kopia lustrzana https://github.com/f4exb/sdrangel
				
				
				
			
		
			
				
	
	
		
			1996 wiersze
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1996 wiersze
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FILE........: fdmdv.c
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: April 14 2012
 | |
| 
 | |
|   Functions that implement the FDMDV modem.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|   Copyright (C) 2012 David Rowe
 | |
| 
 | |
|   All rights reserved.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify
 | |
|   it under the terms of the GNU Lesser General Public License version 2.1, as
 | |
|   published by the Free Software Foundation.  This program is
 | |
|   distributed in the hope that it will be useful, but WITHOUT ANY
 | |
|   WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
 | |
|   License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU Lesser General Public License
 | |
|   along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|                                INCLUDES
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "fdv_arm_math.h"
 | |
| 
 | |
| #include "fdmdv_internal.h"
 | |
| #include "codec2_fdmdv.h"
 | |
| #include "comp_prim.h"
 | |
| #include "rn.h"
 | |
| #include "rxdec_coeff.h"
 | |
| #include "test_bits.h"
 | |
| #include "pilot_coeff.h"
 | |
| #include "codec2_fft.h"
 | |
| #include "hanning.h"
 | |
| #include "os.h"
 | |
| #include "machdep.h"
 | |
| 
 | |
| namespace FreeDV
 | |
| {
 | |
| 
 | |
| static int sync_uw[] = {1,-1,1,-1,1,-1};
 | |
| #ifdef __EMBEDDED__
 | |
| #define printf gdb_stdio_printf
 | |
| #endif
 | |
| 
 | |
| static const COMP  pi_on_4 = { .70710678118654752439, .70710678118654752439 }; // COSF(PI/4) , SINF(PI/4)
 | |
| 
 | |
| 
 | |
| /*--------------------------------------------------------------------------* \
 | |
| 
 | |
|   FUNCTION....: fdmdv_create
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 16/4/2012
 | |
| 
 | |
|   Create and initialise an instance of the modem.  Returns a pointer
 | |
|   to the modem states or NULL on failure.  One set of states is
 | |
|   sufficient for a full duplex modem.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| struct FDMDV * fdmdv_create(int Nc)
 | |
| {
 | |
|     struct FDMDV *f;
 | |
|     int           c, i, k;
 | |
| 
 | |
|     assert(NC == FDMDV_NC_MAX);  /* check public and private #defines match */
 | |
|     assert(Nc <= NC);
 | |
|     assert(FDMDV_NOM_SAMPLES_PER_FRAME == M_FAC);
 | |
|     assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M_FAC+M_FAC/P));
 | |
| 
 | |
|     f = (struct FDMDV*) malloc(sizeof(struct FDMDV));
 | |
|     if (f == NULL)
 | |
| 	return NULL;
 | |
| 
 | |
|     f->Nc = Nc;
 | |
| 
 | |
|     f->ntest_bits = Nc*NB*4;
 | |
|     f->current_test_bit = 0;
 | |
|     f->rx_test_bits_mem = (int*) malloc(sizeof(int)*f->ntest_bits);
 | |
|     assert(f->rx_test_bits_mem != NULL);
 | |
|     for(i=0; i<f->ntest_bits; i++)
 | |
| 	f->rx_test_bits_mem[i] = 0;
 | |
|     assert((sizeof(test_bits)/sizeof(int)) >= (std::size_t) f->ntest_bits);
 | |
| 
 | |
|     f->old_qpsk_mapping = 0;
 | |
| 
 | |
|     f->tx_pilot_bit = 0;
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
| 	f->prev_tx_symbols[c].real = 1.0;
 | |
| 	f->prev_tx_symbols[c].imag = 0.0;
 | |
| 	f->prev_rx_symbols[c].real = 1.0;
 | |
| 	f->prev_rx_symbols[c].imag = 0.0;
 | |
| 
 | |
| 	for(k=0; k<NSYM; k++) {
 | |
| 	    f->tx_filter_memory[c][k].real = 0.0;
 | |
| 	    f->tx_filter_memory[c][k].imag = 0.0;
 | |
| 	}
 | |
| 
 | |
| 	/* Spread initial FDM carrier phase out as far as possible.
 | |
|            This helped PAPR for a few dB.  We don't need to adjust rx
 | |
|            phase as DQPSK takes care of that. */
 | |
| 
 | |
| 	f->phase_tx[c].real = COSF(2.0*PI*c/(Nc+1));
 | |
|  	f->phase_tx[c].imag = SINF(2.0*PI*c/(Nc+1));
 | |
| 
 | |
| 	f->phase_rx[c].real = 1.0;
 | |
|  	f->phase_rx[c].imag = 0.0;
 | |
| 
 | |
| 	for(k=0; k<NT*P; k++) {
 | |
| 	    f->rx_filter_mem_timing[c][k].real = 0.0;
 | |
| 	    f->rx_filter_mem_timing[c][k].imag = 0.0;
 | |
| 	}
 | |
|     }
 | |
|     f->prev_tx_symbols[Nc].real = 2.0;
 | |
| 
 | |
|     fdmdv_set_fsep(f, FSEP);
 | |
|     f->freq[Nc].real = COSF(2.0*PI*0.0/FS);
 | |
|     f->freq[Nc].imag = SINF(2.0*PI*0.0/FS);
 | |
|     f->freq_pol[Nc]  = 2.0*PI*0.0/FS;
 | |
| 
 | |
|     f->fbb_rect.real     = COSF(2.0*PI*FDMDV_FCENTRE/FS);
 | |
|     f->fbb_rect.imag     = SINF(2.0*PI*FDMDV_FCENTRE/FS);
 | |
|     f->fbb_pol           = 2.0*PI*FDMDV_FCENTRE/FS;
 | |
|     f->fbb_phase_tx.real = 1.0;
 | |
|     f->fbb_phase_tx.imag = 0.0;
 | |
|     f->fbb_phase_rx.real = 1.0;
 | |
|     f->fbb_phase_rx.imag = 0.0;
 | |
| 
 | |
|     /* Generate DBPSK pilot Look Up Table (LUT) */
 | |
| 
 | |
|     generate_pilot_lut(f->pilot_lut, &f->freq[Nc]);
 | |
| 
 | |
|     /* freq Offset estimation states */
 | |
| 
 | |
|     f->fft_pilot_cfg = codec2_fft_alloc (MPILOTFFT, 0, NULL, NULL);
 | |
|     assert(f->fft_pilot_cfg != NULL);
 | |
| 
 | |
|     for(i=0; i<NPILOTBASEBAND; i++) {
 | |
| 	f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0;
 | |
| 	f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0;
 | |
|     }
 | |
|     f->pilot_lut_index = 0;
 | |
|     f->prev_pilot_lut_index = 3*M_FAC;
 | |
| 
 | |
|     for(i=0; i<NRXDECMEM; i++) {
 | |
|         f->rxdec_lpf_mem[i].real = 0.0;
 | |
|         f->rxdec_lpf_mem[i].imag = 0.0;
 | |
|     }
 | |
| 
 | |
|     for(i=0; i<NPILOTLPF; i++) {
 | |
| 	f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0;
 | |
| 	f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0;
 | |
|     }
 | |
| 
 | |
|     f->foff = 0.0;
 | |
|     f->foff_phase_rect.real = 1.0;
 | |
|     f->foff_phase_rect.imag = 0.0;
 | |
| 
 | |
|     for(i=0; i<NRX_FDM_MEM; i++) {
 | |
|         f->rx_fdm_mem[i].real = 0.0;
 | |
|         f->rx_fdm_mem[i].imag = 0.0;
 | |
|     }
 | |
| 
 | |
|     f->fest_state = 0;
 | |
|     f->sync = 0;
 | |
|     f->timer = 0;
 | |
|     for(i=0; i<NSYNC_MEM; i++)
 | |
|         f->sync_mem[i] = 0;
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
| 	f->sig_est[c] = 0.0;
 | |
| 	f->noise_est[c] = 0.0;
 | |
|     }
 | |
| 
 | |
|     f->sig_pwr_av = 0.0;
 | |
|     f->foff_filt = 0.0;
 | |
| 
 | |
|     return f;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_destroy
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 16/4/2012
 | |
| 
 | |
|   Destroy an instance of the modem.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_destroy(struct FDMDV *fdmdv)
 | |
| {
 | |
|     assert(fdmdv != NULL);
 | |
|     codec2_fft_free(fdmdv->fft_pilot_cfg);
 | |
|     free(fdmdv->rx_test_bits_mem);
 | |
|     free(fdmdv);
 | |
| }
 | |
| 
 | |
| 
 | |
| void fdmdv_use_old_qpsk_mapping(struct FDMDV *fdmdv) {
 | |
|     fdmdv->old_qpsk_mapping = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| int fdmdv_bits_per_frame(struct FDMDV *fdmdv)
 | |
| {
 | |
|     return (fdmdv->Nc * NB);
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_get_test_bits()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 16/4/2012
 | |
| 
 | |
|   Generate a frame of bits from a repeating sequence of random data.  OK so
 | |
|   it's not very random if it repeats but it makes syncing at the demod easier
 | |
|   for test purposes.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[])
 | |
| {
 | |
|     int i;
 | |
|     int bits_per_frame = fdmdv_bits_per_frame(f);
 | |
| 
 | |
|     for(i=0; i<bits_per_frame; i++) {
 | |
| 	tx_bits[i] = test_bits[f->current_test_bit];
 | |
| 	f->current_test_bit++;
 | |
| 	if (f->current_test_bit > (f->ntest_bits-1))
 | |
| 	    f->current_test_bit = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float fdmdv_get_fsep(struct FDMDV *f)
 | |
| {
 | |
|     return f->fsep;
 | |
| }
 | |
| 
 | |
| void fdmdv_set_fsep(struct FDMDV *f, float fsep) {
 | |
|     int   c;
 | |
|     float carrier_freq;
 | |
| 
 | |
|     f->fsep = fsep;
 | |
| 
 | |
|     /* Set up frequency of each carrier */
 | |
| 
 | |
|     for(c=0; c<f->Nc/2; c++) {
 | |
| 	carrier_freq = (-f->Nc/2 + c)*f->fsep;
 | |
| 	f->freq[c].real = COSF(2.0*PI*carrier_freq/FS);
 | |
|  	f->freq[c].imag = SINF(2.0*PI*carrier_freq/FS);
 | |
|  	f->freq_pol[c]  = 2.0*PI*carrier_freq/FS;
 | |
|     }
 | |
| 
 | |
|     for(c=f->Nc/2; c<f->Nc; c++) {
 | |
| 	carrier_freq = (-f->Nc/2 + c + 1)*f->fsep;
 | |
| 	f->freq[c].real = COSF(2.0*PI*carrier_freq/FS);
 | |
