/* firmin.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2016 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@wpratt.com */ #include "comm.hpp" #include "fir.hpp" #include "firmin.hpp" namespace WDSP { /******************************************************************************************************** * * * Time-Domain FIR * * * ********************************************************************************************************/ void FIRMIN::calc_firmin (FIRMIN *a) { a->h = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain); a->rsize = a->nc; a->mask = a->rsize - 1; a->ring = new float[a->rsize * 2]; // (float *) malloc0 (a->rsize * sizeof (complex)); a->idx = 0; } FIRMIN* FIRMIN::create_firmin (int run, int position, int size, float* in, float* out, int nc, float f_low, float f_high, int samplerate, int wintype, float gain) { FIRMIN *a = new FIRMIN; a->run = run; a->position = position; a->size = size; a->in = in; a->out = out; a->nc = nc; a->f_low = f_low; a->f_high = f_high; a->samplerate = samplerate; a->wintype = wintype; a->gain = gain; calc_firmin (a); return a; } void FIRMIN::destroy_firmin (FIRMIN *a) { delete[] (a->ring); delete[] (a->h); delete (a); } void FIRMIN::flush_firmin (FIRMIN *a) { memset (a->ring, 0, a->rsize * sizeof (wcomplex)); a->idx = 0; } void FIRMIN::xfirmin (FIRMIN *a, int pos) { if (a->run && a->position == pos) { int i, j, k; for (i = 0; i < a->size; i++) { a->ring[2 * a->idx + 0] = a->in[2 * i + 0]; a->ring[2 * a->idx + 1] = a->in[2 * i + 1]; a->out[2 * i + 0] = 0.0; a->out[2 * i + 1] = 0.0; k = a->idx; for (j = 0; j < a->nc; j++) { a->out[2 * i + 0] += a->h[2 * j + 0] * a->ring[2 * k + 0] - a->h[2 * j + 1] * a->ring[2 * k + 1]; a->out[2 * i + 1] += a->h[2 * j + 0] * a->ring[2 * k + 1] + a->h[2 * j + 1] * a->ring[2 * k + 0]; k = (k + a->mask) & a->mask; } a->idx = (a->idx + 1) & a->mask; } } else if (a->in != a->out) memcpy (a->out, a->in, a->size * sizeof (wcomplex)); } void FIRMIN::setBuffers_firmin (FIRMIN *a, float* in, float* out) { a->in = in; a->out = out; } void FIRMIN::setSamplerate_firmin (FIRMIN *a, int rate) { a->samplerate = (float)rate; calc_firmin (a); } void FIRMIN::setSize_firmin (FIRMIN *a, int size) { a->size = size; } void FIRMIN::setFreqs_firmin (FIRMIN *a, float f_low, float f_high) { a->f_low = f_low; a->f_high = f_high; calc_firmin (a); } /******************************************************************************************************** * * * Standalone Partitioned Overlap-Save Bandpass * * * ********************************************************************************************************/ void FIROPT::plan_firopt (FIROPT *a) { // must call for change in 'nc', 'size', 'out' int i; a->nfor = a->nc / a->size; a->buffidx = 0; a->idxmask = a->nfor - 1; a->fftin = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fftout = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->fmask = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->maskgen = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->pcfor = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); a->maskplan = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); for (i = 0; i < a->nfor; i++) { a->fftout[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fmask[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->pcfor[i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->fftin, (fftwf_complex *)a->fftout[i], FFTW_FORWARD, FFTW_PATIENT); a->maskplan[i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[i], FFTW_FORWARD, FFTW_PATIENT); } a->accum = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->crev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->accum, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT); } void FIROPT::calc_firopt (FIROPT *a) { // call for change in frequency, rate, wintype, gain // must also call after a call to plan_firopt() int i; float* impulse = FIR::fir_bandpass (a->nc, a->f_low, a->f_high, a->samplerate, a->wintype, 1, a->gain); a->buffidx = 0; for (i = 0; i < a->nfor; i++) { // I right-justified the impulse response => take output from left side of output