr &= ((1 << 8) - 1);
|
|
}
|
|
return sr;
|
|
}
|
|
};
|
|
|
|
//
|
|
// class reed_solomon_tabs -- R-S tables common to all RS(NN,*) with same SYM, PRM and PLY
|
|
//
|
|
template <int PRM, class PLY>
|
|
class reed_solomon_tabs : public reed_solomon_base {
|
|
public:
|
|
typedef uint8_t symbol_t;
|
|
static const size_t DATUM = 8; // bits
|
|
static const size_t SYMBOL = 8; // bits / symbol
|
|
static const int MM = 8;
|
|
static const int SIZE = (1 << 8) - 1; // maximum symbols in field
|
|
static const int NN = SIZE;
|
|
static const int A0 = SIZE;
|
|
static const int MODS // modulo table: 1/2 the symbol size squared, up to 4k
|
|
#if defined(EZPWD_NO_MOD_TAB)
|
|
= 0;
|
|
#else
|
|
= 8 > 8 ? (1 << 12) : (1 << 8 << 8 / 2);
|
|
#endif
|
|
|
|
static int iprim; // initialized to -1, below
|
|
|
|
protected:
|
|
static std::array<uint8_t, NN + 1> alpha_to;
|
|
static std::array<uint8_t, NN + 1> index_of;
|
|
static std::array<uint8_t, MODS> mod_of;
|
|
virtual ~reed_solomon_tabs() {}
|
|
|
|
reed_solomon_tabs() : reed_solomon_base()
|
|
{
|
|
// Do init if not already done. We check one value which is initialized to -1; this is
|
|
// safe, 'cause the value will not be set 'til the initializing thread has completely
|
|
// initialized the structure. Worst case scenario: multiple threads will initialize
|
|
// identically. No mutex necessary.
|
|
if (iprim >= 0)
|
|
return;
|
|
|
|
// Generate Galois field lookup tables
|
|
index_of[0] = A0; // log(zero) = -inf
|
|
alpha_to[A0] = 0; // alpha**-inf = 0
|
|
PLY poly;
|
|
int sr = poly(0);
|
|
for (int i = 0; i < NN; i++) {
|
|
index_of[sr] = i;
|
|
alpha_to[i] = sr;
|
|
sr = poly(sr);
|
|
}
|
|
// If it's not primitive, raise exception or abort
|
|
if (sr != alpha_to[0]) {
|
|
abort();
|
|
}
|
|
|
|
// Generate modulo table for some commonly used (non-trivial) values
|
|
for (int x = NN; x < NN + MODS; ++x)
|
|
mod_of[x - NN] = _modnn(x);
|
|
// Find prim-th root of 1, index form, used in decoding.
|
|
int iptmp = 1;
|
|
while (iptmp % PRM != 0)
|
|
iptmp += NN;
|
|
iprim = iptmp / PRM;
|
|
}
|
|
|
|
//
|
|
// modnn -- modulo replacement for galois field arithmetics, optionally w/ table acceleration
|
|
//
|
|
// @x: the value to reduce (will never be -'ve)
|
|
//
|
|
// where
|
|
// MM = number of bits per symbol
|
|
// NN = (2^MM) - 1
|
|
//
|
|
// Simple arithmetic modulo would return a wrong result for values >= 3 * NN
|
|
//
|
|
uint8_t _modnn(int x) const
|
|
{
|
|
while (x >= NN) {
|
|
x -= NN;
|
|
x = (x >> MM) + (x & NN);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint8_t modnn(int x) const
|
|
{
|
|
while (x >= NN + MODS) {
|
|
x -= NN;
|
|
x = (x >> MM) + (x & NN);
|
|
}
|
|
if (MODS && x >= NN)
|
|
x = mod_of[x - NN];
|
|
return x;
|
|
}
|
|
};
|
|
|
|
//
|
|
// class reed_solomon - Reed-Solomon codec
|
|
//
|
|
// @TYP: A symbol datum; {en,de}code operates on arrays of these
|
|
// @DATUM: Bits per datum (a TYP())
|
|
// @SYM{BOL}, MM: Bits per symbol
|
|
// @NN: Symbols per block (== (1<<MM)-1)
|
|
// @alpha_to: log lookup table
|
|
// @index_of: Antilog lookup table
|
|
// @genpoly: Generator polynomial
|
|
// @NROOTS: Number of generator roots = number of parity symbols
|
|
// @FCR: First consecutive root, index form
|
|
// @PRM: Primitive element, index form
|
|
// @iprim: prim-th root of 1, index form
|
|
// @PLY: The primitive generator polynominal functor
|
|
//
|
|
// All reed_solomon<T, ...> instances with the same template type parameters share a common
|
|
// (static) set of alpha_to, index_of and genpoly tables. The first instance to be constructed
|
|
// initializes the tables.