|  	f->freq[c].imag = SINF(2.0*PI*carrier_freq/FS);
 | |
|  	f->freq_pol[c]  = 2.0*PI*carrier_freq/FS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: bits_to_dqpsk_symbols()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 16/4/2012
 | |
| 
 | |
|   Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from
 | |
|   vector of (1,Nc*Nb) input tx_bits.  The Nc+1 symbol is the +1 -1 +1
 | |
|   .... BPSK sync carrier.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void bits_to_dqpsk_symbols(COMP tx_symbols[], int Nc, COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit, int old_qpsk_mapping)
 | |
| {
 | |
|     int c, msb, lsb;
 | |
|     COMP j = {0.0,1.0};
 | |
| 
 | |
|     /* Map tx_bits to to Nc DQPSK symbols.  Note legacy support for
 | |
|        old (suboptimal) V0.91 FreeDV mapping */
 | |
| 
 | |
|     for(c=0; c<Nc; c++) {
 | |
| 	msb = tx_bits[2*c];
 | |
| 	lsb = tx_bits[2*c+1];
 | |
| 	if ((msb == 0) && (lsb == 0))
 | |
| 	    tx_symbols[c] = prev_tx_symbols[c];
 | |
| 	if ((msb == 0) && (lsb == 1))
 | |
|             tx_symbols[c] = cmult(j, prev_tx_symbols[c]);
 | |
| 	if ((msb == 1) && (lsb == 0)) {
 | |
| 	    if (old_qpsk_mapping)
 | |
|                 tx_symbols[c] = cneg(prev_tx_symbols[c]);
 | |
|             else
 | |
|                 tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
 | |
|         }
 | |
| 	if ((msb == 1) && (lsb == 1)) {
 | |
| 	    if (old_qpsk_mapping)
 | |
|                 tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
 | |
|             else
 | |
|                 tx_symbols[c] = cneg(prev_tx_symbols[c]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly)
 | |
|        two spectral lines at +/- Rs/2 */
 | |
| 
 | |
|     if (*pilot_bit)
 | |
| 	tx_symbols[Nc] = cneg(prev_tx_symbols[Nc]);
 | |
|     else
 | |
| 	tx_symbols[Nc] = prev_tx_symbols[Nc];
 | |
| 
 | |
|     if (*pilot_bit)
 | |
| 	*pilot_bit = 0;
 | |
|     else
 | |
| 	*pilot_bit = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: tx_filter()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 17/4/2012
 | |
| 
 | |
|   Given Nc*NB bits construct M_FAC samples (1 symbol) of Nc+1 filtered
 | |
|   symbols streams.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void tx_filter(COMP tx_baseband[NC+1][M_FAC], int Nc, COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM])
 | |
| {
 | |
|     int     c;
 | |
|     int     i,j,k;
 | |
|     float   acc;
 | |
|     COMP    gain;
 | |
| 
 | |
|     gain.real = sqrtf(2.0)/2.0;
 | |
|     gain.imag = 0.0;
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
 | |
| 
 | |
|     /*
 | |
|        tx filter each symbol, generate M_FAC filtered output samples for each symbol.
 | |
|        Efficient polyphase filter techniques used as tx_filter_memory is sparse
 | |
|     */
 | |
| 
 | |
|     for(i=0; i<M_FAC; i++) {
 | |
| 	for(c=0; c<Nc+1; c++) {
 | |
| 
 | |
| 	    /* filter real sample of symbol for carrier c */
 | |
| 
 | |
| 	    acc = 0.0;
 | |
| 	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
 | |
| 		acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
 | |
| 	    tx_baseband[c][i].real = acc;
 | |
| 
 | |
| 	    /* filter imag sample of symbol for carrier c */
 | |
| 
 | |
| 	    acc = 0.0;
 | |
| 	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
 | |
| 		acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
 | |
| 	    tx_baseband[c][i].imag = acc;
 | |
| 
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* shift memory, inserting zeros at end */
 | |
| 
 | |
|     for(i=0; i<NSYM-1; i++)
 | |
| 	for(c=0; c<Nc+1; c++)
 | |
| 	    tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
| 	tx_filter_memory[c][NSYM-1].real = 0.0;
 | |
| 	tx_filter_memory[c][NSYM-1].imag = 0.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: tx_filter_and_upconvert()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 13 August 2014
 | |
| 
 | |
|   Given Nc symbols construct M_FAC samples (1 symbol) of Nc+1 filtered
 | |
|   and upconverted symbols.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void tx_filter_and_upconvert(COMP tx_fdm[], int Nc, COMP tx_symbols[],
 | |
|                              COMP tx_filter_memory[NC+1][NSYM],
 | |
|                              COMP phase_tx[], COMP freq[],
 | |
|                              COMP *fbb_phase, COMP fbb_rect)
 | |
| {
 | |
|     int     c;
 | |
|     int     i,j,k;
 | |
|     float   acc;
 | |
|     COMP    gain;
 | |
|     COMP    tx_baseband;
 | |
|     COMP  two = {2.0, 0.0};
 | |
|     float mag;
 | |
| 
 | |
|     gain.real = sqrtf(2.0)/2.0;
 | |
|     gain.imag = 0.0;
 | |
| 
 | |
|     for(i=0; i<M_FAC; i++) {
 | |
| 	tx_fdm[i].real = 0.0;
 | |
| 	tx_fdm[i].imag = 0.0;
 | |
|     }
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
 | |
| 
 | |
|     /*
 | |
|        tx filter each symbol, generate M_FAC filtered output samples for
 | |
|        each symbol, which we then freq shift and sum with other
 | |
|        carriers.  Efficient polyphase filter techniques used as
 | |
|        tx_filter_memory is sparse
 | |
|     */
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
|         for(i=0; i<M_FAC; i++) {
 | |
| 
 | |
| 	    /* filter real sample of symbol for carrier c */
 | |
| 
 | |
| 	    acc = 0.0;
 | |
| 	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
 | |
| 		acc += M_FAC * tx_filter_memory[c][j].real * gt_alpha5_root[k];
 | |
| 	    tx_baseband.real = acc;
 | |
| 
 | |
| 	    /* filter imag sample of symbol for carrier c */
 | |
| 
 | |
| 	    acc = 0.0;
 | |
| 	    for(j=0,k=M_FAC-i-1; j<NSYM; j++,k+=M_FAC)
 | |
| 		acc += M_FAC * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
 | |
| 	    tx_baseband.imag = acc;
 | |
| 
 | |
|             /* freq shift and sum */
 | |
| 
 | |
| 	    phase_tx[c] = cmult(phase_tx[c], freq[c]);
 | |
| 	    tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband, phase_tx[c]));
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* shift whole thing up to carrier freq */
 | |
| 
 | |
|     for (i=0; i<M_FAC; i++) {
 | |
| 	*fbb_phase = cmult(*fbb_phase, fbb_rect);
 | |
| 	tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|       Scale such that total Carrier power C of real(tx_fdm) = Nc.  This
 | |
|       excludes the power of the pilot tone.
 | |
|       We return the complex (single sided) signal to make frequency
 | |
|       shifting for the purpose of testing easier
 | |
|     */
 | |
| 
 | |
|     for (i=0; i<M_FAC; i++)
 | |
| 	tx_fdm[i] = cmult(two, tx_fdm[i]);
 | |
| 
 | |
|     /* normalise digital oscillators as the magnitude can drift over time */
 | |
| 
 | |
|     for (c=0; c<Nc+1; c++) {
 | |
|         mag = cabsolute(phase_tx[c]);
 | |
| 	phase_tx[c].real /= mag;
 | |
| 	phase_tx[c].imag /= mag;
 | |
|     }
 | |
| 
 | |
|     mag = cabsolute(*fbb_phase);
 | |
|     fbb_phase->real /= mag;
 | |
|     fbb_phase->imag /= mag;
 | |
| 
 | |
|     /* shift memory, inserting zeros at end */
 | |
| 
 | |
|     for(i=0; i<NSYM-1; i++)
 | |
| 	for(c=0; c<Nc+1; c++)
 | |
| 	    tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
| 	tx_filter_memory[c][NSYM-1].real = 0.0;
 | |
| 	tx_filter_memory[c][NSYM-1].imag = 0.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdm_upconvert()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 17/4/2012
 | |
| 
 | |
|   Construct FDM signal by frequency shifting each filtered symbol
 | |
|   stream.  Returns complex signal so we can apply frequency offsets
 | |
|   easily.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdm_upconvert(COMP tx_fdm[], int Nc, COMP tx_baseband[NC+1][M_FAC], COMP phase_tx[], COMP freq[],
 | |
|                    COMP *fbb_phase, COMP fbb_rect)
 | |
| {
 | |
|     int   i,c;
 | |
|     COMP  two = {2.0, 0.0};
 | |
|     float mag;
 | |
| 
 | |
|     for(i=0; i<M_FAC; i++) {
 | |
| 	tx_fdm[i].real = 0.0;
 | |
| 	tx_fdm[i].imag = 0.0;
 | |
|     }
 | |
| 
 | |
|     for (c=0; c<=Nc; c++)
 | |
| 	for (i=0; i<M_FAC; i++) {
 | |
| 	    phase_tx[c] = cmult(phase_tx[c], freq[c]);
 | |
| 	    tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
 | |
| 	}
 | |
| 
 | |
|     /* shift whole thing up to carrier freq */
 | |
| 
 | |
|     for (i=0; i<M_FAC; i++) {
 | |
| 	*fbb_phase = cmult(*fbb_phase, fbb_rect);
 | |
| 	tx_fdm[i] = cmult(tx_fdm[i], *fbb_phase);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|       Scale such that total Carrier power C of real(tx_fdm) = Nc.  This
 | |
|       excludes the power of the pilot tone.
