sdrangel/wdsp/fmsq.cpp

308 wiersze
7.1 KiB
C++

/* fmsq.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2016 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "fircore.hpp"
#include "eqp.hpp"
#include "fmsq.hpp"
namespace WDSP {
void FMSQ::calc()
{
double delta;
double theta;
std::vector<float> impulse;
int i;
// noise filter
noise.resize(2 * size * 2);
F[0] = 0.0;
F[1] = (float) fc;
F[2] = (float) *pllpole;
F[3] = 20000.0;
G[0] = 0.0;
G[1] = 0.0;
G[2] = 3.0;
G[3] = (float) (+20.0 * log10(20000.0 / *pllpole));
EQP::eq_impulse (impulse, nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p = new FIRCORE(size, trigger, noise.data(), mp, impulse);
// noise averaging
avm = exp(-1.0 / (rate * avtau));
onem_avm = 1.0 - avm;
avnoise = 100.0;
longavm = exp(-1.0 / (rate * longtau));
onem_longavm = 1.0 - longavm;
longnoise = 1.0;
// level change
ntup = (int)(tup * rate);
ntdown = (int)(tdown * rate);
cup.resize(ntup + 1);
cdown.resize(ntdown + 1);
delta = PI / (double) ntup;
theta = 0.0;
for (i = 0; i <= ntup; i++)
{
cup[i] = 0.5 * (1.0 - cos(theta));
theta += delta;
}
delta = PI / (double) ntdown;
theta = 0.0;
for (i = 0; i <= ntdown; i++)
{
cdown[i] = 0.5 * (1 + cos(theta));
theta += delta;
}
// control
state = FMSQState::MUTED;
ready = 0;
ramp = 0.0;
rstep = 1.0 / rate;
}
void FMSQ::decalc()
{
delete (p);
}
FMSQ::FMSQ(
int _run,
int _size,
float* _insig,
float* _outsig,
float* _trigger,
int _rate,
double _fc,
double* _pllpole,
double _tdelay,
double _avtau,
double _longtau,
double _tup,
double _tdown,
double _tail_thresh,
double _unmute_thresh,
double _min_tail,
double _max_tail,
int _nc,
int _mp
) :
run(_run),
size(_size),
insig(_insig),
outsig(_outsig),
trigger(_trigger),
rate((double) _rate),
fc(_fc),
pllpole(_pllpole),
avtau(_avtau),
longtau(_longtau),
tup(_tup),
tdown(_tdown),
tail_thresh(_tail_thresh),
unmute_thresh(_unmute_thresh),
min_tail(_min_tail),
max_tail(_max_tail),
tdelay(_tdelay),
nc(_nc),
mp(_mp)
{
calc();
}
FMSQ::~FMSQ()
{
decalc();
}
void FMSQ::flush()
{
p->flush();
avnoise = 100.0;
longnoise = 1.0;
state = FMSQState::MUTED;
ready = 0;
ramp = 0.0;
}
void FMSQ::execute()
{
if (run)
{
double _noise;
double lnlimit;
p->execute();
for (int i = 0; i < size; i++)
{
double noise0 = noise[2 * i + 0];
double noise1 = noise[2 * i + 1];
_noise = sqrt(noise0 * noise0 + noise1 * noise1);
avnoise = avm * avnoise + onem_avm * _noise;
longnoise = longavm * longnoise + onem_longavm * _noise;
if (!ready)
ramp += rstep;
if (ramp >= tdelay)
ready = 1;
switch (state)
{
case FMSQState::MUTED:
if (avnoise < unmute_thresh && ready)
{
state = FMSQState::INCREASE;
count = ntup;
}
outsig[2 * i + 0] = 0.0;
outsig[2 * i + 1] = 0.0;
break;
case FMSQState::INCREASE:
outsig[2 * i + 0] = (float) (insig[2 * i + 0] * cup[ntup - count]);
outsig[2 * i + 1] = (float) (insig[2 * i + 1] * cup[ntup - count]);
if (count-- == 0)
state = FMSQState::UNMUTED;
break;
case FMSQState::UNMUTED:
if (avnoise > tail_thresh)
{
state = FMSQState::TAIL;
if ((lnlimit = longnoise) > 1.0)
lnlimit = 1.0;
count = (int)((min_tail + (max_tail - min_tail) * lnlimit) * rate);
}
outsig[2 * i + 0] = insig[2 * i + 0];
outsig[2 * i + 1] = insig[2 * i + 1];
break;
case FMSQState::TAIL:
outsig[2 * i + 0] = insig[2 * i + 0];
outsig[2 * i + 1] = insig[2 * i + 1];
if (avnoise < unmute_thresh)
{
state = FMSQState::UNMUTED;
}
else if (count-- == 0)
{
state = FMSQState::DECREASE;
count = ntdown;
}
break;
case FMSQState::DECREASE:
outsig[2 * i + 0] = (float) (insig[2 * i + 0] * cdown[ntdown - count]);
outsig[2 * i + 1] = (float) (insig[2 * i + 1] * cdown[ntdown - count]);
if (count-- == 0)
state = FMSQState::MUTED;
break;
}
}
}
else if (insig != outsig)
{
std::copy(insig, insig + size * 2, outsig);
}
}
void FMSQ::setBuffers(float* in, float* out, float* trig)
{
insig = in;
outsig = out;
trigger = trig;
p->setBuffers(trigger, noise.data());
}
void FMSQ::setSamplerate(int _rate)
{
decalc();
rate = _rate;
calc();
}
void FMSQ::setSize(int _size)
{
decalc();
size = _size;
calc();
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
void FMSQ::setRun(int _run)
{
run = _run;
}
void FMSQ::setThreshold(double threshold)
{
tail_thresh = threshold;
unmute_thresh = 0.9 * threshold;
}
void FMSQ::setNC(int _nc)
{
std::vector<float> impulse;
if (nc != _nc)
{
nc = _nc;
EQP::eq_impulse (impulse, nc, 3, F.data(), G.data(), rate, 1.0 / (2.0 * size), 0, 0);
p->setNc(impulse);
}
}
void FMSQ::setMP(int _mp)
{
if (mp != _mp)
{
mp = _mp;
p->setMp(mp);
}
}
} // namespace WDSP