sdrangel/wdsp/gen.cpp

661 wiersze
18 KiB
C++

/* gen.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "gen.hpp"
#include "RXA.hpp"
#include "TXA.hpp"
namespace WDSP {
void GEN::calc_tone (GEN *a)
{
a->tone.phs = 0.0;
a->tone.delta = TWOPI * a->tone.freq / a->rate;
a->tone.cosdelta = cos (a->tone.delta);
a->tone.sindelta = sin (a->tone.delta);
}
void GEN::calc_tt (GEN *a)
{
a->tt.phs1 = 0.0;
a->tt.phs2 = 0.0;
a->tt.delta1 = TWOPI * a->tt.f1 / a->rate;
a->tt.delta2 = TWOPI * a->tt.f2 / a->rate;
a->tt.cosdelta1 = cos (a->tt.delta1);
a->tt.cosdelta2 = cos (a->tt.delta2);
a->tt.sindelta1 = sin (a->tt.delta1);
a->tt.sindelta2 = sin (a->tt.delta2);
}
void GEN::calc_sweep (GEN *a)
{
a->sweep.phs = 0.0;
a->sweep.dphs = TWOPI * a->sweep.f1 / a->rate;
a->sweep.d2phs = TWOPI * a->sweep.sweeprate / (a->rate * a->rate);
a->sweep.dphsmax = TWOPI * a->sweep.f2 / a->rate;
}
void GEN::calc_sawtooth (GEN *a)
{
a->saw.period = 1.0 / a->saw.f;
a->saw.delta = 1.0 / a->rate;
a->saw.t = 0.0;
}
void GEN::calc_triangle (GEN *a)
{
a->tri.period = 1.0 / a->tri.f;
a->tri.half = 0.5 * a->tri.period;
a->tri.delta = 1.0 / a->rate;
a->tri.t = 0.0;
a->tri.t1 = 0.0;
}
void GEN::calc_pulse (GEN *a)
{
int i;
double delta, theta;
a->pulse.pperiod = 1.0 / a->pulse.pf;
a->pulse.tphs = 0.0;
a->pulse.tdelta = TWOPI * a->pulse.tf / a->rate;
a->pulse.tcosdelta = cos (a->pulse.tdelta);
a->pulse.tsindelta = sin (a->pulse.tdelta);
a->pulse.pntrans = (int)(a->pulse.ptranstime * a->rate);
a->pulse.pnon = (int)(a->pulse.pdutycycle * a->pulse.pperiod * a->rate);
a->pulse.pnoff = (int)(a->pulse.pperiod * a->rate) - a->pulse.pnon - 2 * a->pulse.pntrans;
if (a->pulse.pnoff < 0) a->pulse.pnoff = 0;
a->pulse.pcount = a->pulse.pnoff;
a->pulse.state = 0;
a->pulse.ctrans = new double[a->pulse.pntrans + 1]; // (double *) malloc0 ((a->pulse.pntrans + 1) * sizeof (double));
delta = PI / (double)a->pulse.pntrans;
theta = 0.0;
for (i = 0; i <= a->pulse.pntrans; i++)
{
a->pulse.ctrans[i] = 0.5 * (1.0 - cos (theta));
theta += delta;
}
}
void GEN::calc_gen (GEN *a)
{
calc_tone (a);
calc_tt (a);
calc_sweep (a);
calc_sawtooth (a);
calc_triangle (a);
calc_pulse (a);
}
void GEN::decalc_gen (GEN *a)
{
delete[] (a->pulse.ctrans);
}
GEN* GEN::create_gen (int run, int size, double* in, double* out, int rate, int mode)
{
GEN *a = new GEN;
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = (double)rate;
a->mode = mode;
// tone
a->tone.mag = 1.0;
a->tone.freq = 1000.0;
// two-tone
a->tt.mag1 = 0.5;
a->tt.mag2 = 0.5;
a->tt.f1 = + 900.0;
a->tt.f2 = + 1700.0;
// noise
srand ((unsigned int)time (0));
a->noise.mag = 1.0;
// sweep
a->sweep.mag = 1.0;
a->sweep.f1 = -20000.0;
a->sweep.f2 = +20000.0;
a->sweep.sweeprate = +4000.0;
// sawtooth
a->saw.mag = 1.0;
a->saw.f = 500.0;
// triangle
a->tri.mag = 1.0;
a->tri.f = 500.0;
// pulse
a->pulse.mag = 1.0;
a->pulse.pf = 0.25;
a->pulse.pdutycycle = 0.25;
a->pulse.ptranstime = 0.002;
a->pulse.tf = 1000.0;
calc_gen (a);
return a;
}
void GEN::destroy_gen (GEN *a)
{
decalc_gen (a);
delete (a);
}
void GEN::flush_gen (GEN *a)
{
a->pulse.state = 0;
}
enum pstate
{
OFF,
UP,
ON,
DOWN
};
void GEN::xgen (GEN *a)
{
if (a->run)
{
switch (a->mode)
{
case 0: // tone