 | |
|       We return the complex (single sided) signal to make frequency
 | |
|       shifting for the purpose of testing easier
 | |
|     */
 | |
| 
 | |
|     for (i=0; i<M_FAC; i++)
 | |
| 	tx_fdm[i] = cmult(two, tx_fdm[i]);
 | |
| 
 | |
|     /* normalise digital oscilators as the magnitude can drift over time */
 | |
| 
 | |
|     for (c=0; c<Nc+1; c++) {
 | |
|         mag = cabsolute(phase_tx[c]);
 | |
| 	phase_tx[c].real /= mag;
 | |
| 	phase_tx[c].imag /= mag;
 | |
|     }
 | |
| 
 | |
|     mag = cabsolute(*fbb_phase);
 | |
|     fbb_phase->real /= mag;
 | |
|     fbb_phase->imag /= mag;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_mod()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 26/4/2012
 | |
| 
 | |
|   FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and
 | |
|   generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols.
 | |
|   Sync bit is returned to aid alignment of your next frame.
 | |
| 
 | |
|   The sync_bit value returned will be used for the _next_ frame.
 | |
| 
 | |
|   The output signal is complex to support single sided frequency
 | |
|   shifting, for example when testing frequency offsets in channel
 | |
|   simulation.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[], int tx_bits[], int *sync_bit)
 | |
| {
 | |
|     COMP          tx_symbols[NC+1];
 | |
|     PROFILE_VAR(mod_start, tx_filter_and_upconvert_start);
 | |
| 
 | |
|     PROFILE_SAMPLE(mod_start);
 | |
|     bits_to_dqpsk_symbols(tx_symbols, fdmdv->Nc, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit, fdmdv->old_qpsk_mapping);
 | |
|     memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
 | |
|     PROFILE_SAMPLE_AND_LOG(tx_filter_and_upconvert_start, mod_start, "    bits_to_dqpsk_symbols");
 | |
|     tx_filter_and_upconvert(tx_fdm, fdmdv->Nc, tx_symbols, fdmdv->tx_filter_memory,
 | |
|                             fdmdv->phase_tx, fdmdv->freq, &fdmdv->fbb_phase_tx, fdmdv->fbb_rect);
 | |
|     PROFILE_SAMPLE_AND_LOG2(tx_filter_and_upconvert_start, "    tx_filter_and_upconvert");
 | |
| 
 | |
|     *sync_bit = fdmdv->tx_pilot_bit;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: generate_pilot_fdm()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 19/4/2012
 | |
| 
 | |
|   Generate M_FAC samples of DBPSK pilot signal for Freq offset estimation.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol,
 | |
| 			float *filter_mem, COMP *phase, COMP *freq)
 | |
| {
 | |
|     int   i,j,k;
 | |
|     float tx_baseband[M_FAC];
 | |
| 
 | |
|     /* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly)
 | |
|        two spectral lines at +/- RS/2 */
 | |
| 
 | |
|     if (*bit)
 | |
| 	*symbol = -*symbol;
 | |
| 
 | |
|     if (*bit)
 | |
| 	*bit = 0;
 | |
|     else
 | |
| 	*bit = 1;
 | |
| 
 | |
|     /* filter DPSK symbol to create M_FAC baseband samples */
 | |
| 
 | |
|     filter_mem[NFILTER-1] = (sqrtf(2)/2) * *symbol;
 | |
|     for(i=0; i<M_FAC; i++) {
 | |
| 	tx_baseband[i] = 0.0;
 | |
| 	for(j=M_FAC-1,k=M_FAC-i-1; j<NFILTER; j+=M_FAC,k+=M_FAC)
 | |
| 	    tx_baseband[i] += M_FAC * filter_mem[j] * gt_alpha5_root[k];
 | |
|     }
 | |
| 
 | |
|     /* shift memory, inserting zeros at end */
 | |
| 
 | |
|     for(i=0; i<NFILTER-M_FAC; i++)
 | |
| 	filter_mem[i] = filter_mem[i+M_FAC];
 | |
| 
 | |
|     for(i=NFILTER-M_FAC; i<NFILTER; i++)
 | |
| 	filter_mem[i] = 0.0;
 | |
| 
 | |
|     /* upconvert */
 | |
| 
 | |
|     for(i=0; i<M_FAC; i++) {
 | |
| 	*phase = cmult(*phase, *freq);
 | |
| 	pilot_fdm[i].real = sqrtf(2)*2*tx_baseband[i] * phase->real;
 | |
| 	pilot_fdm[i].imag = sqrtf(2)*2*tx_baseband[i] * phase->imag;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: generate_pilot_lut()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 19/4/2012
 | |
| 
 | |
|   Generate a 4M sample vector of DBPSK pilot signal.  As the pilot signal
 | |
|   is periodic in 4M samples we can then use this vector as a look up table
 | |
|   for pilot signal generation in the demod.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq)
 | |
| {
 | |
|     int   pilot_rx_bit = 0;
 | |
|     float pilot_symbol = sqrtf(2.0);
 | |
|     COMP  pilot_phase  = {1.0, 0.0};
 | |
|     float pilot_filter_mem[NFILTER];
 | |
|     COMP  pilot[M_FAC];
 | |
|     int   i,f;
 | |
| 
 | |
|     for(i=0; i<NFILTER; i++)
 | |
| 	pilot_filter_mem[i] = 0.0;
 | |
| 
 | |
|     /* discard first 4 symbols as filter memory is filling, just keep
 | |
|        last four symbols */
 | |
| 
 | |
|     for(f=0; f<8; f++) {
 | |
| 	generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq);
 | |
| 	if (f >= 4)
 | |
| 	    memcpy(&pilot_lut[M_FAC*(f-4)], pilot, M_FAC*sizeof(COMP));
 | |
|     }
 | |
| 
 | |
|     // create complex conjugate since we need this and only this later on
 | |
|     for (f=0;f<4*M_FAC;f++)
 | |
|     {
 | |
|         pilot_lut[f] = cconj(pilot_lut[f]);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: lpf_peak_pick()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 20/4/2012
 | |
| 
 | |
|   LPF and peak pick part of freq est, put in a function as we call it twice.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[],
 | |
| 		   COMP pilot_lpf[], codec2_fft_cfg fft_pilot_cfg, COMP S[], int nin,
 | |
|                    int do_fft)
 | |
| {
 | |
|     int   i,j,k;
 | |
|     int   mpilot;
 | |
|     float mag, imax;
 | |
|     int   ix;
 | |
|     float r;
 | |
| 
 | |
|     /* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */
 | |
| 
 | |
|     for(i=0; i<NPILOTLPF-nin; i++)
 | |
|         pilot_lpf[i] = pilot_lpf[nin+i];
 | |
|     for(i=NPILOTLPF-nin, j=NPILOTBASEBAND-nin; i<NPILOTLPF; i++,j++) {
 | |
|         pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0;
 | |
| 
 | |
|         // STM32F4 hand optimized, this alone makes it go done from 1.6 to 1.17ms
 | |
|         // switching pilot_coeff to RAM (by removing const in pilot_coeff.h) would save
 | |
|         // another 0.11 ms at the expense of NPILOTCOEFF * 4 bytes == 120 bytes RAM
 | |
| 
 | |
|         if (NPILOTCOEFF%5 == 0)
 | |
|         {
 | |
|             for(k=0; k<NPILOTCOEFF; k+=5)
 | |
|             {
 | |
|                 COMP i0 = fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]);
 | |
|                 COMP i1 = fcmult(pilot_coeff[k+1], pilot_baseband[j-NPILOTCOEFF+1+k+1]);
 | |
|                 COMP i2 = fcmult(pilot_coeff[k+2], pilot_baseband[j-NPILOTCOEFF+1+k+2]);
 | |
|                 COMP i3 = fcmult(pilot_coeff[k+3], pilot_baseband[j-NPILOTCOEFF+1+k+3]);
 | |
|                 COMP i4 = fcmult(pilot_coeff[k+4], pilot_baseband[j-NPILOTCOEFF+1+k+4]);
 | |
| 
 | |
|                 pilot_lpf[i] = cadd(cadd(cadd(cadd(cadd(pilot_lpf[i], i0),i1),i2),i3),i4);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             for(k=0; k<NPILOTCOEFF; k++)
 | |
|             {
 | |
|                 pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j-NPILOTCOEFF+1+k]));
 | |
|             }
 | |
| 
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We only need to do FFTs if we are out of sync.  Making them optional saves CPU in sync, which is when
 | |
|        we need to run the codec */
 | |
| 
 | |
|     imax = 0.0;
 | |
|     *foff = 0.0;
 | |
|     for(i=0; i<MPILOTFFT; i++) {
 | |
|         S[i].real = 0.0;
 | |
|         S[i].imag = 0.0;
 | |
|     }
 | |
| 
 | |
|     if (do_fft) {
 | |
| 
 | |
|         /* decimate to improve DFT resolution, window and DFT */
 | |
|         mpilot = FS/(2*200);  /* calc decimation rate given new sample rate is twice LPF freq */
 | |
|         for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) {
 | |
|             S[j] = fcmult(hanning[i], pilot_lpf[i]);
 | |
|         }
 | |
| 
 | |
|         codec2_fft_inplace(fft_pilot_cfg, S);
 | |
| 
 | |
|         /* peak pick and convert to Hz */
 | |
| 
 | |
|         imax = 0.0;
 | |
|         ix = 0;
 | |
|         for(i=0; i<MPILOTFFT; i++) {
 | |
|             mag = S[i].real*S[i].real + S[i].imag*S[i].imag;
 | |
|             if (mag > imax) {
 | |
|                 imax = mag;
 | |
|                 ix = i;
 | |
|             }
 | |
|         }
 | |
|         r = 2.0*200.0/MPILOTFFT;     /* maps FFT bin to frequency in Hz */
 | |
| 
 | |
|         if (ix >= MPILOTFFT/2)
 | |
|             *foff = (ix - MPILOTFFT)*r;
 | |
|         else
 | |
|             *foff = (ix)*r;
 | |
|     }
 | |
| 
 | |
|     *max = imax;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: rx_est_freq_offset()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 19/4/2012
 | |
| 
 | |
|   Estimate frequency offset of FDM signal using BPSK pilot.  Note that
 | |
|   this algorithm is quite sensitive to pilot tone level wrt other
 | |
|   carriers, so test variations to the pilot amplitude carefully.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin, int do_fft)
 | |
| {
 | |
|     int  i;
 | |
| #ifndef FDV_ARM_MATH
 | |
|     int j;
 | |
| #endif
 | |
|     COMP pilot[M_FAC+M_FAC/P];
 | |
|     COMP prev_pilot[M_FAC+M_FAC/P];
 | |
|     float foff, foff1, foff2;
 | |
|     float   max1, max2;
 | |
| 
 | |
|     assert(nin <= M_FAC+M_FAC/P);
 | |
| 
 | |
|     /* get pilot samples used for correlation/down conversion of rx signal */
 | |
| 
 | |
|     for (i=0; i<nin; i++) {
 | |
| 	pilot[i] = f->pilot_lut[f->pilot_lut_index];
 | |
| 	f->pilot_lut_index++;
 | |
| 	if (f->pilot_lut_index >= 4*M_FAC)
 | |
| 	    f->pilot_lut_index = 0;
 | |
| 
 | |
| 	prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index];
 | |
| 	f->prev_pilot_lut_index++;
 | |
| 	if (f->prev_pilot_lut_index >= 4*M_FAC)
 | |
| 	    f->prev_pilot_lut_index = 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|       Down convert latest M_FAC samples of pilot by multiplying by ideal
 | |
|       BPSK pilot signal we have generated locally.  The peak of the
 | |
|       resulting signal is sensitive to the time shift between the
 | |
|       received and local version of the pilot, so we do it twice at
 | |
|       different time shifts and choose the maximum.
