/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2021 Jon Beniston, M7RCE // // Copyright (C) 2004 Rutherford Appleton Laboratory // // Copyright (C) 2012 Science and Technology Facilities Council. // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "util/units.h" #include "astronomy.h" // Function prototypes static void palRefz(double zu, double refa, double refb, double *zr); static void palRefco (double hm, double tdk, double pmb, double rh, double wl, double phi, double tlr, double eps, double *refa, double *refb); static void palRefro( double zobs, double hm, double tdk, double pmb, double rh, double wl, double phi, double tlr, double eps, double * ref); // Calculate Julian date (days since January 1, 4713 BC) from Gregorian calendar date double Astronomy::julianDate(int year, int month, int day, int hours, int minutes, int seconds) { int julian_day; double julian_date; // From: https://en.wikipedia.org/wiki/Julian_day julian_day = (1461 * (year + 4800 + (month - 14)/12))/4 +(367 * (month - 2 - 12 * ((month - 14)/12)))/12 - (3 * ((year + 4900 + (month - 14)/12)/100))/4 + day - 32075; julian_date = julian_day + (hours/24.0 - 0.5) + minutes/(24.0*60.0) + seconds/(24.0*60.0*60.0); return julian_date; } // Calculate Julian date double Astronomy::julianDate(QDateTime dt) { QDateTime utc = dt.toUTC(); QDate date = utc.date(); QTime time = utc.time(); return julianDate(date.year(), date.month(), date.day(), time.hour(), time.minute(), time.second()); } // Get Julian date of J2000 Epoch double Astronomy::jd_j2000(void) { static double j2000 = 0.0; if (j2000 == 0.0) { j2000 = julianDate(2000, 1, 1, 12, 0, 0); } return j2000; } // Get Julian date of B1950 Epoch double Astronomy::jd_b1950(void) { static double b1950 = 0.0; if (b1950 == 0.0) { b1950 = julianDate(1949, 12, 31, 22, 9, 0); } return b1950; } // Get Julian date of current time Epoch double Astronomy::jd_now(void) { time_t system_time; struct tm *utc_time; // Get current time in seconds since Unix Epoch (1970) time(&system_time); // Convert to UTC (GMT) utc_time = gmtime(&system_time); // Convert to Julian date return julianDate(utc_time->tm_year + 1900, utc_time->tm_mon + 1, utc_time->tm_mday, utc_time->tm_hour, utc_time->tm_min, utc_time->tm_sec); } // Precess a RA/DEC between two given Epochs RADec Astronomy::precess(RADec rd_in, double jd_from, double jd_to) { RADec rd_out; double x, y, z; double xp, yp, zp; double ra_rad, dec_rad; double rot[3][3]; // [row][col] double ra_deg; double days_per_century = 36524.219878; double t0 = (jd_from - jd_b1950())/days_per_century; // Tropical centuries since B1950.0 double t = (jd_to - jd_from)/days_per_century; // Tropical centuries from starting epoch to ending epoch // From: https://www.cloudynights.com/topic/561254-ra-dec-epoch-conversion/ rot[0][0] = 1.0 - ((29696.0 + 26.0*t0)*t*t - 13.0*t*t*t)*.00000001; rot[1][0] = ((2234941.0 + 1355.0*t0)*t - 676.0*t*t + 221.0*t*t*t)*.00000001; rot[2][0] = ((971690.0 - 414.0*t0)*t + 207.0*t*t + 96.0*t*t*t)*.00000001; rot[0][1] = -rot[1][0]; rot[1][1] = 1.0 - ((24975.0 + 30.0*t0)*t*t - 15.0*t*t*t)*.00000001; rot[2][1] = -((10858.0 + 2.0*t0)*t*t)*.00000001; rot[0][2] = -rot[2][0]; rot[1][2] = rot[2][1]; rot[2][2] = 1.0 - ((4721.0 - 