/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 F4HKW // // for F4EXB / SDRAngel // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/downchannelizer.h" #include "dsp/threadedbasebandsamplesink.h" #include "device/devicesourceapi.h" #include "atvdemod.h" MESSAGE_CLASS_DEFINITION(ATVDemod::MsgConfigureATVDemod, Message) MESSAGE_CLASS_DEFINITION(ATVDemod::MsgConfigureRFATVDemod, Message) MESSAGE_CLASS_DEFINITION(ATVDemod::MsgReportEffectiveSampleRate, Message) MESSAGE_CLASS_DEFINITION(ATVDemod::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(ATVDemod::MsgReportChannelSampleRateChanged, Message) const QString ATVDemod::m_channelIdURI = "sdrangel.channel.demodatv"; const QString ATVDemod::m_channelId = "ATVDemod"; const int ATVDemod::m_ssbFftLen = 1024; ATVDemod::ATVDemod(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_scopeSink(0), m_registeredTVScreen(0), m_intNumberSamplePerTop(0), m_intImageIndex(0), m_intSynchroPoints(0), m_blnSynchroDetected(false), m_blnVerticalSynchroDetected(false), m_fltAmpLineAverage(0.0f), m_fltEffMin(2000000000.0f), m_fltEffMax(-2000000000.0f), m_fltAmpMin(-2000000000.0f), m_fltAmpMax(2000000000.0f), m_fltAmpDelta(1.0), m_intColIndex(0), m_intSampleIndex(0), m_intRowIndex(0), m_intLineIndex(0), m_objAvgColIndex(3), m_bfoPLL(200/1000000, 100/1000000, 0.01), m_bfoFilter(200.0, 1000000.0, 0.9), m_interpolatorDistance(1.0f), m_interpolatorDistanceRemain(0.0f), m_DSBFilter(0), m_DSBFilterBuffer(0), m_DSBFilterBufferIndex(0), m_objSettingsMutex(QMutex::Recursive) { setObjectName(m_channelId); //*************** ATV PARAMETERS *************** //m_intNumberSamplePerLine=0; m_intSynchroPoints=0; m_intNumberOfLines=0; m_interleaved = true; m_DSBFilter = new fftfilt((2.0f * m_rfConfig.m_fltRFBandwidth) / 1000000, 2 * m_ssbFftLen); // arbitrary 1 MS/s sample rate m_DSBFilterBuffer = new Complex[m_ssbFftLen]; memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen)); memset((void*)m_fltBufferI,0,6*sizeof(float)); memset((void*)m_fltBufferQ,0,6*sizeof(float)); m_objPhaseDiscri.setFMScaling(1.0f); applyStandard(); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); connect(m_channelizer, SIGNAL(inputSampleRateChanged()), this, SLOT(channelSampleRateChanged())); } ATVDemod::~ATVDemod() { m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete m_DSBFilter; delete m_DSBFilterBuffer; } void ATVDemod::setTVScreen(TVScreen *objScreen) { m_registeredTVScreen = objScreen; } void ATVDemod::configure( MessageQueue* objMessageQueue, float fltLineDurationUs, float fltTopDurationUs, float fltFramePerS, ATVStd enmATVStandard, int intNumberOfLines, float fltRatioOfRowsToDisplay, float fltVoltLevelSynchroTop, float fltVoltLevelSynchroBlack, bool blnHSync, bool blnVSync, bool blnInvertVideo, int intVideoTabIndex) { Message* msgCmd = MsgConfigureATVDemod::create( fltLineDurationUs, fltTopDurationUs, fltFramePerS, enmATVStandard, intNumberOfLines, fltRatioOfRowsToDisplay, fltVoltLevelSynchroTop, fltVoltLevelSynchroBlack, blnHSync, blnVSync, blnInvertVideo, intVideoTabIndex); objMessageQueue->push(msgCmd); } void ATVDemod::configureRF( MessageQueue* objMessageQueue, int64_t