 | |
|     */
 | |
| 
 | |
|     for(i=0; i<NPILOTBASEBAND-nin; i++) {
 | |
| 	f->pilot_baseband1[i] = f->pilot_baseband1[i+nin];
 | |
| 	f->pilot_baseband2[i] = f->pilot_baseband2[i+nin];
 | |
|     }
 | |
| 
 | |
| #ifndef FDV_ARM_MATH
 | |
|     for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) {
 | |
|        	f->pilot_baseband1[j] = cmult(rx_fdm[i], pilot[i]);
 | |
| 	f->pilot_baseband2[j] = cmult(rx_fdm[i], prev_pilot[i]);
 | |
|     }
 | |
| #else
 | |
|     // TODO: Maybe a handwritten mult taking advantage of rx_fdm[0] being
 | |
|     // used twice would be faster but this is for sure faster than
 | |
|     // the implementation above in any case.
 | |
|     arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&pilot[0].real,&f->pilot_baseband1[NPILOTBASEBAND-nin].real,nin);
 | |
|     arm_cmplx_mult_cmplx_f32(&rx_fdm[0].real,&prev_pilot[0].real,&f->pilot_baseband2[NPILOTBASEBAND-nin].real,nin);
 | |
| #endif
 | |
| 
 | |
|     lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin, do_fft);
 | |
|     lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin, do_fft);
 | |
| 
 | |
|     if (max1 > max2)
 | |
| 	foff = foff1;
 | |
|     else
 | |
| 	foff = foff2;
 | |
| 
 | |
|     return foff;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_freq_shift()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 26/4/2012
 | |
| 
 | |
|   Frequency shift modem signal.  The use of complex input and output allows
 | |
|   single sided frequency shifting (no images).
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff,
 | |
|                       COMP *foff_phase_rect, int nin)
 | |
| {
 | |
|     COMP  foff_rect;
 | |
|     float mag;
 | |
|     int   i;
 | |
| 
 | |
|     foff_rect.real = COSF(2.0*PI*foff/FS);
 | |
|     foff_rect.imag = SINF(2.0*PI*foff/FS);
 | |
|     for(i=0; i<nin; i++) {
 | |
| 	*foff_phase_rect = cmult(*foff_phase_rect, foff_rect);
 | |
| 	rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
 | |
|     }
 | |
| 
 | |
|     /* normalise digital oscilator as the magnitude can drfift over time */
 | |
| 
 | |
|     mag = cabsolute(*foff_phase_rect);
 | |
|     foff_phase_rect->real /= mag;
 | |
|     foff_phase_rect->imag /= mag;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdm_downconvert
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 22/4/2012
 | |
| 
 | |
|   Frequency shift each modem carrier down to Nc+1 baseband signals.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdm_downconvert(COMP rx_baseband[NC+1][M_FAC+M_FAC/P], int Nc, COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
 | |
| {
 | |
|     int   i,c;
 | |
|     float mag;
 | |
| 
 | |
|     /* maximum number of input samples to demod */
 | |
| 
 | |
|     assert(nin <= (M_FAC+M_FAC/P));
 | |
| 
 | |
|     /* downconvert */
 | |
| 
 | |
|     for (c=0; c<Nc+1; c++)
 | |
| 	for (i=0; i<nin; i++) {
 | |
| 	    phase_rx[c] = cmult(phase_rx[c], freq[c]);
 | |
| 	    rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
 | |
| 	}
 | |
| 
 | |
|     /* normalise digital oscilators as the magnitude can drift over time */
 | |
| 
 | |
|     for (c=0; c<Nc+1; c++) {
 | |
|         mag = cabsolute(phase_rx[c]);
 | |
| 	phase_rx[c].real /= mag;
 | |
| 	phase_rx[c].imag /= mag;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: rx_filter()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 22/4/2012
 | |
| 
 | |
|   Receive filter each baseband signal at oversample rate P.  Filtering at
 | |
|   rate P lowers CPU compared to rate M_FAC.
 | |
| 
 | |
|   Depending on the number of input samples to the demod nin, we
 | |
|   produce P-1, P (usually), or P+1 filtered samples at rate P.  nin is
 | |
|   occasionally adjusted to compensate for timing slips due to
 | |
|   different tx and rx sample clocks.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_baseband[NC+1][M_FAC+M_FAC/P], COMP rx_filter_memory[NC+1][NFILTER], int nin)
 | |
| {
 | |
|     int c, i,j,k,l;
 | |
|     int n=M_FAC/P;
 | |
| 
 | |
|     /* rx filter each symbol, generate P filtered output samples for
 | |
|        each symbol.  Note we keep filter memory at rate M_FAC, it's just
 | |
|        the filter output at rate P */
 | |
| 
 | |
|     for(i=0, j=0; i<nin; i+=n,j++) {
 | |
| 
 | |
| 	/* latest input sample */
 | |
| 
 | |
| 	for(c=0; c<Nc+1; c++)
 | |
| 	    for(k=NFILTER-n,l=i; k<NFILTER; k++,l++)
 | |
| 		rx_filter_memory[c][k] = rx_baseband[c][l];
 | |
| 
 | |
| 	/* convolution (filtering) */
 | |
| 
 | |
| 	for(c=0; c<Nc+1; c++) {
 | |
| 	    rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0;
 | |
| 	    for(k=0; k<NFILTER; k++)
 | |
| 		rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k]));
 | |
| 	}
 | |
| 
 | |
| 	/* make room for next input sample */
 | |
| 
 | |
| 	for(c=0; c<Nc+1; c++)
 | |
| 	    for(k=0,l=n; k<NFILTER-n; k++,l++)
 | |
| 		rx_filter_memory[c][k] = rx_filter_memory[c][l];
 | |
|     }
 | |
| 
 | |
|     assert(j <= (P+1)); /* check for any over runs */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: rxdec_filter()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 31 July 2014
 | |
| 
 | |
|   +/- 1000Hz low pass filter, allows us to filter at rate Q to save CPU load.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void rxdec_filter(COMP rx_fdm_filter[], COMP rx_fdm[], COMP rxdec_lpf_mem[], int nin) {
 | |
|     int i,j,k,st;
 | |
| 
 | |
|     for(i=0; i<NRXDECMEM-nin; i++)
 | |
|         rxdec_lpf_mem[i] = rxdec_lpf_mem[i+nin];
 | |
|     for(i=0, j=NRXDECMEM-nin; i<nin; i++,j++)
 | |
|         rxdec_lpf_mem[j] = rx_fdm[i];
 | |
| 
 | |
|     st = NRXDECMEM - nin - NRXDEC + 1;
 | |
|     for(i=0; i<nin; i++) {
 | |
|         rx_fdm_filter[i].real = 0.0;
 | |
|         for(k=0; k<NRXDEC; k++)
 | |
|             rx_fdm_filter[i].real += rxdec_lpf_mem[st+i+k].real * rxdec_coeff[k];
 | |
|         rx_fdm_filter[i].imag = 0.0;
 | |
|         for(k=0; k<NRXDEC; k++)
 | |
|             rx_fdm_filter[i].imag += rxdec_lpf_mem[st+i+k].imag * rxdec_coeff[k];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fir_filter2()
 | |
|   AUTHOR......: Danilo Beuche
 | |
|   DATE CREATED: August 2016
 | |
| 
 | |
|   Ths version submitted by Danilo for the STM32F4 platform.  The idea
 | |
|   is to avoid reading the same value from the STM32F4 "slow" flash
 | |
|   twice. 2-4ms of savings per frame were measured by Danilo and the mcHF
 | |
|   team.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| static void fir_filter2(float acc[2], float mem[], const float coeff[], const unsigned int dec_rate) {
 | |
|     acc[0] = 0.0;
 | |
|     acc[1] = 0.0;
 | |
| 
 | |
|     float c1,c2,c3,c4,c5,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,a1,a2;
 | |
|     float* inpCmplx = &mem[0];
 | |
|     const float* coeffPtr = &coeff[0];
 | |
| 
 | |
|     int m;
 | |
| 
 | |
|     // this manual loop unrolling gives significant boost on STM32 machines
 | |
|     // reduction from avg 3.2ms to 2.4ms in tfdmv.c test
 | |
|     // 5 was the sweet spot, with 6 it took longer again
 | |
|     // and should not harm other, more powerful machines
 | |
|     // no significant difference in output, only rounding (which was to be expected)
 | |
|     // TODO: try to move coeffs to RAM and check if it makes a significant difference
 | |
|     if (NFILTER%(dec_rate*5) == 0) {
 | |
|         for(m=0; m<NFILTER; m+=dec_rate*5) {
 | |
|             c1 = *coeffPtr;
 | |
| 
 | |
|             m1 = inpCmplx[0];
 | |
|             m2 = inpCmplx[1];
 | |
| 
 | |
|             inpCmplx+= dec_rate*2;
 | |
|             coeffPtr+= dec_rate;
 | |
| 
 | |
|             c2 = *coeffPtr;
 | |
|             m3 = inpCmplx[0];
 | |
|             m4 = inpCmplx[1];
 | |
| 
 | |
|             inpCmplx+= dec_rate*2;
 | |
|             coeffPtr+= dec_rate;
 | |
| 
 | |
|             c3 = *coeffPtr;
 | |
|             m5 = inpCmplx[0];
 | |
|             m6 = inpCmplx[1];
 | |
| 
 | |
|             inpCmplx+= dec_rate*2;
 | |
|             coeffPtr+= dec_rate;
 | |
| 
 | |
|             c4 = *coeffPtr;
 | |
|             m7 = inpCmplx[0];
 | |
|             m8 = inpCmplx[1];
 | |
| 
 | |
|             inpCmplx+= dec_rate*2;
 | |
|             coeffPtr+= dec_rate;
 | |
| 
 | |
|             c5 = *coeffPtr;
 | |
|             m9 = inpCmplx[0];
 | |
|             m10 = inpCmplx[1];
 | |
| 
 | |
|             inpCmplx+= dec_rate*2;
 | |
|             coeffPtr+= dec_rate;
 | |
| 
 | |
|             a1 = c1 * m1 + c2 * m3 + c3 * m5 + c4 * m7 + c5 * m9;
 | |
|             a2 = c1 * m2 + c2 * m4 + c3 * m6 + c4 * m8 + c5 * m10;
 | |
|             acc[0] += a1;
 | |
|             acc[1] += a2;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for(m=0; m<NFILTER; m+=dec_rate) {
 | |
|             c1 = *coeffPtr;
 | |
| 
 | |
|             m1 = inpCmplx[0];
 | |
|             m2 = inpCmplx[1];
 | |
| 
 | |
|             inpCmplx+= dec_rate*2;
 | |
|             coeffPtr+= dec_rate;
 | |
| 
 | |
|             a1 = c1 * m1;
 | |
|             a2 = c1 * m2;
 | |
|             acc[0] += a1;
 | |
|             acc[1] += a2;
 | |
|         }
 | |
|     }
 | |
|     acc[0] *= dec_rate;
 | |
|     acc[1] *= dec_rate;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: down_convert_and_rx_filter()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 30/6/2014
 | |
| 
 | |
|   Combined down convert and rx filter, more memory efficient but less
 | |
|   intuitive design.