|
|
//
|
|
// Each specialized type of reed_solomon implements a specific encode/decode method
|
|
// appropriate to its datum 'TYP'. When accessed via a generic reed_solomon_base pointer, only
|
|
// access via "safe" (size specifying) containers or iterators is available.
|
|
//
|
|
template <int RTS, int FCR, int PRM, class PLY>
|
|
class reed_solomon : public reed_solomon_tabs<PRM, PLY> {
|
|
public:
|
|
typedef reed_solomon_tabs<PRM, PLY> tabs_t;
|
|
using tabs_t::A0;
|
|
using tabs_t::DATUM;
|
|
using tabs_t::MM;
|
|
using tabs_t::NN;
|
|
using tabs_t::SIZE;
|
|
using tabs_t::SYMBOL;
|
|
|
|
using tabs_t::iprim;
|
|
|
|
using tabs_t::alpha_to;
|
|
using tabs_t::index_of;
|
|
|
|
using tabs_t::modnn;
|
|
|
|
static const int NROOTS = RTS;
|
|
static const int LOAD = SIZE - NROOTS; // maximum non-parity symbol payload
|
|
|
|
protected:
|
|
static std::array<uint8_t, NROOTS + 1> genpoly;
|
|
|
|
public:
|
|
virtual size_t datum() const { return DATUM; }
|
|
|
|
virtual size_t symbol() const { return SYMBOL; }
|
|
|
|
virtual int size() const { return SIZE; }
|
|
|
|
virtual int nroots() const { return NROOTS; }
|
|
|
|
virtual int load() const { return LOAD; }
|
|
|
|
using reed_solomon_base::decode;
|
|
virtual int decode1(uint8_t *data, int len, uint8_t *parity,
|
|
const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const
|
|
{
|
|
return decode_mask(data, len, parity, erasure, position);
|
|
}
|
|
|
|
//
|
|
// decode_mask -- mask INP data into valid SYMBOL data
|
|
//
|
|
/// Incoming data may be in a variety of sizes, and may contain information beyond the
|
|
/// R-S symbol capacity. For example, we might use a 6-bit R-S symbol to correct the lower
|
|
/// 6 bits of an 8-bit data character. This would allow us to correct common substitution
|
|
/// errors (such as '2' for '3', 'R' for 'T', 'n' for 'm').
|
|
///
|
|
int decode_mask(uint8_t *data, int len,
|
|
uint8_t *parity = 0, // either 0, or pointer to all parity symbols
|
|
const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const
|
|
{
|
|
if (!parity) {
|
|
len -= NROOTS;
|
|
parity = data + len;
|
|
}
|
|
|
|
int corrects;
|
|
if (!erasure.size() && !position) {
|
|
// No erasures, and error position info not wanted.
|
|
corrects = decode(data, len, parity);
|
|
} else {
|
|
// Either erasure location info specified, or resultant error position info wanted;
|
|
// Prepare pos (a temporary, if no position vector provided), and copy any provided
|
|
// erasure positions. After number of corrections is known, resize the position
|
|
// vector. Thus, we use any supplied erasure info, and optionally return any
|
|
// correction position info separately.