frequencyOffset, ATVModulation enmModulation, float fltRFBandwidth, float fltRFOppBandwidth, bool blnFFTFiltering, bool blnDecimatorEnable, float fltBFOFrequency, float fmDeviation) { Message* msgCmd = MsgConfigureRFATVDemod::create( frequencyOffset, enmModulation, fltRFBandwidth, fltRFOppBandwidth, blnFFTFiltering, blnDecimatorEnable, fltBFOFrequency, fmDeviation); objMessageQueue->push(msgCmd); } void ATVDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst) { (void) firstOfBurst; float fltI; float fltQ; Complex ci; //********** Let's rock and roll buddy ! ********** m_objSettingsMutex.lock(); //********** Accessing ATV Screen context ********** #ifdef EXTENDED_DIRECT_SAMPLE qint16 * ptrBufferToRelease = 0; qint16 * ptrBuffer; qint32 intLen; //********** Reading direct samples ********** SampleVector::const_iterator it = begin; intLen = it->intLen; ptrBuffer = it->ptrBuffer; ptrBufferToRelease = ptrBuffer; ++it; for(qint32 intInd=0; intIndreal(); fltQ = it->imag(); #endif Complex c(fltI, fltQ); if (m_rfRunning.m_intFrequencyOffset != 0) { c *= m_nco.nextIQ(); } if (m_rfRunning.m_blndecimatorEnable) { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { demod(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else { demod(c); } } if ((m_running.m_intVideoTabIndex == 1) && (m_scopeSink != 0)) // do only if scope tab is selected and scope is available { m_scopeSink->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), false); // m_ssb = positive only m_scopeSampleBuffer.clear(); } #ifdef EXTENDED_DIRECT_SAMPLE if (ptrBufferToRelease != 0) { delete ptrBufferToRelease; } #endif m_objSettingsMutex.unlock(); } void ATVDemod::demod(Complex& c) { float fltDivSynchroBlack = 1.0f - m_running.m_fltVoltLevelSynchroBlack; float fltNormI; float fltNormQ; float fltNorm; float fltVal; int intVal; //********** FFT filtering ********** if (m_rfRunning.m_blnFFTFiltering) { int n_out; fftfilt::cmplx *filtered; n_out = m_DSBFilter->runAsym(c, &filtered, m_rfRunning.m_enmModulation != ATV_LSB); // all usb except explicitely lsb if (n_out > 0) { memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex)); m_DSBFilterBufferIndex = 0; } m_DSBFilterBufferIndex++; } //********** demodulation ********** const float& fltI = m_rfRunning.m_blnFFTFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex-1].real() : c.real(); const float& fltQ = m_rfRunning.m_blnFFTFiltering ? m_DSBFilterBuffer[m_DSBFilterBufferIndex-1].imag() : c.imag(); double magSq; if ((m_rfRunning.m_enmModulation == ATV_FM1) || (m_rfRunning.m_enmModulation == ATV_FM2)) { //Amplitude FM magSq = fltI*fltI + fltQ*fltQ; m_objMagSqAverage(magSq); fltNorm = sqrt(magSq); fltNormI= fltI/fltNorm; fltNormQ= fltQ/fltNorm; //-2 > 2 : 0 -> 1 volt //0->0.3 synchro 0.3->1 image if (m_rfRunning.m_enmModulation == ATV_FM1) { //YDiff Cd fltVal = m_fltBufferI[0]*(fltNormQ - m_fltBufferQ[1]); fltVal -= m_fltBufferQ[0]*(fltNormI - m_fltBufferI[1]); fltVal += 2.0f; fltVal /= 4.0f; } else { //YDiff Folded fltVal = m_fltBufferI[2]*((m_fltBufferQ[5]-fltNormQ)/16.0f + m_fltBufferQ[1] - m_fltBufferQ[3]); fltVal -= m_fltBufferQ[2]*((m_fltBufferI[5]-fltNormI)/16.0f + m_fltBufferI[1] - m_fltBufferI[3]); fltVal += 2.125f; fltVal /= 4.25f; m_fltBufferI[5]=m_fltBufferI[4]; m_fltBufferQ[5]=m_fltBufferQ[4]; m_fltBufferI[4]=m_fltBufferI[3]; m_fltBufferQ[4]=m_fltBufferQ[3]; m_fltBufferI[3]=m_fltBufferI[2]; m_fltBufferQ[3]=m_fltBufferQ[2]; m_fltBufferI[2]=m_fltBufferI[1]; m_fltBufferQ[2]=m_fltBufferQ[1]; } m_fltBufferI[1]=m_fltBufferI[0]; m_fltBufferQ[1]=m_fltBufferQ[0]; m_fltBufferI[0]=fltNormI; m_fltBufferQ[0]=fltNormQ; if (m_rfRunning.m_fmDeviation != 1.0f) { fltVal = ((fltVal - 0.5f) / m_rfRunning.m_fmDeviation) + 0.5f; } } else if (m_rfRunning.m_enmModulation == ATV_AM) { //Amplitude AM magSq = fltI*fltI + fltQ*fltQ; m_objMagSqAverage(magSq); fltNorm = sqrt(magSq); fltVal = fltNorm / SDR_RX_SCALEF; //********** Mini and Maxi Amplitude tracking ********** if(fltValm_fltEffMax) { m_fltEffMax=fltVal; } //Normalisation fltVal -= m_fltAmpMin; fltVal /=m_fltAmpDelta; } else if ((m_rfRunning.m_enmModulation == ATV_USB) || (m_rfRunning.m_enmModulation == ATV_LSB)) { magSq = fltI*fltI + fltQ*fltQ; m_objMagSqAverage(magSq); fltNorm = sqrt(magSq); Real bfoValues[2]; float fltFiltered = m_bfoFilter.run(fltI); m_bfoPLL.process(fltFiltered, bfoValues); // do the mix float mixI = fltI * bfoValues[0] - fltQ * bfoValues[1]; float mixQ = fltI * bfoValues[1] + fltQ * bfoValues[0]; if (m_rfRunning.m_enmModulation == ATV_USB) { fltVal = (mixI + mixQ); } else { fltVal = (mixI - mixQ); } //********** Mini and Maxi Amplitude tracking ********** if(fltValm_fltEffMax) { m_fltEffMax=fltVal; } //Normalisation fltVal -= m_fltAmpMin; fltVal /=m_fltAmpDelta; } else if (m_rfRunning.m_enmModulation == ATV_FM3) { float rawDeviation; fltVal = m_objPhaseDiscri.phaseDiscriminatorDelta(c, magSq, rawDeviation) + 0.5f; //fltVal = fltVal < 0.0f ? 0.0f : fltVal > 1.0f ? 1.0f : fltVal; m_objMagSqAverage(magSq); fltNorm = sqrt(magSq); } else { magSq = fltI*fltI + fltQ*fltQ; m_objMagSqAverage(magSq); fltNorm = sqrt(magSq); fltVal = 0.0f; } fltVal = m_running.m_blnInvertVideo ? 1.0f - fltVal : fltVal; fltVal = (fltVal < -1.0f) ? -1.0f : (fltVal > 1.0f) ? 1.0f : fltVal; if ((m_running.m_intVideoTabIndex == 1) && (m_scopeSink != 0)) { // feed scope buffer only if scope is present and visible m_scopeSampleBuffer.push_back(Sample(fltVal*SDR_RX_SCALEF, 0.0f)); } m_fltAmpLineAverage += fltVal; //********** gray level ********** //-0.3 -> 0.7 intVal = (int) 255.0*(fltVal - m_running.m_fltVoltLevelSynchroBlack) / fltDivSynchroBlack; //0 -> 255 if(intVal<0) { intVal=0; } else if(intVal>255) { intVal=255; } //********** process video sample ********** if (m_registeredTVScreen) // can process only if the screen is available (set via the GUI) { if (m_running.m_enmATVStandard == ATVStdHSkip) { processHSkip(fltVal, intVal); } else { processClassic(fltVal, intVal); } } } void ATVDemod::start() { //m_objTimer.start(); } void ATVDemod::stop() { } bool ATVDemod::handleMessage(const Message& cmd) { qDebug() << "ATVDemod::handleMessage"; if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& objNotif = (DownChannelizer::MsgChannelizerNotification&) cmd; m_config.m_intSampleRate = objNotif.getSampleRate(); m_rfConfig.m_intFrequencyOffset = objNotif.getFrequencyOffset(); qDebug() << "ATVDemod::handleMessage: MsgChannelizerNotification:" << " m_intSampleRate: " << m_config.m_intSampleRate << " m_intFrequencyOffset: " << m_rfConfig.m_intFrequencyOffset; applySettings(); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; m_channelizer->configure(m_channelizer->getInputMessageQueue(), m_channelizer->getInputSampleRate(), cfg.getCenterFrequency()); qDebug() << "ATVDemod::handleMessage: MsgConfigureChannelizer: sampleRate: " << m_channelizer->getInputSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); return true; } else if (MsgConfigureATVDemod::match(cmd)) { MsgConfigureATVDemod& objCfg = (MsgConfigureATVDemod&) cmd; m_config = objCfg.m_objMsgConfig; qDebug() << "ATVDemod::handleMessage: MsgConfigureATVDemod:" << " m_fltVoltLevelSynchroBlack:" << m_config.m_fltVoltLevelSynchroBlack << " m_fltVoltLevelSynchroTop:" << m_config.m_fltVoltLevelSynchroTop << " m_fltFramePerS:" << m_config.m_fltFramePerS << " m_fltLineDurationUs:" << m_config.m_fltLineDuration << " m_fltRatioOfRowsToDisplay:" << m_config.m_fltRatioOfRowsToDisplay << " m_fltTopDurationUs:" << m_config.m_fltTopDuration << " m_blnHSync:" << m_config.m_blnHSync << " m_blnVSync:" << m_config.m_blnVSync; applySettings(); return true; } else if (MsgConfigureRFATVDemod::match(cmd)) { MsgConfigureRFATVDemod& objCfg = (MsgConfigureRFATVDemod&) cmd; m_rfConfig = objCfg.m_objMsgConfig; qDebug() << "ATVDemod::handleMessage: MsgConfigureRFATVDemod:" << " m_intFrequencyOffset:" << m_rfConfig.m_intFrequencyOffset << " m_enmModulation:" << m_rfConfig.m_enmModulation << " m_fltRFBandwidth:" << m_rfConfig.m_fltRFBandwidth << " m_fltRFOppBandwidth:" << m_rfConfig.m_fltRFOppBandwidth << " m_blnFFTFiltering:" << m_rfConfig.m_blnFFTFiltering << " m_blnDecimatorEnable:" << m_rfConfig.m_blndecimatorEnable << " m_fltBFOFrequency:" << m_rfConfig.m_fltBFOFrequency << " m_fmDeviation:" << m_rfConfig.m_fmDeviation; applySettings(); return true; } else { if (m_scopeSink != 0) { return m_scopeSink->handleMessage(cmd); } else { return false; } } } void ATVDemod::applySettings() { if (m_config.m_intSampleRate == 0) { return; } bool forwardSampleRateChange = false; if((m_rfConfig.m_intFrequencyOffset != m_rfRunning.m_intFrequencyOffset) || (m_rfConfig.m_enmModulation != m_rfRunning.m_enmModulation) || (m_config.m_intSampleRate != m_running.m_intSampleRate)) { m_nco.setFreq(-m_rfConfig.m_intFrequencyOffset, m_config.m_intSampleRate); } if ((m_config.m_intSampleRate != m_running.m_intSampleRate) || (m_rfConfig.m_fltRFBandwidth != m_rfRunning.m_fltRFBandwidth) || (m_config.m_fltFramePerS != m_running.m_fltFramePerS) || (m_config.m_intNumberOfLines != m_running.m_intNumberOfLines)) { m_objSettingsMutex.lock(); int linesPerSecond = m_config.m_intNumberOfLines * m_config.m_fltFramePerS; int maxPoints = m_config.m_intSampleRate / linesPerSecond; int i = maxPoints; for (; i > 0; i--) { if ((i * linesPerSecond) % 10 == 0) break; } int nbPointsPerRateUnit = i == 0 ? maxPoints : i; m_configPrivate.m_intTVSampleRate = nbPointsPerRateUnit * linesPerSecond; if (m_configPrivate.m_intTVSampleRate > 0) { m_interpolatorDistance = (Real) m_configPrivate.m_intTVSampleRate / (Real) m_config.m_intSampleRate; } else { m_configPrivate.m_intTVSampleRate = m_config.m_intSampleRate; m_interpolatorDistance = 1.0f; } m_interpolatorDistanceRemain = 0; m_interpolator.create(24, m_configPrivate.m_intTVSampleRate, m_rfConfig.m_fltRFBandwidth / getRFBandwidthDivisor(m_rfConfig.m_enmModulation), 3.0); m_objSettingsMutex.unlock(); } if((m_config.m_fltFramePerS != m_running.m_fltFramePerS) || (m_config.m_fltLineDuration != m_running.m_fltLineDuration) || (m_config.m_intSampleRate != m_running.m_intSampleRate) || (m_config.m_fltTopDuration != m_running.m_fltTopDuration) || (m_config.m_fltRatioOfRowsToDisplay != m_running.m_fltRatioOfRowsToDisplay) || (m_config.m_enmATVStandard != m_running.m_enmATVStandard) || (m_config.m_intNumberOfLines != m_running.m_intNumberOfLines)) { m_objSettingsMutex.lock(); m_intNumberOfLines = m_config.m_intNumberOfLines; applyStandard(); m_configPrivate.m_intNumberSamplePerLine = (int) (m_config.m_fltLineDuration * m_config.m_intSampleRate); m_intNumberSamplePerTop = (int) (m_config.m_fltTopDuration * m_config.m_intSampleRate); if (m_registeredTVScreen) { //m_registeredTVScreen->setRenderImmediate(!(m_config.m_fltFramePerS > 25.0f)); m_registeredTVScreen->resizeTVScreen( m_configPrivate.m_intNumberSamplePerLine - m_intNumberSamplePerLineSignals, m_intNumberOfLines - m_intNumberOfBlackLines); } qDebug() << "ATVDemod::applySettings:" << " m_fltLineDuration: " << m_config.m_fltLineDuration << " m_fltFramePerS: " << m_config.m_fltFramePerS << " m_intNumberOfLines: " << m_intNumberOfLines << " m_intNumberSamplePerLine: " << m_configPrivate.m_intNumberSamplePerLine << " m_intNumberOfBlackLines: " << m_intNumberOfBlackLines; m_intImageIndex = 0; m_intColIndex=0; m_intRowIndex=0; m_objSettingsMutex.unlock(); } if ((m_configPrivate.m_intTVSampleRate != m_runningPrivate.m_intTVSampleRate) || (m_configPrivate.m_intNumberSamplePerLine != m_runningPrivate.m_intNumberSamplePerLine) || (m_config.m_intSampleRate != m_running.m_intSampleRate) || (m_rfConfig.m_blndecimatorEnable != m_rfRunning.m_blndecimatorEnable)) { forwardSampleRateChange = true; } if ((m_configPrivate.m_intTVSampleRate != m_runningPrivate.m_intTVSampleRate) || (m_rfConfig.m_fltRFBandwidth != m_rfRunning.m_fltRFBandwidth) || (m_rfConfig.m_fltRFOppBandwidth != m_rfRunning.m_fltRFOppBandwidth)) { m_objSettingsMutex.lock(); m_DSBFilter->create_asym_filter(m_rfConfig.m_fltRFOppBandwidth / m_configPrivate.m_intTVSampleRate, m_rfConfig.m_fltRFBandwidth / m_configPrivate.m_intTVSampleRate); memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen)); m_DSBFilterBufferIndex = 0; m_objSettingsMutex.unlock(); } if ((m_configPrivate.m_intTVSampleRate != m_runningPrivate.m_intTVSampleRate) || (m_rfConfig.m_fltBFOFrequency != m_rfRunning.m_fltBFOFrequency)) { m_bfoPLL.configure(m_rfConfig.m_fltBFOFrequency / m_configPrivate.m_intTVSampleRate, 100.0 / m_configPrivate.m_intTVSampleRate, 