 | |
| 
 | |
|   Depending on the number of input samples to the demod nin, we
 | |
|   produce P-1, P (usually), or P+1 filtered samples at rate P.  nin is
 | |
|   occasionally adjusted to compensate for timing slips due to
 | |
|   different tx and rx sample clocks.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|    TODO: [ ] windback phase calculated once at init time
 | |
| */
 | |
| 
 | |
| void down_convert_and_rx_filter(COMP rx_filt[NC+1][P+1], int Nc, COMP rx_fdm[],
 | |
|                                 COMP rx_fdm_mem[], COMP phase_rx[], COMP freq[],
 | |
|                                 float freq_pol[], int nin, int dec_rate)
 | |
| {
 | |
|     int i,k,c,st,Nval;
 | |
|     float windback_phase, mag;
 | |
|     COMP  windback_phase_rect;
 | |
|     COMP  rx_baseband[NRX_FDM_MEM];
 | |
|     COMP  f_rect;
 | |
| 
 | |
|     //PROFILE_VAR(windback_start,  downconvert_start, filter_start);
 | |
| 
 | |
|     /* update memory of rx_fdm */
 | |
| 
 | |
| #if 0
 | |
|     for(i=0; i<NRX_FDM_MEM-nin; i++)
 | |
|         rx_fdm_mem[i] = rx_fdm_mem[i+nin];
 | |
|     for(i=NFILTER+M_FAC-nin, k=0; i<NFILTER+M_FAC; i++, k++)
 | |
|         rx_fdm_mem[i] = rx_fdm[k];
 | |
| #else
 | |
|     // this gives only 40uS gain on STM32 but now that we have, we keep it
 | |
|     memmove(&rx_fdm_mem[0],&rx_fdm_mem[nin],(NRX_FDM_MEM-nin)*sizeof(COMP));
 | |
|     memcpy(&rx_fdm_mem[NRX_FDM_MEM-nin],&rx_fdm[0],nin*sizeof(COMP));
 | |
| #endif
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
| 
 | |
|       /*
 | |
| 
 | |
|         So we have rx_fdm_mem, a baseband array of samples at
 | |
|         rate Fs Hz, including the last nin samples at the end.  To
 | |
|         filter each symbol we require the baseband samples for all Nsym
 | |
|         symbols that we filter over.  So we need to downconvert the
 | |
|         entire rx_fdm_mem array.  To downconvert these we need the LO
 | |
|         phase referenced to the start of the rx_fdm_mem array.
 | |
| 
 | |
| 
 | |
|         <--------------- Nrx_filt_mem ------->
 | |
|         nin
 | |
|         |--------------------------|---------|
 | |
|         1                          |
 | |
|         phase_rx(c)
 | |
| 
 | |
|         This means winding phase(c) back from this point
 | |
|         to ensure phase continuity.
 | |
| 
 | |
|       */
 | |
| 
 | |
|         //PROFILE_SAMPLE(windback_start);
 | |
|         windback_phase           = -freq_pol[c]*NFILTER;
 | |
|         windback_phase_rect.real = COSF(windback_phase);
 | |
|         windback_phase_rect.imag = SINF(windback_phase);
 | |
|         phase_rx[c]              = cmult(phase_rx[c],windback_phase_rect);
 | |
|         //PROFILE_SAMPLE_AND_LOG(downconvert_start, windback_start, "        windback");
 | |
| 
 | |
|         /* down convert all samples in buffer */
 | |
| 
 | |
|         st  = NRX_FDM_MEM-1;  /* end of buffer                  */
 | |
|         st -= nin-1;          /* first new sample               */
 | |
|         st -= NFILTER;        /* first sample used in filtering */
 | |
| 
 | |
|         /* freq shift per dec_rate step is dec_rate times original shift */
 | |
| 
 | |
|         f_rect = freq[c];
 | |
|         for(i=0; i<dec_rate-1; i++)
 | |
|             f_rect = cmult(f_rect,freq[c]);
 | |
| 
 | |
|         for(i=st; i<NRX_FDM_MEM; i+=dec_rate) {
 | |
|             phase_rx[c]    = cmult(phase_rx[c], f_rect);
 | |
|             rx_baseband[i] = cmult(rx_fdm_mem[i],cconj(phase_rx[c]));
 | |
|         }
 | |
|         //PROFILE_SAMPLE_AND_LOG(filter_start, downconvert_start, "        downconvert");
 | |
| 
 | |
|         /* now we can filter this carrier's P symbols */
 | |
| 
 | |
|         Nval=M_FAC/P;
 | |
|         for(i=0, k=0; i<nin; i+=Nval, k++) {
 | |
| #ifdef ORIG
 | |
|             rx_filt[c][k].real = 0.0; rx_filt[c][k].imag = 0.0;
 | |
| 
 | |
|             for(m=0; m<NFILTER; m++)
 | |
|                 rx_filt[c][k] = cadd(rx_filt[c][k], fcmult(gt_alpha5_root[m], rx_baseband[st+i+m]));
 | |
| #else
 | |
|             // rx_filt[c][k].real = fir_filter(&rx_baseband[st+i].real, (float*)gt_alpha5_root, dec_rate);
 | |
|             // rx_filt[c][k].imag = fir_filter(&rx_baseband[st+i].imag, (float*)gt_alpha5_root, dec_rate);
 | |
|             fir_filter2(&rx_filt[c][k].real,&rx_baseband[st+i].real, gt_alpha5_root, dec_rate);
 | |
| #endif
 | |
|         }
 | |
|         //PROFILE_SAMPLE_AND_LOG2(filter_start, "        filter");
 | |
| 
 | |
|         /* normalise digital oscilators as the magnitude can drift over time */
 | |
| 
 | |
|         mag = cabsolute(phase_rx[c]);
 | |
| 	phase_rx[c].real /= mag;
 | |
| 	phase_rx[c].imag /= mag;
 | |
| 
 | |
|        //printf("phase_rx[%d] = %f %f\n", c, phase_rx[c].real, phase_rx[c].imag);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: rx_est_timing()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 23/4/2012
 | |
| 
 | |
|   Estimate optimum timing offset, re-filter receive symbols at optimum
 | |
|   timing estimate.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| float rx_est_timing(COMP rx_symbols[],
 | |
|                     int  Nc,
 | |
| 		    COMP rx_filt[NC+1][P+1],
 | |
| 		    COMP rx_filter_mem_timing[NC+1][NT*P],
 | |
| 		    float env[],
 | |
| 		    int nin,
 | |
|                     int m)
 | |
| {
 | |
|     int   c,i,j;
 | |
|     int   adjust;
 | |
|     COMP  x, phase, freq;
 | |
|     float rx_timing, fract, norm_rx_timing;
 | |
|     int   low_sample, high_sample;
 | |
| 
 | |
|     /*
 | |
|       nin  adjust
 | |
|       --------------------------------
 | |
|       120  -1 (one less rate P sample)
 | |
|       160   0 (nominal)
 | |
|       200   1 (one more rate P sample)
 | |
|     */
 | |
| 
 | |
|     adjust = P - nin*P/m;
 | |
| 
 | |
|     /* update buffer of NT rate P filtered symbols */
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++)
 | |
| 	    rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j];
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++)
 | |
| 	    rx_filter_mem_timing[c][i] = rx_filt[c][j];
 | |
| 
 | |
|     /* sum envelopes of all carriers */
 | |
| 
 | |
|     for(i=0; i<NT*P; i++) {
 | |
| 	env[i] = 0.0;
 | |
| 	for(c=0; c<Nc+1; c++)
 | |
| 	    env[i] += cabsolute(rx_filter_mem_timing[c][i]);
 | |
|     }
 | |
| 
 | |
|     /* The envelope has a frequency component at the symbol rate.  The
 | |
|        phase of this frequency component indicates the timing.  So work
 | |
|        out single DFT at frequency 2*pi/P */
 | |
| 
 | |
|     x.real = 0.0; x.imag = 0.0;
 | |
|     freq.real = COSF(2*PI/P);
 | |
|     freq.imag = SINF(2*PI/P);
 | |
|     phase.real = 1.0;
 | |
|     phase.imag = 0.0;
 | |
| 
 | |
|     for(i=0; i<NT*P; i++) {
 | |
| 	x = cadd(x, fcmult(env[i], phase));
 | |
| 	phase = cmult(phase, freq);
 | |
|     }
 | |
| 
 | |
|     /* Map phase to estimated optimum timing instant at rate P.  The
 | |
|        P/4 part was adjusted by experiment, I know not why.... */
 | |
| 
 | |
|     norm_rx_timing = atan2f(x.imag, x.real)/(2*PI);
 | |
|     assert(fabsf(norm_rx_timing) < 1.0);
 | |
|     //fprintf(stderr,"%f %f norm_rx_timing: %f\n", x.real, x.imag, norm_rx_timing);
 | |
|     rx_timing      = norm_rx_timing*P + P/4;
 | |
| 
 | |
|     if (rx_timing > P)
 | |
| 	rx_timing -= P;
 | |
|     if (rx_timing < -P)
 | |
| 	rx_timing += P;
 | |
| 
 | |
|     /* rx_filter_mem_timing contains Nt*P samples (Nt symbols at rate
 | |
|        P), where Nt is odd.  Lets use linear interpolation to resample
 | |
|        in the centre of the timing estimation window .*/
 | |
| 
 | |
|     rx_timing  += floorf(NT/2.0)*P;