{
int i;
double t1, t2;
double cosphase = cos (a->tone.phs);
double sinphase = sin (a->tone.phs);
for (i = 0; i < a->size; i++)
{
a->out[2 * i + 0] = + a->tone.mag * cosphase;
a->out[2 * i + 1] = - a->tone.mag * sinphase;
t1 = cosphase;
t2 = sinphase;
cosphase = t1 * a->tone.cosdelta - t2 * a->tone.sindelta;
sinphase = t1 * a->tone.sindelta + t2 * a->tone.cosdelta;
a->tone.phs += a->tone.delta;
if (a->tone.phs >= TWOPI) a->tone.phs -= TWOPI;
if (a->tone.phs < 0.0 ) a->tone.phs += TWOPI;
}
break;
}
case 1: // two-tone
{
int i;
double tcos, tsin;
double cosphs1 = cos (a->tt.phs1);
double sinphs1 = sin (a->tt.phs1);
double cosphs2 = cos (a->tt.phs2);
double sinphs2 = sin (a->tt.phs2);
for (i = 0; i < a->size; i++)
{
a->out[2 * i + 0] = + a->tt.mag1 * cosphs1 + a->tt.mag2 * cosphs2;
a->out[2 * i + 1] = - a->tt.mag1 * sinphs1 - a->tt.mag2 * sinphs2;
tcos = cosphs1;
tsin = sinphs1;
cosphs1 = tcos * a->tt.cosdelta1 - tsin * a->tt.sindelta1;
sinphs1 = tcos * a->tt.sindelta1 + tsin * a->tt.cosdelta1;
a->tt.phs1 += a->tt.delta1;
if (a->tt.phs1 >= TWOPI) a->tt.phs1 -= TWOPI;
if (a->tt.phs1 < 0.0 ) a->tt.phs1 += TWOPI;
tcos = cosphs2;
tsin = sinphs2;
cosphs2 = tcos * a->tt.cosdelta2 - tsin * a->tt.sindelta2;
sinphs2 = tcos * a->tt.sindelta2 + tsin * a->tt.cosdelta2;
a->tt.phs2 += a->tt.delta2;
if (a->tt.phs2 >= TWOPI) a->tt.phs2 -= TWOPI;
if (a->tt.phs2 < 0.0 ) a->tt.phs2 += TWOPI;
}
break;
}
case 2: // noise
{
int i;
double r1, r2, c, rad;
for (i = 0; i < a->size; i++)
{
do
{
r1 = 2.0 * (double)rand() / (double)RAND_MAX - 1.0;
r2 = 2.0 * (double)rand() / (double)RAND_MAX - 1.0;
c = r1 * r1 + r2 * r2;
} while (c >= 1.0);
rad = sqrt (-2.0 * log (c) / c);
a->out[2 * i + 0] = a->noise.mag * rad * r1;
a->out[2 * i + 1] = a->noise.mag * rad * r2;
}
break;
}
case 3: // sweep
{
int i;
for (i = 0; i < a->size; i++)
{
a->out[2 * i + 0] = + a->sweep.mag * cos(a->sweep.phs);
a->out[2 * i + 1] = - a->sweep.mag * sin(a->sweep.phs);
a->sweep.phs += a->sweep.dphs;
a->sweep.dphs += a->sweep.d2phs;
if (a->sweep.phs >= TWOPI) a->sweep.phs -= TWOPI;
if (a->sweep.phs < 0.0 ) a->sweep.phs += TWOPI;
if (a->sweep.dphs > a->sweep.dphsmax)
a->sweep.dphs = TWOPI * a->sweep.f1 / a->rate;
}
break;
}
case 4: // sawtooth (audio only)
{
int i;
for (i = 0; i < a->size; i++)
{
if (a->saw.t > a->saw.period) a->saw.t -= a->saw.period;
a->out[2 * i + 0] = a->saw.mag * (a->saw.t * a->saw.f - 1.0);
a->out[2 * i + 1] = 0.0;
a->saw.t += a->saw.delta;
}
}
break;
case 5: // triangle (audio only)
{
int i;
for (i = 0; i < a->size; i++)
{
if (a->tri.t > a->tri.period) a->tri.t1 = a->tri.t -= a->tri.period;
if (a->tri.t > a->tri.half) a->tri.t1 -= a->tri.delta;
else a->tri.t1 += a->tri.delta;
a->out[2 * i + 0] = a->tri.mag * (4.0 * a->tri.t1 * a->tri.f - 1.0);
a->out[2 * i + 1] = 0.0;
a->tri.t += a->tri.delta;
}
}
break;
case 6: // pulse (audio only)
{
int i;
double t1, t2;
double cosphase = cos (a->pulse.tphs);
double sinphase = sin (a->pulse.tphs);
for (i = 0; i < a->size; i++)
{
if (a->pulse.pnoff != 0)
switch (a->pulse.state)
{
case OFF:
a->out[2 * i + 0] = 0.0;
if (--a->pulse.pcount == 0)
{
a->pulse.state = UP;
a->pulse.pcount = a->pulse.pntrans;
}
break;
