pull/6/head
f4exb 2015-12-07 22:31:44 +01:00
rodzic ea5cdb034f
commit 2f8fda7137
4 zmienionych plików z 13 dodań i 135 usunięć

Wyświetl plik

@ -65,20 +65,13 @@ public:
void process(const std::vector<Real>& samples_in, std::vector<Real>& samples_out);
/**
* Process samples and extract pilot tone. Generate phase-locked twice
* the frequency tone with unit amplitude. Mostly useful for 19 kHz stereo
* pilot tone on broadcast FM.
* In flow version
*/
void process(const Real& sample_in, Real& sample_out);
/**
* Process samples and track a pilot tone. Generate samples for multiple phase-locked
* Process samples and track a pilot tone. Generate samples for single or multiple phase-locked
* signals. Implement the processPhase virtual method to produce the output samples.
* In flow version. Ex: Use 19 kHz stereo pilot tone to generate 38 kHz (stereo) and 57 kHz
* pilots (see RDSPhaseLock class below).
* This is the in flow version
*/
void process(const Real& sample_in, std::vector<Real>& samples_out);
void process(const Real& sample_in, Real *samples_out);
/** Return true if the phase-locked loop is locked. */
bool locked() const
@ -100,7 +93,7 @@ protected:
* Callback method to produce multiple outputs from the current phase value in m_phase
* and/or the sin and cos values in m_psin and m_pcos
*/
virtual void processPhase(std::vector<Real>& samples_out) const {};
virtual void processPhase(Real *samples_out) const {};
private:
Real m_minfreq, m_maxfreq;
@ -132,7 +125,7 @@ public:
{}
protected:
virtual void processPhase(std::vector<Real>& samples_out) const
virtual void processPhase(Real *samples_out) const
{
samples_out[0] = m_psin; // f Pilot
// Generate double-frequency output.
@ -153,7 +146,7 @@ public:
{}
protected:
virtual void processPhase(std::vector<Real>& samples_out) const
virtual void processPhase(Real *samples_out) const
{
samples_out[0] = m_psin; // f Pilot
// Generate double-frequency output.

Wyświetl plik

@ -126,11 +126,12 @@ void BFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVecto
if (m_running.m_audioStereo)
{
Real pilotSample;
m_pilotPLL.process(demod, pilotSample);
//Real pilotSample;
//m_pilotPLL.process(demod, pilotSample);
m_pilotPLL.process(demod, m_pilotPLLSamples);
//m_sampleBuffer.push_back(Sample(pilotSample * (1<<15), 0.0)); // debug pilot
Complex s(demod*2.0*pilotSample, 0);
Complex s(demod*2.0*m_pilotPLLSamples[1], 0);
if (m_interpolatorStereo.interpolate(&m_interpolatorStereoDistanceRemain, s, &cs))
{

Wyświetl plik

@ -144,7 +144,8 @@ private:
SampleVector m_sampleBuffer;
QMutex m_settingsMutex;
PhaseLock m_pilotPLL;
StereoPhaseLock m_pilotPLL;
Real m_pilotPLLSamples[2];
void apply();
};

Wyświetl plik

@ -263,125 +263,8 @@ void PhaseLock::process(const Real& sample_in, Real& sample_out)
}*/
// Process samples.
void PhaseLock::process(const Real& sample_in, Real& sample_out)
{
bool was_locked = (m_lock_cnt >= m_lock_delay);
m_pps_events.clear();
//if (n > 0) m_pilot_level = 1000.0;
{
// Generate locked pilot tone.
Real psin = sin(m_phase);
Real pcos = cos(m_phase);
// Generate double-frequency output.
// sin(2*x) = 2 * sin(x) * cos(x)
sample_out = 2 * psin * pcos;
// Multiply locked tone with input.
Real x = sample_in;
Real phasor_i = psin * x;
Real phasor_q = pcos * x;
// Run IQ phase error through low-pass filter.
phasor_i = m_phasor_b0 * phasor_i
- m_phasor_a1 * m_phasor_i1
- m_phasor_a2 * m_phasor_i2;
phasor_q = m_phasor_b0 * phasor_q
- m_phasor_a1 * m_phasor_q1
- m_phasor_a2 * m_phasor_q2;
m_phasor_i2 = m_phasor_i1;
m_phasor_i1 = phasor_i;
m_phasor_q2 = m_phasor_q1;
m_phasor_q1 = phasor_q;
// Convert I/Q ratio to estimate of phase error.
Real phase_err;
if (phasor_i > abs(phasor_q)) {
// We are within +/- 45 degrees from lock.
// Use simple linear approximation of arctan.
phase_err = phasor_q / phasor_i;
} else if (phasor_q > 0) {
// We are lagging more than 45 degrees behind the input.
phase_err = 1;
} else {
// We are more than 45 degrees ahead of the input.
phase_err = -1;
}
// Detect pilot level (conservative).
// m_pilot_level = std::min(m_pilot_level, phasor_i);
m_pilot_level = phasor_i;
// Run phase error through loop filter and update frequency estimate.
m_freq += m_loopfilter_b0 * phase_err
+ m_loopfilter_b1 * m_loopfilter_x1;
m_loopfilter_x1 = phase_err;
// Limit frequency to allowable range.
m_freq = std::max(m_minfreq, std::min(m_maxfreq, m_freq));
// Update locked phase.
m_phase += m_freq;
if (m_phase > 2.0 * M_PI) {
m_phase -= 2.0 * M_PI;
m_pilot_periods++;
// Generate pulse-per-second.
if (m_pilot_periods == pilot_frequency) {
m_pilot_periods = 0;
//if (was_locked) {
// struct PpsEvent ev;
// ev.pps_index = m_pps_cnt;
// ev.sample_index = m_sample_cnt + i;
// ev.block_position = double(i) / double(n);
// m_pps_events.push_back(ev);
// m_pps_cnt++;
//}
}
}
}
// Update lock status.
if (2 * m_pilot_level > m_minsignal)
{
if (m_lock_cnt < m_lock_delay)
{
m_lock_cnt += 1; // n
}
else
{
m_unlock_cnt = 0;
}
}
else
{
if (m_unlock_cnt < m_unlock_delay)
{
m_unlock_cnt += 1;
}
else
{
m_lock_cnt = 0;
}
}
// Drop PPS events when pilot not locked.
if (m_lock_cnt < m_lock_delay) {
m_pilot_periods = 0;
m_pps_cnt = 0;
m_pps_events.clear();
}
// Update sample counter.
m_sample_cnt += 1; // n
}
// Process samples. Multiple output
void PhaseLock::process(const Real& sample_in, std::vector<Real>& samples_out)
void PhaseLock::process(const Real& sample_in, Real *samples_out)
{
bool was_locked = (m_lock_cnt >= m_lock_delay);
m_pps_events.clear();