|
|
std::vector<int> _pos;
|
|
std::vector<int> &pos = position ? *position : _pos;
|
|
pos.resize(std::max(size_t(NROOTS), erasure.size()));
|
|
std::copy(erasure.begin(), erasure.end(), pos.begin());
|
|
corrects = decode(data, len, parity, &pos.front(), erasure.size());
|
|
if (corrects > int(pos.size())) {
|
|
return -1;
|
|
}
|
|
pos.resize(std::max(0, corrects));
|
|
}
|
|
|
|
return corrects;
|
|
}
|
|
|
|
virtual ~reed_solomon()
|
|
{
|
|
}
|
|
|
|
reed_solomon() : reed_solomon_tabs<PRM, PLY>()
|
|
{
|
|
// We check one element of the array; this is safe, 'cause the value will not be
|
|
// initialized 'til the initializing thread has completely initialized the array. Worst
|
|
// case scenario: multiple threads will initialize identically. No mutex necessary.
|
|
if (genpoly[0])
|
|
return;
|
|
|
|
std::array<uint8_t, NROOTS + 1> tmppoly; // uninitialized
|
|
// Form RS code generator polynomial from its roots. Only lower-index entries are
|
|
// consulted, when computing subsequent entries; only index 0 needs initialization.
|
|
tmppoly[0] = 1;
|
|
for (int i = 0, root = FCR * PRM; i < NROOTS; i++, root += PRM) {
|
|
tmppoly[i + 1] = 1;
|
|
// Multiply tmppoly[] by @**(root + x)
|
|
for (int j = i; j > 0; j--) {
|
|
if (tmppoly[j] != 0)
|
|
tmppoly[j] = tmppoly[j - 1] ^ alpha_to[modnn(index_of[tmppoly[j]] + root)];
|
|
else
|
|
tmppoly[j] = tmppoly[j - 1];
|
|
}
|
|
// tmppoly[0] can never be zero
|
|
tmppoly[0] = alpha_to[modnn(index_of[tmppoly[0]] + root)];
|
|
}
|
|
// convert NROOTS entries of tmppoly[] to genpoly[] in index form for quicker encoding,
|
|
// in reverse order so genpoly[0] is last element initialized.
|
|
for (int i = NROOTS; i >= 0; --i)
|
|
genpoly[i] = index_of[tmppoly[i]];
|
|
}
|
|
|
|
virtual int encode(const uint8_t *data, int len, uint8_t *parity) // at least nroots
|
|
const
|
|
{
|
|
// Check length parameter for validity
|
|
for (int i = 0; i < NROOTS; i++)
|
|
parity[i] = 0;
|
|
for (int i = 0; i < len; i++) {
|
|
uint8_t feedback = index_of[data[i] ^ parity[0]];
|
|
if (feedback != A0) {
|
|
for (int j = 1; j < NROOTS; j++)
|
|
parity[j] ^= alpha_to[modnn(feedback + genpoly[NROOTS - j])];
|
|
}
|
|
|
|
std::rotate(parity, parity + 1, parity + NROOTS);
|
|
if (feedback != A0)
|
|
parity[NROOTS - 1] = alpha_to[modnn(feedback + genpoly[0])];
|
|
else
|
|
parity[NROOTS - 1] = 0;
|
|
}
|
|
return NROOTS;
|
|
}
|
|
|
|
int decode(uint8_t *data, int len,
|
|
uint8_t *parity, // Requires: at least NROOTS
|
|
int *eras_pos = 0, // Capacity: at least NROOTS
|
|
int no_eras = 0, // Maximum: at most NROOTS
|
|
uint8_t *corr = 0) // Capacity: at least NROOTS
|
|
const
|
|
{
|
|
typedef std::array<uint8_t, NROOTS> typ_nroots;
|
|
typedef std::array<uint8_t, NROOTS + 1> typ_nroots_1;
|
|
typedef std::array<int, NROOTS> int_nroots;
|
|
|
|
typ_nroots_1 lambda{{0}};
|
|
typ_nroots syn;
|
|
