/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "dsddemod.h" #include "dsddemodgui.h" #include "audio/audiooutput.h" #include "dsp/channelizer.h" #include "dsp/pidcontroller.h" #include "dsp/dspengine.h" static const Real afSqTones[2] = {1200.0, 6400.0}; // {1200.0, 8000.0}; MESSAGE_CLASS_DEFINITION(DSDDemod::MsgConfigureDSDDemod, Message) DSDDemod::DSDDemod(SampleSink* sampleSink) : m_sampleCount(0), m_squelchCount(0), m_squelchOpen(false), m_audioFifo(4, 48000), m_fmExcursion(24), m_settingsMutex(QMutex::Recursive), m_scope(sampleSink), m_scopeEnabled(true), m_dsdDecoder() { setObjectName("DSDDemod"); m_samplesBuffer = new qint16[1<<18]; // 128 k Samples is the maximum size of all input devices sample buffers (Airspy or HackRF) = 2^(17+1) for 2 byte samples m_config.m_inputSampleRate = 96000; m_config.m_inputFrequencyOffset = 0; m_config.m_rfBandwidth = 100; m_config.m_demodGain = 100; m_config.m_fmDeviation = 100; m_config.m_squelchGate = 5; // 10s of ms at 48000 Hz sample rate. Corresponds to 2400 for AGC attack m_config.m_squelch = -30.0; m_config.m_volume = 1.0; m_config.m_audioMute = false; m_config.m_audioSampleRate = DSPEngine::instance()->getAudioSampleRate(); apply(); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_movingAverage.resize(16, 0); DSPEngine::instance()->addAudioSink(&m_audioFifo); } DSDDemod::~DSDDemod() { DSPEngine::instance()->removeAudioSink(&m_audioFifo); delete[] m_samplesBuffer; } void DSDDemod::configure(MessageQueue* messageQueue, int rfBandwidth, int demodGain, int fmDeviation, int volume, int squelchGate, Real squelch, bool audioMute) { Message* cmd = MsgConfigureDSDDemod::create(rfBandwidth, demodGain, fmDeviation, volume, squelchGate, squelch, audioMute); messageQueue->push(cmd); } void DSDDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst) { Complex ci; m_settingsMutex.lock(); m_samplesBufferIndex = 0; m_scopeSampleBuffer.clear(); for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { qint16 sample; m_magsq = ((ci.real()*ci.real() + ci.imag()*ci.imag())) / (Real) (1<<30); m_movingAverage.feed(m_magsq); Real demod = 32768.0f * m_phaseDiscri.phaseDiscriminator(ci) * ((float) m_running.m_demodGain / 100.0f); m_sampleCount++; // AF processing if (getMagSq() > m_squelchLevel) { if (m_squelchCount < m_squelchGate) { m_squelchCount++; } } else { m_squelchCount = 0; } m_squelchOpen = m_squelchCount == m_squelchGate; if (m_squelchOpen) { sample = demod; } else { sample = 0; } Sample s(sample, 0.0); m_scopeSampleBuffer.push_back(s); m_samplesBuffer[m_samplesBufferIndex++] = sample; // if (m_running.m_audioMute) // { // m_audioBuffer[m_audioBufferFill].l = 0; // m_audioBuffer[m_audioBufferFill].r = 0; // } // else // { // m_audioBuffer[m_audioBufferFill].l = sample; // m_audioBuffer[m_audioBufferFill].r = sample; // } // // ++m_audioBufferFill; // // if (m_audioBufferFill >= m_audioBuffer.size()) // { // uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); // // if (res != m_audioBufferFill) // { // qDebug("DSDDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); // } // // m_audioBufferFill = 0; // } m_interpolatorDistanceRemain += m_interpolatorDistance; } } // if (m_audioBufferFill > 0) // { // uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); // // if (res != m_audioBufferFill) // { // qDebug("NFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); // } // // m_audioBufferFill = 