0.01); m_bfoFilter.setFrequencies(m_rfConfig.m_fltBFOFrequency, m_configPrivate.m_intTVSampleRate); } if (m_rfConfig.m_fmDeviation != m_rfRunning.m_fmDeviation) { m_objPhaseDiscri.setFMScaling(1.0f / m_rfConfig.m_fmDeviation); } m_running = m_config; m_rfRunning = m_rfConfig; m_runningPrivate = m_configPrivate; if (forwardSampleRateChange && getMessageQueueToGUI()) { int sampleRate = m_rfRunning.m_blndecimatorEnable ? m_runningPrivate.m_intTVSampleRate : m_running.m_intSampleRate; MsgReportEffectiveSampleRate *report; report = MsgReportEffectiveSampleRate::create(sampleRate, m_runningPrivate.m_intNumberSamplePerLine); getMessageQueueToGUI()->push(report); } } void ATVDemod::applyStandard() { switch(m_config.m_enmATVStandard) { case ATVStdHSkip: // what is left in a line for the image m_intNumberOfSyncLines = 0; m_intNumberOfBlackLines = 0; m_intNumberOfEqLines = 0; // not applicable m_interleaved = false; break; case ATVStdShort: // what is left in a line for the image m_intNumberOfSyncLines = 4; m_intNumberOfBlackLines = 4; m_intNumberOfEqLines = 0; m_interleaved = false; break; case ATVStdShortInterleaved: // what is left in a line for the image m_intNumberOfSyncLines = 4; m_intNumberOfBlackLines = 4; m_intNumberOfEqLines = 0; m_interleaved = true; break; case ATVStd405: // Follows loosely the 405 lines standard // what is left in a ine for the image m_intNumberOfSyncLines = 24; // (15+7)*2 - 20 m_intNumberOfBlackLines = 28; // above + 4 m_intNumberOfEqLines = 3; m_interleaved = true; break; case ATVStdPAL525: // Follows PAL-M standard // what is left in a 64/1.008 us line for the image m_intNumberOfSyncLines = 40; // (15+15)*2 - 20 m_intNumberOfBlackLines = 44; // above + 4 m_intNumberOfEqLines = 3; m_interleaved = true; break; case ATVStdPAL625: // Follows PAL-B/G/H standard default: // what is left in a 64 us line for the image m_intNumberOfSyncLines = 44; // (15+17)*2 - 20 m_intNumberOfBlackLines = 48; // above + 4 m_intNumberOfEqLines = 3; m_interleaved = true; } // for now all standards apply this m_intNumberSamplePerLineSignals = (int) ((12.0f/64.0f)*m_config.m_fltLineDuration * m_config.m_intSampleRate); // 12.0 = 7.3 + 4.7 m_intNumberSaplesPerHSync = (int) ((9.6f/64.0f)*m_config.m_fltLineDuration * m_config.m_intSampleRate); // 9.4 = 4.7 + 4.7 } int ATVDemod::getSampleRate() { return m_running.m_intSampleRate; } int ATVDemod::getEffectiveSampleRate() { return m_rfRunning.m_blndecimatorEnable ? m_runningPrivate.m_intTVSampleRate : m_running.m_intSampleRate; } bool ATVDemod::getBFOLocked() { if ((m_rfRunning.m_enmModulation == ATV_USB) || (m_rfRunning.m_enmModulation == ATV_LSB)) { return m_bfoPLL.locked(); } else { return false; } } float ATVDemod::getRFBandwidthDivisor(ATVModulation modulation) { switch(modulation) { case ATV_USB: case ATV_LSB: return 1.05f; break; case ATV_FM1: case ATV_FM2: case ATV_AM: default: return 2.2f; } } void ATVDemod::channelSampleRateChanged() { qDebug("ATVDemod::channelSampleRateChanged"); if (getMessageQueueToGUI()) { MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create(m_channelizer->getInputSampleRate()); getMessageQueueToGUI()->push(msg); } }