buff, discard right side // Be careful about flipping an asymmetrical impulse response. memcpy (&(a->maskgen[2 * a->size]), &(impulse[2 * a->size * i]), a->size * sizeof(wcomplex)); fftwf_execute (a->maskplan[i]); } delete[] (impulse); } FIROPT* FIROPT::create_firopt (int run, int position, int size, float* in, float* out, int nc, float f_low, float f_high, int samplerate, int wintype, float gain) { FIROPT *a = new FIROPT; a->run = run; a->position = position; a->size = size; a->in = in; a->out = out; a->nc = nc; a->f_low = f_low; a->f_high = f_high; a->samplerate = samplerate; a->wintype = wintype; a->gain = gain; plan_firopt (a); calc_firopt (a); return a; } void FIROPT::deplan_firopt (FIROPT *a) { int i; fftwf_destroy_plan (a->crev); delete[] (a->accum); for (i = 0; i < a->nfor; i++) { delete[] (a->fftout[i]); delete[] (a->fmask[i]); fftwf_destroy_plan (a->pcfor[i]); fftwf_destroy_plan (a->maskplan[i]); } delete[] (a->maskplan); delete[] (a->pcfor); delete[] (a->maskgen); delete[] (a->fmask); delete[] (a->fftout); delete[] (a->fftin); } void FIROPT::destroy_firopt (FIROPT *a) { deplan_firopt (a); delete (a); } void FIROPT::flush_firopt (FIROPT *a) { int i; memset (a->fftin, 0, 2 * a->size * sizeof (wcomplex)); for (i = 0; i < a->nfor; i++) memset (a->fftout[i], 0, 2 * a->size * sizeof (wcomplex)); a->buffidx = 0; } void FIROPT::xfiropt (FIROPT *a, int pos) { if (a->run && (a->position == pos)) { int i, j, k; memcpy (&(a->fftin[2 * a->size]), a->in, a->size * sizeof (wcomplex)); fftwf_execute (a->pcfor[a->buffidx]); k = a->buffidx; memset (a->accum, 0, 2 * a->size * sizeof (wcomplex)); for (j = 0; j < a->nfor; j++) { for (i = 0; i < 2 * a->size; i++) { a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[j][2 * i + 1]; a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[j][2 * i + 0]; } k = (k + a->idxmask) & a->idxmask; } a->buffidx = (a->buffidx + 1) & a->idxmask; fftwf_execute (a->crev); memcpy (a->fftin, &(a->fftin[2 * a->size]), a->size * sizeof(wcomplex)); } else if (a->in != a->out) memcpy (a->out, a->in, a->size * sizeof (wcomplex)); } void FIROPT::setBuffers_firopt (FIROPT *a, float* in, float* out) { a->in = in; a->out = out; deplan_firopt (a); plan_firopt (a); calc_firopt (a); } void FIROPT::setSamplerate_firopt (FIROPT *a, int rate) { a->samplerate = rate; calc_firopt (a); } void FIROPT::setSize_firopt (FIROPT *a, int size) { a->size = size; deplan_firopt (a); plan_firopt (a); calc_firopt (a); } void FIROPT::setFreqs_firopt (FIROPT *a, float f_low, float f_high) { a->f_low = f_low; a->f_high = f_high; calc_firopt (a); } /******************************************************************************************************** * * * Partitioned Overlap-Save Filter Kernel * * * ********************************************************************************************************/ void FIRCORE::plan_fircore (FIRCORE *a) { // must call for change in 'nc', 'size', 'out' int i; a->nfor = a->nc / a->size; a->cset = 0; a->buffidx = 0; a->idxmask = a->nfor - 1; a->fftin = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fftout = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->fmask = new float**[2]; // (float ***) malloc0 (2 * sizeof (float **)); a->fmask[0] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->fmask[1] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->maskgen = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->pcfor = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); a->maskplan = new fftwf_plan*[2]; // (fftwf_plan **) malloc0 (2 * sizeof (fftwf_plan *)); a->maskplan[0] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); a->maskplan[1] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); for (i = 0; i < a->nfor; i++) { a->fftout[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fmask[0][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fmask[1][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->pcfor[i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->fftin, (fftwf_complex *)a->fftout[i], FFTW_FORWARD, FFTW_PATIENT); a->maskplan[0][i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[0][i], FFTW_FORWARD, FFTW_PATIENT); a->maskplan[1][i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[1][i], FFTW_FORWARD, FFTW_PATIENT); } a->accum = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->crev = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->accum, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT); a->masks_ready = 0; } void FIRCORE::calc_fircore (FIRCORE *a, int flip) { // call for change in frequency, rate, wintype, gain // must also call after a call to plan_firopt() int i; if (a->mp) FIR::mp_imp (a->nc, a->impulse, a->imp, 16, 0); else memcpy (a->imp, a->impulse, a->nc * sizeof (wcomplex)); for (i = 0; i < a->nfor; i++) { // I right-justified the impulse response => take output from left side of output buff, discard right side // Be careful about flipping an asymmetrical impulse response. memcpy (&(a->maskgen[2 * a->size]), &(a->imp[2 * a->size * i]), a->size * sizeof(wcomplex)); fftwf_execute (a->maskplan[1 - a->cset][i]); } a->masks_ready = 1; if (flip) { a->update.lock(); a->cset = 1 - a->cset; a->update.unlock(); a->masks_ready = 0; } } FIRCORE* FIRCORE::create_fircore (int size, float* in, float* out, int nc, int mp, float* impulse) { FIRCORE *a = new FIRCORE; a->size = size; a->in = in; a->out = out; a->nc = nc; a->mp = mp; // InitializeCriticalSectionAndSpinCount (&a->update, 2500); plan_fircore (a); a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); memcpy (a->impulse, impulse, a->nc * sizeof (wcomplex)); calc_fircore (a, 1); return a; } void FIRCORE::deplan_fircore (FIRCORE *a) { int i; fftwf_destroy_plan (a->crev); delete[] (a->accum); for (i = 0; i < a->nfor; i++) { delete[] (a->fftout[i]); delete[] (a->fmask[0][i]); delete[] (a->fmask[1][i]); fftwf_destroy_plan (a->pcfor[i]); fftwf_destroy_plan (a->maskplan[0][i]); fftwf_destroy_plan (a->maskplan[1][i]); } delete[] (a->maskplan[0]); delete[] (a->maskplan[1]); delete[] (a->maskplan); delete[] (a->pcfor); delete[] (a->maskgen); delete[] (a->fmask[0]); delete[] (a->fmask[1]); delete[] (a->fmask); delete[] (a->fftout); delete[] (a->fftin); } void FIRCORE::destroy_fircore (FIRCORE *a) { deplan_fircore (a); delete[] (a->imp); delete[] (a->impulse); delete (a); } void FIRCORE::flush_fircore (FIRCORE *a) { int i; memset (a->fftin, 0, 2 * a->size * sizeof (wcomplex)); for (i = 0; i < a->nfor; i++) memset (a->fftout[i], 0, 2 * a->size * sizeof (wcomplex)); a->buffidx = 0; } void FIRCORE::xfircore (FIRCORE *a) { int i, j, k; memcpy (&(a->fftin[2 * a->size]), a->in, a->size * sizeof (wcomplex)); fftwf_execute (a->pcfor[a->buffidx]); k = a->buffidx; memset (a->accum, 0, 2 * a->size * sizeof (wcomplex)); a->update.lock(); for (j = 0; j < a->nfor; j++) { for (i = 0; i < 2 * a->size; i++) { a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 1]; a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 0]; } k = (k + a->idxmask) & a->idxmask; } a->update.unlock(); a->buffidx = (a->buffidx + 1) & a->idxmask; fftwf_execute (a->crev); memcpy (a->fftin, &(a->fftin[2 * a->size]), a->size * sizeof(wcomplex)); } void FIRCORE::setBuffers_fircore (FIRCORE *a, float* in, float* out) { a->in = in; a->out = out; deplan_fircore (a); plan_fircore (a); calc_fircore (a, 1); } void FIRCORE::setSize_fircore (FIRCORE *a, int size) { a->size = size; deplan_fircore (a); plan_fircore (a); calc_fircore (a, 1); } void FIRCORE::setImpulse_fircore (FIRCORE *a, float* impulse, int update) { memcpy (a->impulse, impulse, a->nc * sizeof (wcomplex)); calc_fircore (a, update); } void FIRCORE::setNc_fircore (FIRCORE *a, int nc, float* impulse) { // because of FFT planning, this will probably cause a glitch in audio if done during dataflow deplan_fircore (a); delete[] (a->impulse); delete[] (a->imp); a->nc = nc; plan_fircore (a); a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); memcpy (a->impulse, impulse, a->nc * sizeof (wcomplex)); calc_fircore (a, 1); } void FIRCORE::setMp_fircore (FIRCORE *a, int mp) { a->mp = mp; calc_fircore (a, 1); } void FIRCORE::setUpdate_fircore (FIRCORE *a) { if (a->masks_ready) { a->update.lock(); a->cset = 1 - a->cset; a->update.unlock(); a->masks_ready = 0; } } } // namespace WDSP