case UP:
a->out[2 * i + 0] = a->pulse.mag * cosphase * a->pulse.ctrans[a->pulse.pntrans - a->pulse.pcount];
if (--a->pulse.pcount == 0)
{
a->pulse.state = ON;
a->pulse.pcount = a->pulse.pnon;
}
break;
case ON:
a->out[2 * i + 0] = a->pulse.mag * cosphase;
if (--a->pulse.pcount == 0)
{
a->pulse.state = DOWN;
a->pulse.pcount = a->pulse.pntrans;
}
break;
case DOWN:
a->out[2 * i + 0] = a->pulse.mag * cosphase * a->pulse.ctrans[a->pulse.pcount];
if (--a->pulse.pcount == 0)
{
a->pulse.state = OFF;
a->pulse.pcount = a->pulse.pnoff;
}
break;
}
else
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
t1 = cosphase;
t2 = sinphase;
cosphase = t1 * a->pulse.tcosdelta - t2 * a->pulse.tsindelta;
sinphase = t1 * a->pulse.tsindelta + t2 * a->pulse.tcosdelta;
a->pulse.tphs += a->pulse.tdelta;
if (a->pulse.tphs >= TWOPI) a->pulse.tphs -= TWOPI;
if (a->pulse.tphs < 0.0 ) a->pulse.tphs += TWOPI;
}
}
break;
default: // silence
{
memset (a->out, 0, a->size * sizeof (dcomplex));
break;
}
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (dcomplex));
}
void GEN::setBuffers_gen (GEN *a, double* in, double* out)
{
a->in = in;
a->out = out;
}
void GEN::setSamplerate_gen (GEN *a, int rate)
{
decalc_gen (a);
a->rate = rate;
calc_gen (a);
}
void GEN::setSize_gen (GEN *a, int size)
{
a->size = size;
flush_gen (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
// 'PreGen', gen0
void GEN::SetPreGenRun (RXA& rxa, int run)
{
rxa.csDSP.lock();
rxa.gen0.p->run = run;
rxa.csDSP.unlock();
}
void GEN::SetPreGenMode (RXA& rxa, int mode)
{
rxa.csDSP.lock();
rxa.gen0.p->mode = mode;
rxa.csDSP.unlock();
}
void GEN::SetPreGenToneMag (RXA& rxa, double mag)
{
rxa.csDSP.lock();
rxa.gen0.p->tone.mag = mag;
rxa.csDSP.unlock();
}
void GEN::SetPreGenToneFreq (RXA& rxa, double freq)
{
rxa.csDSP.lock();
rxa.gen0.p->tone.freq = freq;
calc_tone (rxa.gen0.p);
rxa.csDSP.unlock();
}
void GEN::SetPreGenNoiseMag (RXA& rxa, double mag)
{
rxa.csDSP.lock();
rxa.gen0.p->noise.mag = mag;
rxa.csDSP.unlock();
}
void GEN::SetPreGenSweepMag (RXA& rxa, double mag)
{
rxa.csDSP.lock();
rxa.gen0.p->sweep.mag = mag;
rxa.csDSP.unlock();
}
void GEN::SetPreGenSweepFreq (RXA& rxa, double freq1, double freq2)
{
rxa.csDSP.lock();
rxa.gen0.p->sweep.f1 = freq1;
rxa.gen0.p->sweep.f2 = freq2;
calc_sweep (rxa.gen0.p);
rxa.csDSP.unlock();
}
void GEN::SetPreGenSweepRate (RXA& rxa, double rate)
{
rxa.csDSP.lock();
rxa.gen0.p->sweep.sweeprate = rate;
calc_sweep (rxa.gen0.p);
rxa.csDSP.unlock();
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
// 'PreGen', gen0
void GEN::SetPreGenRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.gen0.p->run = run;
txa.csDSP.unlock();
}
void GEN::SetPreGenMode (TXA& txa, int mode)
{
txa.csDSP.lock();
txa.gen0.p->mode = mode;
txa.csDSP.unlock();
}
void GEN::SetPreGenToneMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen0.p->tone.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPreGenToneFreq (TXA& txa, double freq)
{
txa.csDSP.lock();
txa.gen0.p->tone.freq = freq;