4.0*t0)*t*t)*.00000001; // Hours to degrees ra_deg = rd_in.ra*(360.0/24.0); // Convert to rectangular coordinates ra_rad = Units::degreesToRadians(ra_deg); dec_rad = Units::degreesToRadians(rd_in.dec); x = cos(ra_rad) * cos(dec_rad); y = sin(ra_rad) * cos(dec_rad); z = sin(dec_rad); // Rotate xp = rot[0][0]*x + rot[0][1]*y + rot[0][2]*z; yp = rot[1][0]*x + rot[1][1]*y + rot[1][2]*z; zp = rot[2][0]*x + rot[2][1]*y + rot[2][2]*z; // Convert back to spherical coordinates rd_out.ra = Units::radiansToDegrees(atan(yp/xp)); if (xp < 0.0) { rd_out.ra += 180.0; } else if ((yp < 0) && (xp > 0)) { rd_out.ra += 360.0; } rd_out.dec = Units::radiansToDegrees(asin(zp)); // Degrees to hours rd_out.ra /= (360.0/24.0); return rd_out; } // Calculate local mean sidereal time (LMST) in degrees double Astronomy::localSiderealTime(QDateTime dateTime, double longitude) { double jd = julianDate(dateTime); double d = (jd - jd_j2000()); // Days since J2000 epoch (including fraction) double f = fmod(jd, 1.0); // Fractional part is decimal days double ut = (f+0.5)*24.0; // Universal time in decimal hours // https://astronomy.stackexchange.com/questions/24859/local-sidereal-time // 100.46 is offset for GMST at 0h UT on 1 Jan 2000 // 0.985647 is number of degrees per day over 360 the Earth rotates in one solar day // Approx to 0.3 arcseconds return fmod(100.46 + 0.985647 * d + longitude + (360/24) * ut, 360.0); } // Convert from J2000 right ascension (decimal hours) and declination (decimal degrees) to altitude and azimuth, for location (decimal degrees) and time AzAlt Astronomy::raDecToAzAlt(RADec rd, double latitude, double longitude, QDateTime dt, bool j2000) { AzAlt aa; double ra_deg; // Right ascension in degrees double lst_deg; // Local sidereal time in degrees double ha; // Hour angle double a, az; double dec_rad, lat_rad, ha_rad, alt_rad; // Corresponding variables as radians double jd = julianDate(dt); // Precess RA/DEC from J2000 Epoch to desired (typically current) Epoch if (j2000) rd = precess(rd, jd_j2000(), jd); // Calculate local mean sidereal time (LMST) in degrees // https://astronomy.stackexchange.com/questions/24859/local-sidereal-time // 100.46 is offset for GMST at 0h UT on 1 Jan 2000 // 0.985647 is number of degrees per day over 360 the Earth rotates in one solar day // Approx to 0.3 arcseconds lst_deg = Astronomy::localSiderealTime(dt, longitude); // Convert right ascension from hours to degrees ra_deg = rd.ra * (360.0/24.0); // Calculate hour angle ha = fmod(lst_deg - ra_deg, 360.0); // Convert degrees to radians dec_rad = Units::degreesToRadians(rd.dec); lat_rad = Units::degreesToRadians(latitude); ha_rad = Units::degreesToRadians(ha); // Calculate altitude and azimuth - no correction for atmospheric refraction // From: http://www.convertalot.com/celestial_horizon_co-ordinates_calculator.html alt_rad = asin(sin(dec_rad)*sin(lat_rad) + cos(dec_rad)*cos(lat_rad)*cos(ha_rad)); a = Units::radiansToDegrees(acos((sin(dec_rad)-sin(alt_rad)*sin(lat_rad)) / (cos(alt_rad)*cos(lat_rad)))); if (sin(ha_rad) < 0.0) { az = a; } else { az = 360.0 - a; } aa.alt = Units::radiansToDegrees(alt_rad); aa.az = az; return aa; } // Needs to work for negative a double Astronomy::modulo(double a, double b) { return a - b * floor(a/b); } // Calculate azimuth and altitude angles to the sun from the given latitude and longitude at the given time // Refer to: // https://en.wikipedia.org/wiki/Position_of_the_Sun // https://www.aa.quae.nl/en/reken/zonpositie.html // Said to be accurate to .01 degree (36") for dates between 1950 and 2050 // although we use slightly more accurate constants and an extra term in the equation // of centre from the second link // For an alternative, see: http://www.psa.es/sdg/sunpos.htm // Most accurate algorithm is supposedly: https://midcdmz.nrel.gov/spa/ void Astronomy::sunPosition(AzAlt& aa, RADec& rd, double latitude, double longitude, QDateTime dt) { double jd = julianDate(dt); double n = (jd - jd_j2000()); // Days since J2000 epoch (including fraction) double l = 280.461 + 0.9856474 * n; // Mean longitude of the Sun, corrected for the abberation of light double g = 357.5291 + 0.98560028 * n; // Mean anomaly of the Sun - how far around orbit from perihlion, in degrees l = modulo(l, 360.0); g = modulo(g, 360.0); double gr = Units::degreesToRadians(g); double la = l + 1.9148 * sin(gr) + 0.0200 * sin(2.0*gr) + 0.0003 * sin(3.0*gr); // Ecliptic longitude (Ecliptic latitude b set to 0) // Convert la, b=0, which give the position of the Sun in the ecliptic coordinate sytem, to // equatorial coordinates double e = 23.4393 - 3.563E-7 * n; // Obliquity of the ecliptic - tilt of Earth's axis of rotation double er = Units::degreesToRadians(e); double lr = Units::degreesToRadians(la); double a = atan2(cos(er) * sin(lr), cos(lr)); // Right ascension, radians double d = asin(sin(er) * sin(lr)); // Declination, radians rd.ra = modulo(Units::radiansToDegrees(a), 360.0) / (360.0/24.0); // Convert to hours rd.dec = Units::radiansToDegrees(d); // Convert to degrees aa = raDecToAzAlt(rd, latitude, longitude, dt, false); } double Astronomy::moonDays(QDateTime dt) { QDateTime utc = dt.toUTC(); QDate date = utc.date(); QTime time = utc.time(); int y = date.year(); int m = date.month(); int D = date.day(); int d = 367 * y - 7 * (y + (m+9)/12) / 4 - 3 * ((y + (m-9)/7) / 100 + 1) / 4 + 275*m/9 + D - 730515; return d + time.hour()/24.0 + time.minute()/(24.0*60.0) + time.second()/(24.0*60.0*60.0); } // Calculate azimuth and altitude angles to the moon from the given latitude and longitude at the given time // Refer to: https://stjarnhimlen.se/comp/ppcomp.html // Accurate to 4 arcminute void Astronomy::moonPosition(AzAlt& aa, RADec& rd, double latitude, double longitude, QDateTime dt) { double d = moonDays(dt); double ecl = Units::degreesToRadians(23.4393 - 3.563E-7 * d); // Obliquity of the ecliptic - tilt of Earth's axis of rotation // Orbital elements for the Sun double ws = Units::degreesToRadians(282.9404 + 4.70935E-5 * d); double Ms = Units::degreesToRadians(356.0470 + 0.9856002585 * d); // Orbital elements for the Moon double Nm = Units::degreesToRadians(125.1228 - 0.0529538083 * d); // longitude of the ascending node double im = Units::degreesToRadians(5.1454); // inclination to the ecliptic (plane of the Earth's orbit) double wm = Units::degreesToRadians(318.0634 + 0.1643573223 * d); // argument of perihelion double am = 60.2666; // (Earth radii) semi-major axis, or mean distance from Sun