typ_nroots_1 b;
|
|
typ_nroots_1 t;
|
|
typ_nroots_1 omega;
|
|
int_nroots root;
|
|
typ_nroots_1 reg;
|
|
int_nroots loc;
|
|
int count = 0;
|
|
|
|
// Check length parameter and erasures for validity
|
|
int pad = NN - NROOTS - len;
|
|
if (no_eras) {
|
|
if (no_eras > NROOTS) {
|
|
return -1;
|
|
}
|
|
for (int i = 0; i < no_eras; ++i) {
|
|
if (eras_pos[i] < 0 || eras_pos[i] >= len + NROOTS) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// form the syndromes; i.e., evaluate data(x) at roots of g(x)
|
|
for (int i = 0; i < NROOTS; i++)
|
|
syn[i] = data[0];
|
|
|
|
for (int j = 1; j < len; j++) {
|
|
for (int i = 0; i < NROOTS; i++) {
|
|
if (syn[i] == 0) {
|
|
syn[i] = data[j];
|
|
} else {
|
|
syn[i] = data[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < NROOTS; j++) {
|
|
for (int i = 0; i < NROOTS; i++) {
|
|
if (syn[i] == 0) {
|
|
syn[i] = parity[j];
|
|
} else {
|
|
syn[i] = parity[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert syndromes to index form, checking for nonzero condition
|
|
uint8_t syn_error = 0;
|
|
for (int i = 0; i < NROOTS; i++) {
|
|
syn_error |= syn[i];
|
|
syn[i] = index_of[syn[i]];
|
|
}
|
|
|
|
int deg_lambda = 0;
|
|
int deg_omega = 0;
|
|
int r = no_eras;
|
|
int el = no_eras;
|
|
if (!syn_error) {
|
|
// if syndrome is zero, data[] is a codeword and there are no errors to correct.
|
|
count = 0;
|
|
goto finish;
|
|
}
|
|
|
|
lambda[0] = 1;
|
|
if (no_eras > 0) {
|
|
// Init lambda to be the erasure locator polynomial. Convert erasure positions
|
|
// from index into data, to index into Reed-Solomon block.
|
|
lambda[1] = alpha_to[modnn(PRM * (NN - 1 - (eras_pos[0] + pad)))];
|
|
for (int i = 1; i < no_eras; i++) {
|
|
uint8_t u = modnn(PRM * (NN - 1 - (eras_pos[i] + pad)));
|
|
for (int j = i + 1; j > 0; j--) {
|
|
uint8_t tmp = index_of[lambda[j - 1]];
|
|
if (tmp != A0) {
|
|
lambda[j] ^= alpha_to[modnn(u + tmp)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < NROOTS + 1; i++)
|
|
b[i] = index_of[lambda[i]];
|
|
|
|
//
|
|
// Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial
|
|
//
|
|
while (++r <= NROOTS) { // r is the step number
|
|
// Compute discrepancy at the r-th step in poly-form
|
|
uint8_t discr_r = 0;
|
|
for (int i = 0; i < r; i++) {
|
|
if ((lambda[i] != 0) && (syn[r - i - 1] != A0)) {
|
|
discr_r ^= alpha_to[modnn(index_of[lambda[i]] + syn[r - i - 1])];
|
|
}
|
|
}
|
|
discr_r = index_of[discr_r]; // Index form
|
|
if (discr_r == A0) {
|
|
// 2 lines below: B(x) <-- x*B(x)
|
|
// Rotate the last element of b[NROOTS+1] to b[0]
|
|
std::rotate(b.begin(), b.begin() + NROOTS, b.end());
|
|
b[0] = A0;
|
|
} else {
|
|
// 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x)
|
|
t[0] = lambda[0];
|
|
for (int i = 0; i < NROOTS; i++) {
|
|
if (b[i] != A0) {
|
|
t[i + 1] = lambda[i + 1] ^ alpha_to[modnn(discr_r + b[i])];
|
|
} else
|
|