0; // } m_dsdDecoder.popAudioSamples(&m_audioFifo, m_running.m_audioMute); m_dsdDecoder.pushSamples(m_samplesBuffer, m_samplesBufferIndex); if ((m_scope != 0) && (m_scopeEnabled)) { m_scope->feed(m_scopeSampleBuffer.begin(), m_scopeSampleBuffer.end(), true); // true = real samples for what it's worth } m_settingsMutex.unlock(); } void DSDDemod::start() { m_audioFifo.clear(); m_phaseDiscri.reset(); m_dsdDecoder.start(); } void DSDDemod::stop() { m_dsdDecoder.stop(); } bool DSDDemod::handleMessage(const Message& cmd) { qDebug() << "DSDDemod::handleMessage"; if (Channelizer::MsgChannelizerNotification::match(cmd)) { Channelizer::MsgChannelizerNotification& notif = (Channelizer::MsgChannelizerNotification&) cmd; m_config.m_inputSampleRate = notif.getSampleRate(); m_config.m_inputFrequencyOffset = notif.getFrequencyOffset(); apply(); qDebug() << "DSDDemod::handleMessage: MsgChannelizerNotification: m_inputSampleRate: " << m_config.m_inputSampleRate << " m_inputFrequencyOffset: " << m_config.m_inputFrequencyOffset; return true; } else if (MsgConfigureDSDDemod::match(cmd)) { MsgConfigureDSDDemod& cfg = (MsgConfigureDSDDemod&) cmd; m_config.m_rfBandwidth = cfg.getRFBandwidth(); m_config.m_demodGain = cfg.getDemodGain(); m_config.m_fmDeviation = cfg.getFMDeviation(); m_config.m_volume = cfg.getVolume(); m_config.m_squelchGate = cfg.getSquelchGate(); m_config.m_squelch = cfg.getSquelch(); m_config.m_audioMute = cfg.getAudioMute(); apply(); qDebug() << "DSDDemod::handleMessage: MsgConfigureDSDDemod: m_rfBandwidth: " << m_config.m_rfBandwidth * 100 << " m_demodGain: " << m_config.m_demodGain / 100.0 << " m_fmDeviation: " << m_config.m_fmDeviation * 100 << " m_volume: " << m_config.m_volume / 10.0 << " m_squelchGate" << m_config.m_squelchGate << " m_squelch: " << m_config.m_squelch << " m_audioMute: " << m_config.m_audioMute; return true; } else { return false; } } void DSDDemod::apply() { if ((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) || (m_config.m_inputSampleRate != m_running.m_inputSampleRate)) { m_nco.setFreq(-m_config.m_inputFrequencyOffset, m_config.m_inputSampleRate); } if ((m_config.m_inputSampleRate != m_running.m_inputSampleRate) || (m_config.m_rfBandwidth != m_running.m_rfBandwidth)) { m_settingsMutex.lock(); m_interpolator.create(16, m_config.m_inputSampleRate, (m_config.m_rfBandwidth * 100) / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_audioSampleRate; m_phaseDiscri.setFMScaling((float) m_config.m_rfBandwidth / (float) m_config.m_fmDeviation); m_settingsMutex.unlock(); } if (m_config.m_fmDeviation != m_running.m_fmDeviation) { m_phaseDiscri.setFMScaling((float) m_config.m_rfBandwidth / (float) m_config.m_fmDeviation); } if (m_config.m_squelchGate != m_running.m_squelchGate) { m_squelchGate = 480 * m_config.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate } if (m_config.m_squelch != m_running.m_squelch) { // input is a value in tenths of dB m_squelchLevel = std::pow(10.0, m_config.m_squelch / 100.0); //m_squelchLevel *= m_squelchLevel; } m_running.m_inputSampleRate = m_config.m_inputSampleRate; m_running.m_inputFrequencyOffset = m_config.m_inputFrequencyOffset; m_running.m_rfBandwidth = m_config.m_rfBandwidth; m_running.m_demodGain = m_config.m_demodGain; m_running.m_fmDeviation = m_config.m_fmDeviation; m_running.m_squelchGate = m_config.m_squelchGate; m_running.m_squelch = m_config.m_squelch; m_running.m_volume = m_config.m_volume; m_running.m_audioSampleRate = m_config.m_audioSampleRate; m_running.m_audioMute = m_config.m_audioMute; }