double em = 0.054900; // ecm // eccentricity (0=circle, 0-1=ellipse, 1=parabola) double Mm = Units::degreesToRadians(115.3654 + 13.0649929509 * d); // mean anomaly (0 at perihelion; increases uniformly with time), degrees double Em = Mm + em * sin(Mm) * (1.0 + em * cos(Mm)); // Eccentric anomaly in radians double xv = am * (cos(Em) - em); double yv = am * (sqrt(1.0 - em*em) * sin(Em)); double vm = atan2(yv, xv); // True anomaly double rm = sqrt(xv*xv + yv*yv); // Distance // Compute position in space (for the Moon, this is geocentric) double xh = rm * (cos(Nm) * cos(vm+wm) - sin(Nm) * sin(vm+wm) * cos(im)); double yh = rm * (sin(Nm) * cos(vm+wm) + cos(Nm) * sin(vm+wm) * cos(im)); double zh = rm * (sin(vm+wm) * sin(im)); // Convert to ecliptic longitude and latitude double lonecl = atan2(yh, xh); double latecl = atan2(zh, sqrt(xh*xh+yh*yh)); // Perturbations of the Moon double Ls = Ms + ws; // Mean Longitude of the Sun (Ns=0) double Lm = Mm + wm + Nm; // Mean longitude of the Moon double D = Lm - Ls; // Mean elongation of the Moon double F = Lm - Nm; // Argument of latitude for the Moon double dlon; dlon = -1.274 * sin(Mm - 2*D); // (the Evection) dlon += +0.658 * sin(2*D); // (the Variation) dlon += -0.186 * sin(Ms); // (the Yearly Equation) dlon += -0.059 * sin(2*Mm - 2*D); dlon += -0.057 * sin(Mm - 2*D + Ms); dlon += +0.053 * sin(Mm + 2*D); dlon += +0.046 * sin(2*D - Ms); dlon += +0.041 * sin(Mm - Ms); dlon += -0.035 * sin(D); // (the Parallactic Equation) dlon += -0.031 * sin(Mm + Ms); dlon += -0.015 * sin(2*F - 2*D); dlon += +0.011 * sin(Mm - 4*D); double dlat; dlat = -0.173 * sin(F - 2*D); dlat += -0.055 * sin(Mm - F - 2*D); dlat += -0.046 * sin(Mm + F - 2*D); dlat += +0.033 * sin(F + 2*D); dlat += +0.017 * sin(2*Mm + F); lonecl += Units::degreesToRadians(dlon); latecl += Units::degreesToRadians(dlat); rm += -0.58 * cos(Mm - 2*D); rm += -0.46 * cos(2*D); // Convert perturbed xh = rm * cos(lonecl) * cos(latecl); yh = rm * sin(lonecl) * cos(latecl); zh = rm * sin(latecl); // Convert to geocentric coordinates (already the case for the Moon) double xg = xh; double yg = yh; double zg = zh; // Convert to equatorial cordinates double xe = xg; double ye = yg * cos(ecl) - zg * sin(ecl); double ze = yg * sin(ecl) + zg * cos(ecl); // Compute right ascension and declination double ra = atan2(ye, xe); double dec = atan2(ze, sqrt(xe*xe+ye*ye)); rd.ra = modulo(Units::radiansToDegrees(ra), 360.0) / (360.0/24.0); // Convert to hours rd.dec = Units::radiansToDegrees(dec); // Convert to degrees // Convert from geocentric to topocentric double mpar = asin(1/rm); double lat = Units::degreesToRadians(latitude); double gclat = Units::degreesToRadians(latitude - 0.1924 * sin(2.0 * lat)); double rho = 0.99833 + 0.00167 * cos(2*lat); QTime time = dt.toUTC().time(); double UT = time.hour() + time.minute()/60.0 + time.second()/(60.0*60.0); double GMST0 = Units::radiansToDegrees(Ls)/15.0 + 12; // In hours double GMST = GMST0 + UT; double LST = GMST + longitude/15.0; double HA = Units::degreesToRadians(LST*15.0 - Units::radiansToDegrees(ra)); // Hour angle in radians double g = atan(tan(gclat) / cos(HA)); double topRA = ra - mpar * rho * cos(gclat) * sin(HA) / cos(dec); double topDec; if (g != 0.0) topDec = dec - mpar * rho * sin(gclat) * sin(g - dec) / sin(g); else topDec = dec - mpar * rho * sin(-dec) * cos(HA); rd.ra = modulo(Units::radiansToDegrees(topRA), 360.0) / (360.0/24.0); // Convert to hours rd.dec = Units::radiansToDegrees(topDec); // Convert to degrees aa = raDecToAzAlt(rd, latitude, longitude, dt, false); } // Calculated adjustment to altitude angle from true to apparent due to atmospheric refraction using // Saemundsson's formula (which is used by Stellarium and is primarily just for // optical wavelengths) // See: https://en.wikipedia.org/wiki/Atmospheric_refraction#Calculating_refraction // Alt is in degrees. 90 = Zenith gives a factor of 0. // Pressure in millibars // Temperature in Celsuis // We divide by 60.0 to get a value in degrees (as original formula is in arcminutes) double Astronomy::refractionSaemundsson(double alt, double pressure, double temperature) { double pt = (pressure/1010.0) * (283.0/(273.0+temperature)); return pt * (1.02 / tan(Units::degreesToRadians(alt+10.3/(alt+5.11))) + 0.0019279) / 60.0; } // Calculated adjustment to altitude angle from true to apparent due to atmospheric refraction using // code from Starlink Positional Astronomy Library. This is more accurate for // radio than Saemundsson's formula, but also more complex. // See: https://github.com/Starlink/pal // Alt is in degrees. 90 = Zenith gives a factor of 0. // Pressure in millibars // Temperature in Celsuis // Humdity in % // Frequency in Hertz // Latitude in decimal degrees // HeightAboveSeaLevel in metres // Temperature lapse rate in K/km double Astronomy::refractionPAL(double alt, double pressure, double temperature, double humidity, double frequency, double latitude, double heightAboveSeaLevel, double temperatureLapseRate) { double tdk = Units::celsiusToKelvin(temperature); // Ambient temperature at the observer (K) double wl = (299792458.0/frequency)*1000000.0; // Wavelength in micrometres double rh = humidity/100.0; // Relative humidity in range 0-1 double phi = Units::degreesToRadians(latitude); // Latitude of the observer (radian, astronomical) double tlr = temperatureLapseRate/1000.0; // Temperature lapse rate in the troposphere (K/metre) double refa, refb; double z = 90.0-alt; double zu = Units::degreesToRadians(z); double zr; palRefco(heightAboveSeaLevel, tdk, pressure, rh, wl, phi, tlr, 1E-10, &refa, &refb); palRefz(zu, refa, refb, &zr); return z-Units::radiansToDegrees(zr); } double Astronomy::raToDecimal(const QString& value) { QRegExp decimal("^([0-9]+(\\.[0-9]+)?)"); QRegExp hms("^([0-9]+)[ h]([0-9]+)[ m]([0-9]+(\\.[0-9]+)?)s?"); if (decimal.exactMatch(value)) return decimal.capturedTexts()[0].toDouble(); else if (hms.exactMatch(value)) { return Units::hoursMinutesSecondsToDecimal( hms.capturedTexts()[1].toDouble(), hms.capturedTexts()[2].toDouble(), hms.capturedTexts()[3].toDouble()); } return 0.0; } double Astronomy::decToDecimal(const QString& value) { QRegExp decimal("^(-?[0-9]+(\\.[0-9]+)?)"); QRegExp dms(QString("^(-?[0-9]+)[ %1d]([0-9]+)[ 'm]([0-9]+(\\.[0-9]+)?)