 | |
|     low_sample = floorf(rx_timing);
 | |
|     fract = rx_timing - low_sample;
 | |
|     high_sample = ceilf(rx_timing);
 | |
| 
 | |
|     //printf("rx_timing: %f low_sample: %d high_sample: %d fract: %f\n", rx_timing, low_sample, high_sample, fract);
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
|         rx_symbols[c] = cadd(fcmult(1.0-fract, rx_filter_mem_timing[c][low_sample-1]), fcmult(fract, rx_filter_mem_timing[c][high_sample-1]));
 | |
|         //rx_symbols[c] = rx_filter_mem_timing[c][high_sample];
 | |
|     }
 | |
| 
 | |
|     /* This value will be +/- half a symbol so will wrap around at +/-
 | |
|        M/2 or +/- 80 samples with M=160 */
 | |
| 
 | |
|     return norm_rx_timing*m;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: qpsk_to_bits()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 24/4/2012
 | |
| 
 | |
|   Convert DQPSK symbols back to an array of bits, extracts sync bit
 | |
|   from DBPSK pilot, and also uses pilot to estimate fine frequency
 | |
|   error.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| float qpsk_to_bits(int rx_bits[], int *sync_bit, int Nc, COMP phase_difference[], COMP prev_rx_symbols[],
 | |
|                    COMP rx_symbols[], int old_qpsk_mapping)
 | |
| {
 | |
|     int   c;
 | |
|     COMP  d;
 | |
|     int   msb=0, lsb=0;
 | |
|     float ferr, norm;
 | |
| 
 | |
| 
 | |
|     /* Extra 45 degree clockwise lets us use real and imag axis as
 | |
|        decision boundaries. "norm" makes sure the phase subtraction
 | |
|        from the previous symbol doesn't affect the amplitude, which
 | |
|        leads to sensible scatter plots */
 | |
| 
 | |
|     for(c=0; c<Nc; c++) {
 | |
|         norm = 1.0/(cabsolute(prev_rx_symbols[c])+1E-6);
 | |
| 	phase_difference[c] = cmult(cmult(rx_symbols[c], fcmult(norm,cconj(prev_rx_symbols[c]))), pi_on_4);
 | |
|     }
 | |
| 
 | |
|     /* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */
 | |
| 
 | |
|     for (c=0; c<Nc; c++) {
 | |
|       d = phase_difference[c];
 | |
|       if ((d.real >= 0) && (d.imag >= 0)) {
 | |
|           msb = 0; lsb = 0;
 | |
|       }
 | |
|       if ((d.real < 0) && (d.imag >= 0)) {
 | |
|           msb = 0; lsb = 1;
 | |
|       }
 | |
|       if ((d.real < 0) && (d.imag < 0)) {
 | |
|           if (old_qpsk_mapping) {
 | |
|               msb = 1; lsb = 0;
 | |
|           } else {
 | |
|               msb = 1; lsb = 1;
 | |
|           }
 | |
|       }
 | |
|       if ((d.real >= 0) && (d.imag < 0)) {
 | |
|           if (old_qpsk_mapping) {
 | |
|               msb = 1; lsb = 1;
 | |
|           } else {
 | |
|               msb = 1; lsb = 0;
 | |
|           }
 | |
|       }
 | |
|       rx_bits[2*c] = msb;
 | |
|       rx_bits[2*c+1] = lsb;
 | |
|     }
 | |
| 
 | |
|     /* Extract DBPSK encoded Sync bit and fine freq offset estimate */
 | |
| 
 | |
|     norm = 1.0/(cabsolute(prev_rx_symbols[Nc])+1E-6);
 | |
|     phase_difference[Nc] = cmult(rx_symbols[Nc], fcmult(norm, cconj(prev_rx_symbols[Nc])));
 | |
|     if (phase_difference[Nc].real < 0) {
 | |
|       *sync_bit = 1;
 | |
|       ferr = phase_difference[Nc].imag*norm;    /* make f_err magnitude insensitive */
 | |
|     }
 | |
|     else {
 | |
|       *sync_bit = 0;
 | |
|       ferr = -phase_difference[Nc].imag*norm;
 | |
|     }
 | |
| 
 | |
|     /* pilot carrier gets an extra pi/4 rotation to make it consistent
 | |
|        with other carriers, as we need it for snr_update and scatter
 | |
|        diagram */
 | |
| 
 | |
|     phase_difference[Nc] = cmult(phase_difference[Nc], pi_on_4);
 | |
| 
 | |
|     return ferr;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: snr_update()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 17 May 2012
 | |
| 
 | |
|   Given phase differences update estimates of signal and noise levels.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void snr_update(float sig_est[], float noise_est[], int Nc, COMP phase_difference[])
 | |
| {
 | |
|     float s[NC+1];
 | |
|     COMP  refl_symbols[NC+1];
 | |
|     float n[NC+1];
 | |
|     int   c;
 | |
| 
 | |
| 
 | |
|     /* mag of each symbol is distance from origin, this gives us a
 | |
|        vector of mags, one for each carrier. */
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	s[c] = cabsolute(phase_difference[c]);
 | |
| 
 | |
|     /* signal mag estimate for each carrier is a smoothed version of
 | |
|        instantaneous magntitude, this gives us a vector of smoothed
 | |
|        mag estimates, one for each carrier. */
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c];
 | |
| 
 | |
|     /* noise mag estimate is distance of current symbol from average
 | |
|        location of that symbol.  We reflect all symbols into the first
 | |
|        quadrant for convenience. */
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++) {
 | |
| 	refl_symbols[c].real = fabsf(phase_difference[c].real);
 | |
| 	refl_symbols[c].imag = fabsf(phase_difference[c].imag);
 | |
| 	n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c])));
 | |
|     }
 | |
| 
 | |
|     /* noise mag estimate for each carrier is a smoothed version of
 | |
|        instantaneous noise mag, this gives us a vector of smoothed
 | |
|        noise power estimates, one for each carrier. */
 | |
| 
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c];
 | |
| }
 | |
| 
 | |
| // returns number of shorts in error_pattern[], one short per error
 | |
| 
 | |
| int fdmdv_error_pattern_size(struct FDMDV *f) {
 | |
|     return f->ntest_bits;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_put_test_bits()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 24/4/2012
 | |
| 
 | |
|   Accepts nbits from rx and attempts to sync with test_bits sequence.
 | |
|   If sync OK measures bit errors.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_put_test_bits(struct FDMDV *f, int *sync, short error_pattern[],
 | |
| 			 int *bit_errors, int *ntest_bits, int rx_bits[])
 | |
| {
 | |
|     int   i,j;
 | |
|     float ber;
 | |
|     int   bits_per_frame = fdmdv_bits_per_frame(f);
 | |
| 
 | |
|     /* Append to our memory */
 | |
| 
 | |
|     for(i=0,j=bits_per_frame; i<f->ntest_bits-bits_per_frame; i++,j++)
 | |
| 	f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j];
 | |
|     for(i=f->ntest_bits-bits_per_frame,j=0; i<f->ntest_bits; i++,j++)
 | |
| 	f->rx_test_bits_mem[i] = rx_bits[j];
 | |
| 
 | |
|     /* see how many bit errors we get when checked against test sequence */
 | |
| 
 | |
|     *bit_errors = 0;
 | |
|     for(i=0; i<f->ntest_bits; i++) {
 | |
|         error_pattern[i] = test_bits[i] ^ f->rx_test_bits_mem[i];
 | |
| 	*bit_errors += error_pattern[i];
 | |
| 	//printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]);
 | |
|     }
 | |
| 
 | |
|     /* if less than a thresh we are aligned and in sync with test sequence */
 | |
| 
 | |
|     ber = (float)*bit_errors/f->ntest_bits;
 | |
| 
 | |
|     *sync = 0;
 | |
|     if (ber < 0.2)
 | |
| 	*sync = 1;
 | |
| 
 | |
|     *ntest_bits = f->ntest_bits;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: freq_state(()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 24/4/2012
 | |
| 
 | |
|   Freq offset state machine.  Moves between coarse and fine states
 | |
|   based on BPSK pilot sequence.  Freq offset estimator occasionally
 | |
|   makes mistakes when used continuously.  So we use it until we have
 | |
|   acquired the BPSK pilot, then switch to a more robust "fine"
 | |
|   tracking algorithm.  If we lose sync we switch back to coarse mode
 | |
|   for fast re-acquisition of large frequency offsets.