calc_tone (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenNoiseMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen0.p->noise.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPreGenSweepMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen0.p->sweep.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPreGenSweepFreq (TXA& txa, double freq1, double freq2)
{
txa.csDSP.lock();
txa.gen0.p->sweep.f1 = freq1;
txa.gen0.p->sweep.f2 = freq2;
calc_sweep (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenSweepRate (TXA& txa, double rate)
{
txa.csDSP.lock();
txa.gen0.p->sweep.sweeprate = rate;
calc_sweep (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenSawtoothMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen0.p->saw.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPreGenSawtoothFreq (TXA& txa, double freq)
{
txa.csDSP.lock();
txa.gen0.p->saw.f = freq;
calc_sawtooth (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenTriangleMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen0.p->tri.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPreGenTriangleFreq (TXA& txa, double freq)
{
txa.csDSP.lock();
txa.gen0.p->tri.f = freq;
calc_triangle (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenPulseMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen0.p->pulse.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPreGenPulseFreq (TXA& txa, double freq)
{
txa.csDSP.lock();
txa.gen0.p->pulse.pf = freq;
calc_pulse (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenPulseDutyCycle (TXA& txa, double dc)
{
txa.csDSP.lock();
txa.gen0.p->pulse.pdutycycle = dc;
calc_pulse (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenPulseToneFreq (TXA& txa, double freq)
{
txa.csDSP.lock();
txa.gen0.p->pulse.tf = freq;
calc_pulse (txa.gen0.p);
txa.csDSP.unlock();
}
void GEN::SetPreGenPulseTransition (TXA& txa, double transtime)
{
txa.csDSP.lock();
txa.gen0.p->pulse.ptranstime = transtime;
calc_pulse (txa.gen0.p);
txa.csDSP.unlock();
}
// 'PostGen', gen1
void GEN::SetPostGenRun (TXA& txa, int run)
{
txa.csDSP.lock();
txa.gen1.p->run = run;
txa.csDSP.unlock();
}
void GEN::SetPostGenMode (TXA& txa, int mode)
{
txa.csDSP.lock();
txa.gen1.p->mode = mode;
txa.csDSP.unlock();
}
void GEN::SetPostGenToneMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen1.p->tone.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPostGenToneFreq (TXA& txa, double freq)
{
txa.csDSP.lock();
txa.gen1.p->tone.freq = freq;
calc_tone (txa.gen1.p);
txa.csDSP.unlock();
}
void GEN::SetPostGenTTMag (TXA& txa, double mag1, double mag2)
{
txa.csDSP.lock();
txa.gen1.p->tt.mag1 = mag1;
txa.gen1.p->tt.mag2 = mag2;
txa.csDSP.unlock();
}
void GEN::SetPostGenTTFreq (TXA& txa, double freq1, double freq2)
{
txa.csDSP.lock();
txa.gen1.p->tt.f1 = freq1;
txa.gen1.p->tt.f2 = freq2;
calc_tt (txa.gen1.p);
txa.csDSP.unlock();
}
void GEN::SetPostGenSweepMag (TXA& txa, double mag)
{
txa.csDSP.lock();
txa.gen1.p->sweep.mag = mag;
txa.csDSP.unlock();
}
void GEN::SetPostGenSweepFreq (TXA& txa, double freq1, double freq2)
{
txa.csDSP.lock();
txa.gen1.p->sweep.f1 = freq1;
txa.gen1.p->sweep.f2 = freq2;
calc_sweep (txa.gen1.p);
txa.csDSP.unlock();
}
void GEN::SetPostGenSweepRate (TXA& txa, double rate)
{
txa.csDSP.lock();
txa.gen1.p->sweep.sweeprate = rate;
calc_sweep (txa.gen1.p);
txa.csDSP.unlock();
}
} // namespace WDSP