[\"s]?").arg(QChar(0xb0))); if (decimal.exactMatch(value)) return decimal.capturedTexts()[0].toDouble(); else if (dms.exactMatch(value)) { return Units::degreesMinutesSecondsToDecimal( dms.capturedTexts()[1].toDouble(), dms.capturedTexts()[2].toDouble(), dms.capturedTexts()[3].toDouble()); } return 0.0; } double Astronomy::lstAndRAToLongitude(double lst, double raHours) { double longitude = lst - (raHours * 15.0); // Convert hours to degrees if (longitude < -180.0) longitude += 360.0; else if (longitude > 180.0) longitude -= 360.0; return -longitude; // East positive } // The following functions are from Starlink Positional Astronomy Library // https://github.com/Starlink/pal /* Pi */ static const double PAL__DPI = 3.1415926535897932384626433832795028841971693993751; /* 2Pi */ static const double PAL__D2PI = 6.2831853071795864769252867665590057683943387987502; /* pi/180: degrees to radians */ static const double PAL__DD2R = 0.017453292519943295769236907684886127134428718885417; /* Radians to degrees */ static const double PAL__DR2D = 57.295779513082320876798154814105170332405472466564; /* DMAX(A,B) - return maximum value - evaluates arguments multiple times */ #define DMAX(A,B) ((A) > (B) ? (A) : (B) ) /* DMIN(A,B) - return minimum value - evaluates arguments multiple times */ #define DMIN(A,B) ((A) < (B) ? (A) : (B) ) // Normalize angle into range +/- pi double palDrange( double angle ) { double result = fmod( angle, PAL__D2PI ); if( result > PAL__DPI ) { result -= PAL__D2PI; } else if( result < -PAL__DPI ) { result += PAL__D2PI; } return result; } // Calculate stratosphere parameters static void pal1Atms ( double rt, double tt, double dnt, double gamal, double r, double * dn, double * rdndr ) { double b; double w; b = gamal / tt; w = (dnt - 1.0) * exp( -b * (r-rt) ); *dn = 1.0 + w; *rdndr = -r * b * w; } // Calculate troposphere parameters static void pal1Atmt ( double r0, double t0, double alpha, double gamm2, double delm2, double c1, double c2, double c3, double c4, double c5, double c6, double r, double *t, double *dn, double *rdndr ) { double tt0; double tt0gm2; double tt0dm2; *t = DMAX( DMIN( t0 - alpha*(r-r0), 320.0), 100.0 ); tt0 = *t / t0; tt0gm2 = pow( tt0, gamm2 ); tt0dm2 = pow( tt0, delm2 ); *dn = 1.0 + ( c1 * tt0gm2 - ( c2 - c5 / *t ) * tt0dm2 ) * tt0; *rdndr = r * ( -c3 * tt0gm2 + ( c4 - c6 / tt0 ) * tt0dm2 ); } // Adjust unrefracted zenith distance static void palRefz ( double zu, double refa, double refb, double *zr ) { /* Constants */ /* Largest usable ZD (deg) */ const double D93 = 93.0; /* ZD at which one model hands over to the other (radians) */ const double Z83 = 83.0 * PAL__DD2R; /* coefficients for high ZD model (used beyond ZD 83 deg) */ const double C1 = +0.55445; const double C2 = -0.01133; const double C3 = +0.00202; const double C4 = +0.28385; const double C5 = +0.02390; /* High-ZD-model prefiction (deg) for that point */ const double REF83 = (C1+C2*7.0+C3*49.0)/(1.0+C4*7.0+C5*49.0); double zu1,zl,s,c,t,tsq,tcu,ref,e,e2; /* perform calculations for zu or 83 deg, whichever is smaller */ zu1 = DMIN(zu,Z83); /* functions of ZD */ zl = zu1; s = sin(zl); c = cos(zl); t = s/c; tsq = t*t; tcu = t*tsq; /* refracted zd (mathematically to better than 1 mas at 70 deg) */ zl = zl-(refa*t+refb*tcu)/(1.0+(refa+3.0*refb*tsq)/(c*c)); /* further iteration */ s = sin(zl); c = cos(zl); t = s/c; tsq = t*t; tcu = t*tsq; ref = zu1-zl+ (zl-zu1+refa*t+refb*tcu)/(1.0+(refa+3.0*refb*tsq)/(c*c)); /* special