/* firmin.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2016 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@wpratt.com */ #include "comm.hpp" #include "fir.hpp" #include "fircore.hpp" namespace WDSP { /******************************************************************************************************** * * * Partitioned Overlap-Save Filter Kernel * * * ********************************************************************************************************/ void FIRCORE::plan() { // must call for change in 'nc', 'size', 'out' nfor = nc / size; cset = 0; buffidx = 0; idxmask = nfor - 1; fftin.resize(2 * size * 2); fftout.resize(nfor); fmask[0].resize(nfor); fmask[1].resize(nfor); maskgen.resize(2 * size * 2); pcfor.resize(nfor); maskplan[0].resize(nfor); maskplan[1].resize(nfor); for (int i = 0; i < nfor; i++) { fftout[i].resize(2 * size * 2); fmask[0][i].resize(2 * size * 2); fmask[1][i].resize(2 * size * 2); pcfor[i] = fftwf_plan_dft_1d( 2 * size, (fftwf_complex *)fftin.data(), (fftwf_complex *)fftout[i].data(), FFTW_FORWARD, FFTW_PATIENT ); maskplan[0][i] = fftwf_plan_dft_1d( 2 * size, (fftwf_complex *)maskgen.data(), (fftwf_complex *)fmask[0][i].data(), FFTW_FORWARD, FFTW_PATIENT ); maskplan[1][i] = fftwf_plan_dft_1d( 2 * size, (fftwf_complex *)maskgen.data(), (fftwf_complex *)fmask[1][i].data(), FFTW_FORWARD, FFTW_PATIENT ); } accum.resize(2 * size * 2); crev = fftwf_plan_dft_1d( 2 * size, (fftwf_complex *)accum.data(), (fftwf_complex *)out, FFTW_BACKWARD, FFTW_PATIENT ); masks_ready = 0; } void FIRCORE::calc(int _flip) { // call for change in frequency, rate, wintype, gain // must also call after a call to plan_firopt() if (mp) FIR::mp_imp (nc, impulse, imp, 16, 0); else std::copy(impulse.begin(), impulse.end(), imp.begin()); for (int i = 0; i < nfor; i++) { // I right-justified the impulse response => take output from left side of output buff, discard right side // Be careful about flipping an asymmetrical impulse response. std::copy(&(imp[2 * size * i]), &(imp[2 * size * i]) + size * 2, &(maskgen[2 * size])); fftwf_execute (maskplan[1 - cset][i]); } masks_ready = 1; if (_flip) { cset = 1 - cset; masks_ready = 0; } } FIRCORE::FIRCORE( int _size, float* _in, float* _out, int _mp, const std::vector& _impulse ) { size = _size; in = _in; out = _out; nc = (int) (_impulse.size() / 2); mp = _mp; plan(); impulse.resize(_impulse.size()); imp.resize(_impulse.size()); std::copy(_impulse.begin(), _impulse.end(), impulse.begin()); calc(1); } void FIRCORE::deplan() { fftwf_destroy_plan (crev); for (int i = 0; i < nfor; i++) { fftwf_destroy_plan (pcfor[i]); fftwf_destroy_plan (maskplan[0][i]); fftwf_destroy_plan (maskplan[1][i]); } } FIRCORE::~FIRCORE() { deplan(); } void FIRCORE::flush() { std::fill(fftin.begin(), fftin.end(), 0); for (int i = 0; i < nfor; i++) std::fill(fftout[i].begin(), fftout[i].end(), 0); buffidx = 0; } void FIRCORE::execute() { int k; std::copy(in, in + size * 2, &(fftin[2 * size])); fftwf_execute (pcfor[buffidx]); k = buffidx; std::fill(accum.begin(), accum.end(), 0); for (int j = 0; j < nfor; j++) { for (int i = 0; i < 2 * size; i++) { accum[2 * i + 0] += fftout[k][2 * i + 0] * fmask[cset][j][2 * i + 0] - fftout[k][2 * i + 1] * fmask[cset][j][2 * i + 1]; accum[2 * i + 1] += fftout[k][2 * i + 0] * fmask[cset][j][2 * i + 1] + fftout[k][2 * i + 1] * fmask[cset][j][2 * i + 0]; } k = (k + idxmask) & idxmask; } buffidx = (buffidx + 1) & idxmask; fftwf_execute (crev); std::copy(&(fftin[2 * size]), &(fftin[2 * size]) + size * 2, fftin.begin()); } void FIRCORE::setBuffers(float* _in, float* _out) { in = _in; out = _out; deplan(); plan(); calc(1); } void FIRCORE::setSize(int _size) { size = _size; deplan(); plan(); calc(1); } void FIRCORE::setImpulse(const std::vector& _impulse, int _update) { auto imp_nc = (int) (_impulse.size() / 2); if (imp_nc == nc) // to be on the safe side but setNc would be called if impulse size changes { std::copy(_impulse.begin(), _impulse.end(), impulse.begin()); calc(_update); } else{ setNc(_impulse); } } void FIRCORE::setNc(const std::vector& _impulse) { // because of FFT planning, this will probably cause a glitch in audio if done during dataflow deplan(); nc = (int) (_impulse.size() / 2); plan(); imp.resize(nc * 2); impulse.resize(nc * 2); std::copy(_impulse.begin(), _impulse.end(), impulse.begin()); calc(1); } void FIRCORE::setMp(int _mp) { mp = _mp; calc(1); } void FIRCORE::setUpdate() { if (masks_ready) { cset = 1 - cset; masks_ready = 0; } } } // namespace WDSP