/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "nfmmodsource.h" const int NFMModSource::m_levelNbSamples = 480; // every 10ms const float NFMModSource::m_preemphasis = 120.0e-6; // 120us NFMModSource::NFMModSource() : m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_modPhasor(0.0f), m_audioFifo(4800), m_feedbackAudioFifo(48000), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_ifstream(nullptr), m_preemphasisFilter(m_preemphasis*48000), m_audioSampleRate(48000) { m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_feedbackAudioBuffer.resize(1<<14); m_feedbackAudioBufferFill = 0; m_magsq = 0.0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } NFMModSource::~NFMModSource() { } void NFMModSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void NFMModSource::pullOne(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; return; } Complex ci; if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void NFMModSource::prefetch(unsigned int nbSamples) { unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_channelSampleRate); pullAudio(nbSamplesAudio); } void NFMModSource::pullAudio(unsigned int nbSamplesAudio) { if (nbSamplesAudio > m_audioBuffer.size()) { m_audioBuffer.resize(nbSamplesAudio); } m_audioFifo.read(reinterpret_cast(&m_audioBuffer[0]), nbSamplesAudio); m_audioBufferFill = 0; } void NFMModSource::modulateSample() { Real t0, t; pullAF(t0); m_preemphasisFilter.process(t0, t); if (m_settings.m_feedbackAudioEnable) { pushFeedback(t * m_settings.m_feedbackVolumeFactor * 16384.0f); } calculateLevel(t); m_audioBufferFill++; if (m_settings.m_ctcssOn) { m_modPhasor += (m_settings.m_fmDeviation / (float) m_audioSampleRate) * (0.85f * m_bandpass.filter(t) + 0.15f * 0.625f * m_ctcssNco.next()) * 1.33f; } else { m_modPhasor += (m_settings.m_fmDeviation / (float) m_audioSampleRate) * m_bandpass.filter(t) * 1.33f; } // limit phasor range to ]-pi,pi] if (m_modPhasor > M_PI) { m_modPhasor -= (2.0f * M_PI); } m_modSample.real(cos(m_modPhasor) * 0.891235351562f * SDR_TX_SCALEF); // -1 dB m_modSample.imag(sin(m_modPhasor) * 0.891235351562f * SDR_TX_SCALEF); } void NFMModSource::pullAF(Real& sample) { switch (m_settings.m_modAFInput) { case NFMModSettings::NFMModInputTone: sample = m_toneNco.next(); break; case NFMModSettings::NFMModInputFile: // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw // ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw if (m_ifstream && m_ifstream->is_open()) { if (m_ifstream->eof()) { if (m_settings.m_playLoop) { m_ifstream->clear(); m_ifstream->seekg(0, std::ios::beg); } } if (m_ifstream->eof()) { sample = 0.0f; } else { m_ifstream->read(reinterpret_cast(&sample), sizeof(Real)); sample *= m_settings.m_volumeFactor; } } else { sample = 0.0f; } break; case NFMModSettings::NFMModInputAudio: sample = ((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f) * m_settings.m_volumeFactor; break; case NFMModSettings::NFMModInputCWTone: Real fadeFactor; if (m_cwKeyer.getSample()) { m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor); sample = m_toneNco.next() * fadeFactor; } else { if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor)) { sample = m_toneNco.next() * fadeFactor; } else { sample = 0.0f; m_toneNco.setPhase(0); } } break; case NFMModSettings::NFMModInputNone: default: sample = 0.0f; break; } } void NFMModSource::pushFeedback(Real sample) { Complex c(sample, sample); Complex ci; if (m_feedbackInterpolatorDistance < 1.0f) // interpolate { while (!m_feedbackInterpolator.interpolate(&m_feedbackInterpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance; } } else // decimate { if (m_feedbackInterpolator.decimate(&m_feedbackInterpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance; } } } void NFMModSource::processOneSample(Complex& ci) { m_feedbackAudioBuffer[m_feedbackAudioBufferFill].l = ci.real(); m_feedbackAudioBuffer[m_feedbackAudioBufferFill].r = ci.imag(); ++m_feedbackAudioBufferFill; if (m_feedbackAudioBufferFill >= m_feedbackAudioBuffer.size()) { uint res = m_feedbackAudioFifo.write((const quint8*)&m_feedbackAudioBuffer[0], m_feedbackAudioBufferFill); if (res != m_feedbackAudioBufferFill) { qDebug("NFMModSource::pushFeedback: %u/%u audio samples written m_feedbackInterpolatorDistance: %f", res, m_feedbackAudioBufferFill, m_feedbackInterpolatorDistance); m_feedbackAudioFifo.clear(); } m_feedbackAudioBufferFill = 0; } } void NFMModSource::calculateLevel(Real& sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples); m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void NFMModSource::applyAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("NFMModSource::applyAudioSampleRate: invalid sample rate %d", sampleRate); return; } qDebug("NFMModSource::applyAudioSampleRate: %d", sampleRate); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) sampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, sampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); m_lowpass.create(301, sampleRate, 250.0); m_bandpass.create(301, sampleRate, 300.0, m_settings.m_afBandwidth); m_toneNco.setFreq(m_settings.m_toneFrequency, sampleRate); m_ctcssNco.setFreq(NFMModSettings::getCTCSSFreq(m_settings.m_ctcssIndex), sampleRate); m_cwKeyer.setSampleRate(sampleRate); m_cwKeyer.reset(); m_preemphasisFilter.configure(m_preemphasis*sampleRate); m_audioSampleRate = sampleRate; applyFeedbackAudioSampleRate(m_feedbackAudioSampleRate); } void NFMModSource::applyFeedbackAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("NFMModSource::applyFeedbackAudioSampleRate: invalid sample rate %d", sampleRate); return; } qDebug("NFMModSource::applyFeedbackAudioSampleRate: %d", sampleRate); m_feedbackInterpolatorDistanceRemain = 0; m_feedbackInterpolatorConsumed = false; m_feedbackInterpolatorDistance = (Real) sampleRate / (Real) m_audioSampleRate; Real cutoff = std::min(sampleRate, m_audioSampleRate) / 2.2f; m_feedbackInterpolator.create(48, sampleRate, cutoff, 3.0); m_feedbackAudioSampleRate = sampleRate; } void NFMModSource::applySettings(const NFMModSettings& settings, bool force) { if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || (settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { m_settings.m_rfBandwidth = settings.m_rfBandwidth; m_settings.m_afBandwidth = settings.m_afBandwidth; applyAudioSampleRate(m_audioSampleRate); } if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force) { m_toneNco.setFreq(settings.m_toneFrequency, m_audioSampleRate); } if ((settings.m_ctcssIndex != m_settings.m_ctcssIndex) || force) { m_ctcssNco.setFreq(NFMModSettings::getCTCSSFreq(settings.m_ctcssIndex), m_audioSampleRate); } m_settings = settings; } void NFMModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "NFMModSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) channelSampleRate; m_interpolator.create(48, m_audioSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; }