handling for large zu */ if (zu > zu1) { e = 90.0-DMIN(D93,zu*PAL__DR2D); e2 = e*e; ref = (ref/REF83)*(C1+C2*e+C3*e2)/(1.0+C4*e+C5*e2); } /* return refracted zd */ *zr = zu-ref; } // Determine constants in atmospheric refraction model static void palRefco ( double hm, double tdk, double pmb, double rh, double wl, double phi, double tlr, double eps, double *refa, double *refb ) { double r1, r2; /* Sample zenith distances: arctan(1) and arctan(4) */ const double ATN1 = 0.7853981633974483; const double ATN4 = 1.325817663668033; /* Determine refraction for the two sample zenith distances */ palRefro(ATN1,hm,tdk,pmb,rh,wl,phi,tlr,eps,&r1); palRefro(ATN4,hm,tdk,pmb,rh,wl,phi,tlr,eps,&r2); /* Solve for refraction constants */ *refa = (64.0*r1-r2)/60.0; *refb = (r2-4.0*r1)/60.0; } // Atmospheric refraction for radio and optical/IR wavelengths static void palRefro( double zobs, double hm, double tdk, double pmb, double rh, double wl, double phi, double tlr, double eps, double * ref ) { /* * Fixed parameters */ /* 93 degrees in radians */ const double D93 = 1.623156204; /* Universal gas constant */ const double GCR = 8314.32; /* Molecular weight of dry air */ const double DMD = 28.9644; /* Molecular weight of water vapour */ const double DMW = 18.0152; /* Mean Earth radius (metre) */ const double S = 6378120.; /* Exponent of temperature dependence of water vapour pressure */ const double DELTA = 18.36; /* Height of tropopause (metre) */ const double HT = 11000.; /* Upper limit for refractive effects (metre) */ const double HS = 80000.; /* Numerical integration: maximum number of strips. */ const int ISMAX=16384l; /* Local variables */ int is, k, n, i, j; int optic, loop; /* booleans */ double zobs1,zobs2,hmok,tdkok,pmbok,rhok,wlok,alpha, tol,wlsq,gb,a,gamal,gamma,gamm2,delm2, tdc,psat,pwo,w, c1,c2,c3,c4,c5,c6,r0,tempo,dn0,rdndr0,sk0,f0, rt,tt,dnt,rdndrt,sine,zt,ft,dnts,rdndrp,zts,fts, rs,dns,rdndrs,zs,fs,refold,z0,zrange,fb,ff,fo,fe, h,r,sz,rg,dr,tg,dn,rdndr,t,f,refp,reft; /* The refraction integrand */ #define refi(DN,RDNDR) RDNDR/(DN+RDNDR) /* Transform ZOBS into the normal range. */ zobs1 = palDrange(zobs); zobs2 = DMIN(fabs(zobs1),D93); /* keep other arguments within safe bounds. */ hmok = DMIN(DMAX(hm,-1e3),HS); tdkok = DMIN(DMAX(tdk,100.0),500.0); pmbok = DMIN(DMAX(pmb,0.0),10000.0); rhok = DMIN(DMAX(rh,0.0),1.0); wlok = DMAX(wl,0.1); alpha = DMIN(DMAX(fabs(tlr),0.001),0.01); /* tolerance for iteration. */ tol = DMIN(DMAX(fabs(eps),1e-12),0.1)/2.0; /* decide whether optical/ir or radio case - switch at 100 microns. */ optic = wlok < 100.0; /* set up model atmosphere parameters defined at the observer. */ wlsq = wlok*wlok; gb = 9.784*(1.0-0.0026*cos(phi+phi)-0.00000028*hmok); if (optic) { a = (287.6155+(1.62887+0.01360/wlsq)/wlsq) * 273.15e-6/1013.25; } else { a = 77.6890e-6; } gamal = (gb*DMD)/GCR; gamma = gamal/alpha; gamm2 = gamma-2.0; delm2 = DELTA-2.0; tdc = tdkok-273.15; psat = pow(10.0,(0.7859+0.03477*tdc)/(1.0+0.00412*tdc)) * (1.0+pmbok*(4.5e-6+6.0e-10*tdc*tdc)); if (pmbok > 0.0) { pwo = rhok*psat/(1.0-(1.0-rhok)*psat/pmbok); } else { pwo = 0.0; } w = pwo*(1.0-DMW/DMD)*gamma/(DELTA-gamma); c1 = a*(pmbok+w)/tdkok; if (optic) { c2 = (a*w+11.2684e-6*pwo)/tdkok; } else { c2 = (a*w+6.3938e-6*pwo)/tdkok; } c3 = (gamma-1.0)*alpha*c1/tdkok; c4 = (DELTA-1.0)*alpha*c2/tdkok; if (optic) { c5 = 0.0; c6 = 0.0; } else { c5 = 375463e-6*pwo/tdkok; c6 = c5*delm2*alpha/(tdkok*tdkok); } /* conditions at the observer. */ r0 = S+hmok; pal1Atmt(r0,tdkok,alpha,gamm2,delm2,c1,c2,c3,c4,c5,c6, r0,&tempo,&dn0,&rdndr0); sk0 = dn0*r0*sin(zobs2); f0 = refi(dn0,rdndr0); /* conditions in the troposphere at the tropopause. */ rt = S+DMAX(HT,hmok); pal1Atmt(r0,tdkok,alpha,gamm2,delm2,c1,c2,c3,c4,c5,c6, rt,&tt,&dnt,&rdndrt); sine = sk0/(rt*dnt); zt = atan2(sine,sqrt(DMAX(1.0-sine*sine,0.0))); ft = refi(dnt,rdndrt); /* conditions in the stratosphere at the tropopause. */ pal1Atms(rt,tt,dnt,gamal,rt,&dnts,&rdndrp); sine = sk0/(rt*dnts); zts = atan2(sine,sqrt(DMAX(1.0-sine*sine,0.0))); fts = refi(dnts,rdndrp); /* conditions at the stratosphere limit. */ rs = S+HS; pal1Atms(rt,tt,dnt,gamal,rs,&dns,&rdndrs); sine = sk0/(rs*dns); zs = atan2(sine,sqrt(DMAX(1.0-sine*sine,0.0))); fs = refi(dns,rdndrs); /* variable initialization to avoid compiler warning. */ reft = 0.0; /* integrate the refraction integral in two parts; first in the * troposphere (k=1), then in the stratosphere (k=2). */ for (k=1; k<=2; k++) { /* initialize previous refraction to ensure at least two iterations. */ refold = 1.0; /* start off with 8 strips. */ is = 8; /* start z, z range, and start and end values. */ if (k==1) { z0 = zobs2; zrange = zt-z0; fb = f0; ff = ft; } else { z0 = zts; zrange = zs-z0; fb = fts; ff = fs; } /* sums of odd and even values. */ fo = 0.0; fe = 0.0; /* first time through the loop we have to do every point. */ n = 1; /* start of iteration loop (terminates at specified precision). */ loop = 1; while (loop) { /* strip width. */ h = zrange/((double)is); /* initialize distance from earth centre for quadrature pass. */ if (k == 1) { r = r0; } else { r = rt; } /* one pass (no need to compute evens after first time). */ for (i=1; i 1e-20) { w = sk0/sz; rg = r; dr = 1.0e6; j = 0; while ( fabs(dr) > 1.0 && j < 4 ) { j++; if (k==1) { pal1Atmt(r0,tdkok,alpha,gamm2,delm2, c1,c2,c3,c4,c5,c6,rg,&tg,&dn,&rdndr); } else { pal1Atms(rt,tt,dnt,gamal,rg,&dn,&rdndr); } dr = (rg*dn-w)/(dn+rdndr); rg = rg-dr; } r = rg; } /* find the refractive index and integrand at r. */ if (k==1) { pal1Atmt(r0,tdkok,alpha,gamm2,delm2, c1,c2,c3,c4,c5,c6,r,&t,&dn,&rdndr); } else { pal1Atms(rt,tt,dnt,gamal,r,&dn,&rdndr); } f = refi(dn,rdndr); /* accumulate odd and (first time only) even values. */ if (n==1 && i%2 == 0) { fe += f; } else { fo += f; } } /* evaluate the integrand using simpson's rule. */ refp = h*(fb+4.0*fo+2.0*fe+ff)/3.0; /* has the required precision been achieved (or can't be)? */ if (fabs(refp-refold) > tol && is < ISMAX) { /* no: prepare for next iteration.*/ /* save current value for convergence test. */ refold = refp; /* double the number of strips. */ is += is; /* sum of all current values = sum of next pass's even values. */ fe += fo; /* prepare for new odd values. */ fo = 0.0; /* skip even values next time. */ n = 2; } else { /* yes: save troposphere component and terminate the loop. */ if (k==1) reft = refp; loop = 0; } } } /* result. */ *ref = reft+refp; if (zobs1 < 0.0) *ref = -(*ref); }