 | |
| 
 | |
|   The sync state is also useful for higher layers to determine when
 | |
|   there is valid FDMDV data for decoding.  We want to reliably and
 | |
|   quickly get into sync, stay in sync even on fading channels, and
 | |
|   fall out of sync quickly if tx stops or it's a false sync.
 | |
| 
 | |
|   In multipath fading channels the BPSK sync carrier may be pushed
 | |
|   down in the noise, despite other carriers being at full strength.
 | |
|   We want to avoid loss of sync in these cases.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| int freq_state(int *reliable_sync_bit, int sync_bit, int *state, int *timer, int *sync_mem)
 | |
| {
 | |
|     int next_state, sync, unique_word, i, corr;
 | |
| 
 | |
|     /* look for 6 symbols (120ms) 101010 of sync sequence */
 | |
| 
 | |
|     unique_word = 0;
 | |
|     for(i=0; i<NSYNC_MEM-1; i++)
 | |
|         sync_mem[i] = sync_mem[i+1];
 | |
|     sync_mem[i] = 1 - 2*sync_bit;
 | |
|     corr = 0;
 | |
|     for(i=0; i<NSYNC_MEM; i++)
 | |
|         corr += sync_mem[i]*sync_uw[i];
 | |
|     if (abs(corr) == NSYNC_MEM)
 | |
|         unique_word = 1;
 | |
|     *reliable_sync_bit = (corr == NSYNC_MEM);
 | |
| 
 | |
|     /* iterate state machine */
 | |
| 
 | |
|     next_state = *state;
 | |
|     switch(*state) {
 | |
|     case 0:
 | |
| 	if (unique_word) {
 | |
| 	    next_state = 1;
 | |
|             *timer = 0;
 | |
|         }
 | |
| 	break;
 | |
|     case 1:                   /* tentative sync state         */
 | |
| 	if (unique_word) {
 | |
|             (*timer)++;
 | |
|             if (*timer == 25) /* sync has been good for 500ms */
 | |
|                 next_state = 2;
 | |
|         }
 | |
| 	else
 | |
| 	    next_state = 0;  /* quickly fall out of sync     */
 | |
| 	break;
 | |
|     case 2:                  /* good sync state */
 | |
| 	if (unique_word == 0) {
 | |
|             *timer = 0;
 | |
| 	    next_state = 3;
 | |
|         }
 | |
| 	break;
 | |
|     case 3:                  /* tentative bad state, but could be a fade */
 | |
| 	if (unique_word)
 | |
| 	    next_state = 2;
 | |
| 	else  {
 | |
|             (*timer)++;
 | |
|             if (*timer == 50) /* wait for 1000ms in case sync comes back  */
 | |
|                 next_state = 0;
 | |
|         }
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     //printf("state: %d next_state: %d uw: %d timer: %d\n", *state, next_state, unique_word, *timer);
 | |
|     *state = next_state;
 | |
|     if (*state)
 | |
| 	sync = 1;
 | |
|     else
 | |
| 	sync = 0;
 | |
| 
 | |
|     return sync;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_demod()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 26/4/2012
 | |
| 
 | |
|   FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME
 | |
|   modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits,
 | |
|   plus the sync bit.
 | |
| 
 | |
|   The input signal is complex to support single sided frequency shifting
 | |
|   before the demod input (e.g. fdmdv2 click to tune feature).
 | |
| 
 | |
|   The number of input samples nin will normally be M_FAC ==
 | |
|   FDMDV_SAMPLES_PER_FRAME.  However to adjust for differences in
 | |
|   transmit and receive sample clocks nin will occasionally be M_FAC-M_FAC/P,
 | |
|   or M_FAC+M_FAC/P.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[],
 | |
| 		 int *reliable_sync_bit, COMP rx_fdm[], int *nin)
 | |
| {
 | |
|     float         foff_coarse, foff_fine;
 | |
|     COMP          rx_fdm_fcorr[M_FAC+M_FAC/P];
 | |
|     COMP          rx_fdm_filter[M_FAC+M_FAC/P];
 | |
|     COMP          rx_fdm_bb[M_FAC+M_FAC/P];
 | |
|     COMP          rx_filt[NC+1][P+1];
 | |
|     COMP          rx_symbols[NC+1];
 | |
|     float         env[NT*P];
 | |
|     int           sync_bit;
 | |
|     PROFILE_VAR(demod_start, fdmdv_freq_shift_start, down_convert_and_rx_filter_start);
 | |
|     PROFILE_VAR(rx_est_timing_start, qpsk_to_bits_start, snr_update_start, freq_state_start);
 | |
| 
 | |
|     /* shift down to complex baseband */
 | |
| 
 | |
|     fdmdv_freq_shift(rx_fdm_bb, rx_fdm, -FDMDV_FCENTRE, &fdmdv->fbb_phase_rx, *nin);
 | |
| 
 | |
|     /* freq offset estimation and correction */
 | |
| 
 | |
|     PROFILE_SAMPLE(demod_start);
 | |
|     foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm_bb, *nin, !fdmdv->sync);
 | |
|     PROFILE_SAMPLE_AND_LOG(fdmdv_freq_shift_start, demod_start, "    rx_est_freq_offset");
 | |
| 
 | |
|     if (fdmdv->sync == 0)
 | |
| 	fdmdv->foff = foff_coarse;
 | |
|     fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm_bb, -fdmdv->foff, &fdmdv->foff_phase_rect, *nin);
 | |
|     PROFILE_SAMPLE_AND_LOG(down_convert_and_rx_filter_start, fdmdv_freq_shift_start, "    fdmdv_freq_shift");
 | |
| 
 | |
|     /* baseband processing */
 | |
| 
 | |
|     rxdec_filter(rx_fdm_filter, rx_fdm_fcorr, fdmdv->rxdec_lpf_mem, *nin);
 | |
|     down_convert_and_rx_filter(rx_filt, fdmdv->Nc, rx_fdm_filter, fdmdv->rx_fdm_mem, fdmdv->phase_rx, fdmdv->freq,
 | |
|                                fdmdv->freq_pol, *nin, M_FAC/Q);
 | |
|     PROFILE_SAMPLE_AND_LOG(rx_est_timing_start, down_convert_and_rx_filter_start, "    down_convert_and_rx_filter");
 | |
|     fdmdv->rx_timing = rx_est_timing(rx_symbols, fdmdv->Nc, rx_filt, fdmdv->rx_filter_mem_timing, env, *nin, M_FAC);
 | |
|     PROFILE_SAMPLE_AND_LOG(qpsk_to_bits_start, rx_est_timing_start, "    rx_est_timing");
 | |
| 
 | |
|     /* Adjust number of input samples to keep timing within bounds */
 | |
| 
 | |
|     *nin = M_FAC;
 | |
| 
 | |
|     if (fdmdv->rx_timing > M_FAC/P)
 | |
| 	*nin += M_FAC/P;
 | |
| 
 | |
|     if (fdmdv->rx_timing < -M_FAC/P)
 | |
| 	*nin -= M_FAC/P;
 | |
| 
 | |
|     foff_fine = qpsk_to_bits(rx_bits, &sync_bit, fdmdv->Nc, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols,
 | |
|                              fdmdv->old_qpsk_mapping);
 | |
|     memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(fdmdv->Nc+1));
 | |
|     PROFILE_SAMPLE_AND_LOG(snr_update_start, qpsk_to_bits_start, "    qpsk_to_bits");
 | |
|     snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->Nc, fdmdv->phase_difference);
 | |
|     PROFILE_SAMPLE_AND_LOG(freq_state_start, snr_update_start, "    snr_update");
 | |
| 
 | |
|     /* freq offset estimation state machine */
 | |
| 
 | |
|     fdmdv->sync = freq_state(reliable_sync_bit, sync_bit, &fdmdv->fest_state, &fdmdv->timer, fdmdv->sync_mem);
 | |
|     PROFILE_SAMPLE_AND_LOG2(freq_state_start, "    freq_state");
 | |
|     fdmdv->foff  -= TRACK_COEFF*foff_fine;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: calc_snr()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 17 May 2012
 | |
| 
 | |
|   Calculate current SNR estimate (3000Hz noise BW)
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| float calc_snr(int Nc, float sig_est[], float noise_est[])
 | |
| {
 | |
|     float S, SdB;
 | |
|     float mean, N50, N50dB, N3000dB;
 | |
|     float snr_dB;
 | |
|     int   c;
 | |
| 
 | |
|     S = 0.0;
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	S += powf(sig_est[c], 2.0);
 | |
|     SdB = 10.0*log10f(S+1E-12);
 | |
| 
 | |
|     /* Average noise mag across all carriers and square to get an
 | |
|        average noise power.  This is an estimate of the noise power in
 | |
|        Rs = 50Hz of BW (note for raised root cosine filters Rs is the
 | |
|        noise BW of the filter) */
 | |
| 
 | |
|     mean = 0.0;
 | |
|     for(c=0; c<Nc+1; c++)
 | |
| 	mean += noise_est[c];
 | |
|     mean /= (Nc+1);
 | |
|     N50 = powf(mean, 2.0);
 | |
|     N50dB = 10.0*log10f(N50+1E-12);
 | |
| 
 | |
|     /* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power
 | |
|        in 3000 Hz */
 | |
| 
 | |
|     N3000dB = N50dB + 10.0*log10f(3000.0/RS);
 | |
| 
 | |
|     snr_dB = SdB - N3000dB;
 | |
| 
 | |
|     return snr_dB;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_get_demod_stats()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 1 May 2012
 | |
| 
 | |
|   Fills stats structure with a bunch of demod information.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_get_demod_stats(struct FDMDV *fdmdv, struct MODEM_STATS *stats)
 | |
| {
 | |
|     int   c;
 | |
| 
 | |
|     assert(fdmdv->Nc <= MODEM_STATS_NC_MAX);
 | |
| 
 | |
|     stats->Nc = fdmdv->Nc;
 | |
|     stats->snr_est = calc_snr(fdmdv->Nc, fdmdv->sig_est, fdmdv->noise_est);
 | |
|     stats->sync = fdmdv->sync;
 | |