t[i + 1] = lambda[i + 1];
|
|
}
|
|
if (2 * el <= r + no_eras - 1) {
|
|
el = r + no_eras - el;
|
|
// 2 lines below: B(x) <-- inv(discr_r) * lambda(x)
|
|
for (int i = 0; i <= NROOTS; i++) {
|
|
b[i] = ((lambda[i] == 0) ? A0 : modnn(index_of[lambda[i]] - discr_r + NN));
|
|
}
|
|
} else {
|
|
// 2 lines below: B(x) <-- x*B(x)
|
|
std::rotate(b.begin(), b.begin() + NROOTS, b.end());
|
|
b[0] = A0;
|
|
}
|
|
lambda = t;
|
|
}
|
|
}
|
|
|
|
// Convert lambda to index form and compute deg(lambda(x))
|
|
for (int i = 0; i < NROOTS + 1; i++) {
|
|
lambda[i] = index_of[lambda[i]];
|
|
if (lambda[i] != NN)
|
|
deg_lambda = i;
|
|
}
|
|
// Find roots of error+erasure locator polynomial by Chien search
|
|
reg = lambda;
|
|
count = 0; // Number of roots of lambda(x)
|
|
for (int i = 1, k = iprim - 1; i <= NN; i++, k = modnn(k + iprim)) {
|
|
uint8_t q = 1; // lambda[0] is always 0
|
|
for (int j = deg_lambda; j > 0; j--) {
|
|
if (reg[j] != A0) {
|
|
reg[j] = modnn(reg[j] + j);
|
|
q ^= alpha_to[reg[j]];
|
|
}
|
|
}
|
|
if (q != 0)
|
|
continue; // Not a root
|
|
// store root (index-form) and error location number
|
|
root[count] = i;
|
|
loc[count] = k;
|
|
// If we've already found max possible roots, abort the search to save time
|
|
if (++count == deg_lambda)
|
|
break;
|
|
}
|
|
if (deg_lambda != count) {
|
|
// deg(lambda) unequal to number of roots => uncorrectable error detected
|
|
count = -1;
|
|
goto finish;
|
|
}
|
|
//
|
|
// Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo x**NROOTS). in
|
|
// index form. Also find deg(omega).
|
|
//
|
|
deg_omega = deg_lambda - 1;
|
|
for (int i = 0; i <= deg_omega; i++) {
|
|
uint8_t tmp = 0;
|
|
for (int j = i; j >= 0; j--) {
|
|
if ((syn[i - j] != A0) && (lambda[j] != A0))
|
|
tmp ^= alpha_to[modnn(syn[i - j] + lambda[j])];
|
|
}
|
|
omega[i] = index_of[tmp];
|
|
}
|
|
|
|
//
|
|
// Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(fcr-1)
|
|
// and den = lambda_pr(inv(X(l))) all in poly-form
|
|
//
|
|
for (int j = count - 1; j >= 0; j--) {
|
|
uint8_t num1 = 0;
|
|
for (int i = deg_omega; i >= 0; i--) {
|
|
if (omega[i] != A0)
|
|
num1 ^= alpha_to[modnn(omega[i] + i * root[j])];
|
|
}
|
|
uint8_t num2 = alpha_to[modnn(root[j] * (FCR - 1) + NN)];
|
|
uint8_t den = 0;
|
|
|
|
// lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i]
|
|
for (int i = std::min(deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) {
|
|
if (lambda[i + 1] != A0) {
|
|
den ^= alpha_to[modnn(lambda[i + 1] + i * root[j])];
|
|
}
|
|
}
|
|
// Apply error to data. Padding ('pad' unused symbols) begin at index 0.
|
|
if (num1 != 0) {
|
|
if (loc[j] < pad) {
|
|
// If the computed error position is in the 'pad' (the unused portion of the
|
|
// R-S data capacity), then our solution has failed -- we've computed a
|
|
// correction location outside of the data and parity we've been provided!
