/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016-2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "devicebladerf2.h" DeviceBladeRF2::DeviceBladeRF2() : m_dev(0), m_nbRxChannels(0), m_nbTxChannels(0), m_rxOpen(0), m_txOpen(0) {} DeviceBladeRF2::~DeviceBladeRF2() { if (m_dev) { bladerf_close(m_dev); m_dev = 0; } if (m_rxOpen) { delete[] m_rxOpen; } if (m_txOpen) { delete[] m_txOpen; } } bool DeviceBladeRF2::open(const char *serial) { int fpga_loaded; if ((m_dev = open_bladerf_from_serial(serial)) == 0) { qCritical("DeviceBladeRF2::open: could not open BladeRF"); return false; } fpga_loaded = bladerf_is_fpga_configured(m_dev); if (fpga_loaded < 0) { qCritical("DeviceBladeRF2::open: failed to check FPGA state: %s", bladerf_strerror(fpga_loaded)); return false; } else if (fpga_loaded == 0) { qCritical("DeviceBladeRF2::open: the device's FPGA is not loaded."); return false; } m_nbRxChannels = bladerf_get_channel_count(m_dev, BLADERF_RX); m_nbTxChannels = bladerf_get_channel_count(m_dev, BLADERF_TX); m_rxOpen = new bool[m_nbRxChannels]; m_txOpen = new bool[m_nbTxChannels]; std::fill(m_rxOpen, m_rxOpen + m_nbRxChannels, false); std::fill(m_txOpen, m_txOpen + m_nbTxChannels, false); return true; } void DeviceBladeRF2::close() { if (m_dev) { bladerf_close(m_dev); m_dev = 0; } } struct bladerf *DeviceBladeRF2::open_bladerf_from_serial(const char *serial) { int status; struct bladerf *dev; struct bladerf_devinfo info; /* Initialize all fields to "don't care" wildcard values. * * Immediately passing this to bladerf_open_with_devinfo() would cause * libbladeRF to open any device on any available backend. */ bladerf_init_devinfo(&info); /* Specify the desired device's serial number, while leaving all other * fields in the info structure wildcard values */ if (serial != 0) { strncpy(info.serial, serial, BLADERF_SERIAL_LENGTH - 1); info.serial[BLADERF_SERIAL_LENGTH - 1] = '\0'; } status = bladerf_open_with_devinfo(&dev, &info); if (status == BLADERF_ERR_NODEV) { qCritical("DeviceBladeRF2::open_bladerf_from_serial: No devices available with serial %s", serial); return 0; } else if (status != 0) { qCritical("DeviceBladeRF2::open_bladerf_from_serial: Failed to open device with serial %s (%s)", serial, bladerf_strerror(status)); return 0; } else { return dev; } } bool DeviceBladeRF2::openRx(int channel) { if (!m_dev) { return false; } if ((channel < 0) || (channel >= m_nbRxChannels)) { qCritical("DeviceBladeRF2::openRx: invalid Rx channel index %d", channel); return false; } int status; if (!m_rxOpen[channel]) { status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_RX(channel), true); if (status < 0) { qCritical("DeviceBladeRF2::openRx: failed to enable Rx channel %d: %s", channel, bladerf_strerror(status)); return false; } else { qDebug("DeviceBladeRF2::openRx: Rx channel %d enabled", channel); m_rxOpen[channel] = true; return true; } } else { qDebug("DeviceBladeRF2::openRx: Rx channel %d already opened", channel); return true; } } bool DeviceBladeRF2::openTx(int channel) { if (!m_dev) { return false; } if ((channel < 0) || (channel >= m_nbTxChannels)) { qCritical("DeviceBladeRF2::openTx: invalid Tx channel index %d", channel); return false; } int status; if (!m_txOpen[channel]) { status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_TX(channel), true); if (status < 0) { qCritical("DeviceBladeRF2::openTx: Failed to enable Tx channel %d: %s", channel, bladerf_strerror(status)); return false; } else { qDebug("DeviceBladeRF2::openTx: Tx channel %d enabled", channel); m_txOpen[channel] = true; return true; } } else { qDebug("DeviceBladeRF2::openTx: Tx channel %d already opened", channel); return true; } } void DeviceBladeRF2::closeRx(int channel) { if (!m_dev) { return; } if ((channel < 0) || (channel >= m_nbRxChannels)) { qCritical("DeviceBladeRF2::closeRx: invalid Rx channel index %d", channel); return; } if (m_rxOpen[channel]) { int status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_RX(channel), false); m_rxOpen[channel] = false; if (status < 0) { qCritical("DeviceBladeRF2::closeRx: failed to disable Rx channel %d: %s", channel, bladerf_strerror(status)); } else { qDebug("DeviceBladeRF2::closeRx: Rx channel %d disabled", channel); } } else { qDebug("DeviceBladeRF2::closeRx: Rx channel %d already closed", channel); } } void DeviceBladeRF2::closeTx(int channel) { if (!m_dev) { return; } if ((channel < 0) || (channel >= m_nbTxChannels)) { qCritical("DeviceBladeRF2::closeTx: invalid Tx channel index %d", channel); return; } if (m_txOpen[channel]) { int status = bladerf_enable_module(m_dev, BLADERF_CHANNEL_TX(channel), false); m_txOpen[channel] = false; if (status < 0) { qCritical("DeviceBladeRF2::closeTx: failed to disable Tx channel %d: %s", channel, bladerf_strerror(status)); } else { qDebug("DeviceBladeRF2::closeTx: Tx channel %d disabled", channel); } } else { qDebug("DeviceBladeRF2::closeTx: Rx channel %d already closed", channel); } } void DeviceBladeRF2::getFrequencyRangeRx(uint64_t& min, uint64_t& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_frequency_range(m_dev, BLADERF_CHANNEL_RX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getFrequencyRangeRx: Failed to get Rx frequency range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getFrequencyRangeTx(uint64_t& min, uint64_t& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_frequency_range(m_dev, BLADERF_CHANNEL_TX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getFrequencyRangeTx: Failed to get Tx frequency range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getSampleRateRangeRx(int& min, int& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_sample_rate_range(m_dev, BLADERF_CHANNEL_RX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getSampleRateRangeRx: Failed to get Rx sample rate range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getSampleRateRangeTx(int& min, int& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_sample_rate_range(m_dev, BLADERF_CHANNEL_TX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getSampleRateRangeTx: Failed to get Tx sample rate range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getBandwidthRangeRx(int& min, int& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_bandwidth_range(m_dev, BLADERF_CHANNEL_RX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getBandwidthRangeRx: Failed to get Rx bandwidth range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getBandwidthRangeTx(int& min, int& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_bandwidth_range(m_dev, BLADERF_CHANNEL_TX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getBandwidthRangeTx: Failed to get Tx bandwidth range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getGlobalGainRangeRx(int& min, int& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_gain_range(m_dev, BLADERF_CHANNEL_RX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getGlobalGainRangeRx: Failed to get Rx global gain range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } void DeviceBladeRF2::getGlobalGainRangeTx(int& min, int& max, int& step) { if (m_dev) { const struct bladerf_range *range; int status; status = bladerf_get_gain_range(m_dev, BLADERF_CHANNEL_TX(0), &range); if (status < 0) { qCritical("DeviceBladeRF2::getGlobalGainRangeTx: Failed to get Tx global gain range: %s", bladerf_strerror(status)); } else { min = range->min; max = range->max; step = range->step; } } } int DeviceBladeRF2::getGainModesRx(const bladerf_gain_modes **modes) { if (m_dev) { int n = bladerf_get_gain_modes(m_dev, BLADERF_CHANNEL_RX(0), 0); if (n < 0) { qCritical("DeviceBladeRF2::getGainModesRx: Failed to get the number of Rx gain modes: %s", bladerf_strerror(n)); return 0; } int status = bladerf_get_gain_modes(m_dev, BLADERF_CHANNEL_RX(0), modes); if (status < 0) { qCritical("DeviceBladeRF2::getGainModesRx: Failed to get Rx gain modes: %s", bladerf_strerror(status)); return 0; } else { return n; } } else { return 0; } } void DeviceBladeRF2::setBiasTeeRx(bool enable) { if (m_dev) { int status = bladerf_set_bias_tee(m_dev, BLADERF_CHANNEL_RX(0), enable); if (status < 0) { qCritical("DeviceBladeRF2::setBiasTeeRx: Failed to set Rx bias tee: %s", bladerf_strerror(status)); } } } void DeviceBladeRF2::setBiasTeeTx(bool enable) { if (m_dev) { int status = bladerf_set_bias_tee(m_dev, BLADERF_CHANNEL_TX(0), enable); if (status < 0) { qCritical("DeviceBladeRF2::setBiasTeeTx: Failed to set Tx bias tee: %s", bladerf_strerror(status)); } } }