|     stats->foff = fdmdv->foff;
 | |
|     stats->rx_timing = fdmdv->rx_timing;
 | |
|     stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */
 | |
| 
 | |
|     stats->nr = 1;
 | |
|     for(c=0; c<fdmdv->Nc+1; c++) {
 | |
| 	stats->rx_symbols[0][c] = fdmdv->phase_difference[c];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_8_to_16()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 9 May 2012
 | |
| 
 | |
|   Changes the sample rate of a signal from 8 to 16 kHz.  Support function for
 | |
|   SM1000.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_8_to_16(float out16k[], float in8k[], int n)
 | |
| {
 | |
|     int i,k,l;
 | |
|     float acc;
 | |
| 
 | |
|     /* make sure n is an integer multiple of the oversampling rate, ow
 | |
|        this function breaks */
 | |
| 
 | |
|     assert((n % FDMDV_OS) == 0);
 | |
| 
 | |
|     /* this version unrolled for specific FDMDV_OS */
 | |
| 
 | |
|     assert(FDMDV_OS == 2);
 | |
| 
 | |
|     for(i=0; i<n; i++) {
 | |
|         acc = 0.0;
 | |
|         for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
 | |
|             acc += fdmdv_os_filter[k]*in8k[i-l];
 | |
|         out16k[i*FDMDV_OS] = FDMDV_OS*acc;
 | |
| 
 | |
|         acc = 0.0;
 | |
|         for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
 | |
|             acc += fdmdv_os_filter[k]*in8k[i-l];
 | |
|         out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
 | |
|     }
 | |
| 
 | |
|     /* update filter memory */
 | |
| 
 | |
|     for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
 | |
| 	in8k[i] = in8k[i + n];
 | |
| 
 | |
| }
 | |
| 
 | |
| void fdmdv_8_to_16_short(short out16k[], short in8k[], int n)
 | |
| {
 | |
|     int i,k,l;
 | |
|     float acc;
 | |
| 
 | |
|     /* make sure n is an integer multiple of the oversampling rate, ow
 | |
|        this function breaks */
 | |
| 
 | |
|     assert((n % FDMDV_OS) == 0);
 | |
| 
 | |
|     /* this version unrolled for specific FDMDV_OS */
 | |
| 
 | |
|     assert(FDMDV_OS == 2);
 | |
| 
 | |
|     for(i=0; i<n; i++) {
 | |
|         acc = 0.0;
 | |
|         for(k=0,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
 | |
|             acc += fdmdv_os_filter[k]*(float)in8k[i-l];
 | |
|         out16k[i*FDMDV_OS] = FDMDV_OS*acc;
 | |
| 
 | |
|         acc = 0.0;
 | |
|         for(k=1,l=0; k<FDMDV_OS_TAPS_16K; k+=FDMDV_OS,l++)
 | |
|             acc += fdmdv_os_filter[k]*(float)in8k[i-l];
 | |
|         out16k[i*FDMDV_OS+1] = FDMDV_OS*acc;
 | |
|     }
 | |
| 
 | |
|     /* update filter memory */
 | |
| 
 | |
|     for(i=-(FDMDV_OS_TAPS_8K); i<0; i++)
 | |
| 	in8k[i] = in8k[i + n];
 | |
| 
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_16_to_8()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 9 May 2012
 | |
| 
 | |
|   Changes the sample rate of a signal from 16 to 8 kHz.
 | |
| 
 | |
|   n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n
 | |
|   samples at the 16 kHz rate.  As above however a memory of
 | |
|   FDMDV_OS_TAPS samples is reqd for in16k[] (see t16_8.c unit test as example).
 | |
| 
 | |
|   Low pass filter the 16 kHz signal at 4 kHz using the same filter as
 | |
|   the upsampler, then just output every FDMDV_OS-th filtered sample.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_16_to_8(float out8k[], float in16k[], int n)
 | |
| {
 | |
|     float acc;
 | |
|     int   i,j,k;
 | |
| 
 | |
|     for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
 | |
| 	acc = 0.0;
 | |
| 	for(j=0; j<FDMDV_OS_TAPS_16K; j++)
 | |
| 	    acc += fdmdv_os_filter[j]*in16k[i-j];
 | |
|         out8k[k] = acc;
 | |
|     }
 | |
| 
 | |
|     /* update filter memory */
 | |
| 
 | |
|     for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
 | |
| 	in16k[i] = in16k[i + n*FDMDV_OS];
 | |
| }
 | |
| 
 | |
| void fdmdv_16_to_8_short(short out8k[], short in16k[], int n)
 | |
| {
 | |
|     float acc;
 | |
|     int i,j,k;
 | |
| 
 | |
|     for(i=0, k=0; k<n; i+=FDMDV_OS, k++) {
 | |
| 	acc = 0.0;
 | |
| 	for(j=0; j<FDMDV_OS_TAPS_16K; j++)
 | |
| 	    acc += fdmdv_os_filter[j]*(float)in16k[i-j];
 | |
|         out8k[k] = acc;
 | |
|     }
 | |
| 
 | |
|     /* update filter memory */
 | |
| 
 | |
|     for(i=-FDMDV_OS_TAPS_16K; i<0; i++)
 | |
| 	in16k[i] = in16k[i + n*FDMDV_OS];
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   Function used during development to test if magnitude of digital
 | |
|   oscillators was drifting.  It was!
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_dump_osc_mags(struct FDMDV *f)
 | |
| {
 | |
|     int   i;
 | |
| 
 | |
|     fprintf(stderr, "phase_tx[]:\n");
 | |
|     for(i=0; i<=f->Nc; i++)
 | |
| 	fprintf(stderr,"  %1.3f", (double)cabsolute(f->phase_tx[i]));
 | |
|     fprintf(stderr,"\nfreq[]:\n");
 | |
|     for(i=0; i<=f->Nc; i++)
 | |
| 	fprintf(stderr,"  %1.3f", (double)cabsolute(f->freq[i]));
 | |
|     fprintf(stderr,"\nfoff_phase_rect: %1.3f", (double)cabsolute(f->foff_phase_rect));
 | |
|     fprintf(stderr,"\nphase_rx[]:\n");
 | |
|     for(i=0; i<=f->Nc; i++)
 | |
| 	fprintf(stderr,"  %1.3f", (double)cabsolute(f->phase_rx[i]));
 | |
|     fprintf(stderr, "\n\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: randn()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 2 August 2014
 | |
| 
 | |
|   Simple approximation to normal (gaussian) random number generator
 | |
|   with 0 mean and unit variance.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| #define RANDN_IT 12  /* This magic number of iterations gives us a
 | |
|                         unit variance.  I think beacuse var =
 | |
|                         (b-a)^2/12 for one uniform random variable, so
 | |
|                         for a sum of n random variables it's
 | |
|                         n(b-a)^2/12, or for b=1, a = 0, n=12, we get
 | |
|                         var = 12(1-0)^2/12 = 1 */
 | |
| 
 | |
| static float randn() {
 | |
|     int   i;
 | |
|     float rn = 0.0;
 | |
| 
 | |
|     for(i=0; i<RANDN_IT; i++)
 | |
|         rn += (float)rand()/RAND_MAX;
 | |
| 
 | |
|     rn -= (float)RANDN_IT/2.0;
 | |
|     return rn;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*---------------------------------------------------------------------------*\
 | |
| 
 | |
|   FUNCTION....: fdmdv_simulate_channel()
 | |
|   AUTHOR......: David Rowe
 | |
|   DATE CREATED: 10 July 2014
 | |
| 
 | |
|   Simple channel simulation function to aid in testing.  Target SNR
 | |
|   uses noise measured in a 3 kHz bandwidth.
 | |
| 
 | |
|   Doesn't use fdmdv states so can be called from anywhere, e.g. non
 | |
|   fdmdv applications.
 | |
| 
 | |
|   TODO: Measured SNR is coming out a few dB higher than target_snr, this
 | |
|   needs to be fixed.
 | |
| 
 | |
| \*---------------------------------------------------------------------------*/
 | |
| 
 | |
| void fdmdv_simulate_channel(float *sig_pwr_av, COMP samples[], int nin, float target_snr)
 | |
| {
 | |
|     float sig_pwr, target_snr_linear, noise_pwr, noise_pwr_1Hz, noise_pwr_4000Hz, noise_gain;
 | |
|     int   i;
 | |
| 
 | |
|     /* estimate signal power */
 | |
| 
 | |
|     sig_pwr = 0.0;
 | |
|     for(i=0; i<nin; i++)
 | |
|         sig_pwr += samples[i].real*samples[i].real + samples[i].imag*samples[i].imag;
 | |
| 
 | |
|     sig_pwr /= nin;
 | |
| 
 | |
|     *sig_pwr_av = 0.9**sig_pwr_av + 0.1*sig_pwr;
 | |
| 
 | |
|     /* det noise to meet target SNR */
 | |
| 
 | |
|     target_snr_linear = powf(10.0, target_snr/10.0);
 | |
|     noise_pwr = *sig_pwr_av/target_snr_linear;       /* noise pwr in a 3000 Hz BW     */
 | |
|     noise_pwr_1Hz = noise_pwr/3000.0;                  /* noise pwr in a 1 Hz bandwidth */
 | |
|     noise_pwr_4000Hz = noise_pwr_1Hz*4000.0;           /* noise pwr in a 4000 Hz BW, which
 | |
|                                                           due to fs=8000 Hz in our simulation noise BW */
 | |
| 
 | |
|     noise_gain = sqrtf(0.5*noise_pwr_4000Hz);          /* split noise pwr between real and imag sides  */
 | |
| 
 | |
|     for(i=0; i<nin; i++) {
 | |
|         samples[i].real += noise_gain*randn();
 | |
|         samples[i].imag += noise_gain*randn();
 | |
|     }
 | |
|     /*
 | |
|     fprintf(stderr, "sig_pwr: %f f->sig_pwr_av: %e target_snr_linear: %f noise_pwr_4000Hz: %e noise_gain: %e\n",
 | |
|             sig_pwr, f->sig_pwr_av, target_snr_linear, noise_pwr_4000Hz, noise_gain);
 | |
|     */
 | |
| }
 | |
| 
 | |
| } // FreeDV
 | |
| 
 |