|
|
count = -1;
|
|
goto finish;
|
|
}
|
|
|
|
uint8_t cor = alpha_to[modnn(index_of[num1] + index_of[num2] + NN - index_of[den])];
|
|
// Store the error correction pattern, if a correction buffer is available
|
|
if (corr)
|
|
corr[j] = cor;
|
|
// If a data/parity buffer is given and the error is inside the message or
|
|
// parity data, correct it
|
|
if (loc[j] < (NN - NROOTS)) {
|
|
if (data) {
|
|
data[loc[j] - pad] ^= cor;
|
|
}
|
|
} else if (loc[j] < NN) {
|
|
if (parity)
|
|
parity[loc[j] - (NN - NROOTS)] ^= cor;
|
|
}
|
|
}
|
|
}
|
|
|
|
finish:
|
|
if (eras_pos != NULL) {
|
|
for (int i = 0; i < count; i++)
|
|
eras_pos[i] = loc[i] - pad;
|
|
}
|
|
return count;
|
|
}
|
|
};
|
|
|
|
//
|
|
// Define the static reed_solomon...<...> members; allowed in header for template types.
|
|
//
|
|
// The reed_solomon_tags<...>::iprim < 0 is used to indicate to the first instance that the
|
|
// static tables require initialization.
|
|
//
|
|
template <int PRM, class PLY>
|
|
int reed_solomon_tabs<PRM, PLY>::iprim = -1;
|
|
|
|
template <int PRM, class PLY>
|
|
std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::NN + 1> reed_solomon_tabs<PRM, PLY>::alpha_to;
|
|
|
|
template <int PRM, class PLY>
|
|
std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::NN + 1> reed_solomon_tabs<PRM, PLY>::index_of;
|
|
template <int PRM, class PLY>
|
|
std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::MODS> reed_solomon_tabs<PRM, PLY>::mod_of;
|
|
|
|
template <int RTS, int FCR, int PRM, class PLY>
|
|
std::array<uint8_t, reed_solomon<RTS, FCR, PRM, PLY>::NROOTS + 1> reed_solomon<RTS, FCR, PRM, PLY>::genpoly;
|
|
|
|
//
|
|
// RS( ... ) -- Define a reed-solomon codec
|
|
//
|
|
// @SYMBOLS: Total number of symbols; must be a power of 2 minus 1, eg 2^8-1 == 255
|
|
// @PAYLOAD: The maximum number of non-parity symbols, eg 253 ==> 2 parity symbols
|
|
// @POLY: A primitive polynomial appropriate to the SYMBOLS size
|
|
// @FCR: The first consecutive root of the Reed-Solomon generator polynomial
|
|
// @PRIM: The primitive root of the generator polynomial
|
|
//
|
|
|
|
//
|
|
// RS<SYMBOLS, PAYLOAD> -- Standard partial specializations for Reed-Solomon codec type access
|
|
//
|
|
// Normally, Reed-Solomon codecs are described with terms like RS(255,252). Obtain various
|
|
// standard Reed-Solomon codecs using macros of a similar form, eg. RS<255, 252>. Standard PLY,
|
|
// FCR and PRM values are provided for various SYMBOL sizes, along with appropriate basic types
|
|
// capable of holding all internal Reed-Solomon tabular data.
|
|
//
|
|
// In order to provide "default initialization" of const RS<...> types, a user-provided
|
|
// default constructor must be provided.
|
|
//
|
|
template <size_t SYMBOLS, size_t PAYLOAD>
|
|
struct RS;
|
|
template <size_t PAYLOAD>
|
|
struct RS<255, PAYLOAD> : public ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>>
|
|
{
|
|
RS()
|
|
: ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>>()
|
|
{
|
|
}
|
|
};
|
|
|
|
} // namespace ReedSolomon
|
|
|
|
#endif // REEDSOLOMON_H
|