WDSP: added ANB and NOB blocks (noise blanker)

pull/2212/head
f4exb 2024-06-29 20:03:13 +02:00
rodzic 74cc488383
commit 02a73de41b
7 zmienionych plików z 1192 dodań i 0 usunięć

Wyświetl plik

@ -5,6 +5,7 @@ set(wdsp_SOURCES
amd.cpp
ammod.cpp
amsq.cpp
anb.cpp
anf.cpp
anr.cpp
bandpass.cpp
@ -34,6 +35,7 @@ set(wdsp_SOURCES
meter.cpp
meterlog10.cpp
nbp.cpp
nob.cpp
osctrl.cpp
patchpanel.cpp
resample.cpp
@ -54,6 +56,7 @@ set(wdsp_HEADERS
amd.hpp
ammod.hpp
amsq.hpp
anb.hpp
anf.hpp
anr.hpp
bandpass.hpp
@ -85,6 +88,7 @@ set(wdsp_HEADERS
meter.hpp
meterlog10.hpp
nbp.hpp
nob.hpp
osctrl.hpp
patchpanel.hpp
resample.hpp

Wyświetl plik

@ -52,6 +52,8 @@ warren@wpratt.com
#include "iir.hpp"
#include "firmin.hpp"
#include "wcpAGC.hpp"
#include "anb.hpp"
#include "nob.hpp"
namespace WDSP {
@ -85,6 +87,36 @@ RXA* RXA::create_rxa (
rxa->midbuff = new float[2 * rxa->dsp_size * 2]; // (float *) malloc0 (2 * ch.dsp_size * sizeof (complex));
memset(rxa->meter, 0, sizeof(float)*RXA_METERTYPE_LAST);
// Noise blanker (ANB or "NB")
rxa->anb.p = ANB::create_anb(
0, // run
rxa->dsp_insize, // input buffer size
rxa->inbuff, // pointer to input buffer
rxa->inbuff, // pointer to output buffer
rxa->in_rate, // samplerate
0.0001, // tau
0.0001, // hang time
0.0001, // advance time
0.05, // back tau
30.0 // thershold
);
// Noise blanker (NOB or "NB2")
rxa->nob.p = NOB::create_nob(
0, // run
rxa->dsp_insize, // input buffer size
rxa->inbuff, // pointer to input buffer
rxa->inbuff, // pointer to output buffer
rxa->in_rate, // samplerate
0, // mode (zero)
0.0001, // advance slew time
0.0001, // advance time
0.0001, // hang slew time
0.0001, // hang time
0.025, // max_imp_seq_time:
0.05, // back tau
30
);
// Ftequency shifter - shift to select a slice of spectrum
rxa->shift.p = SHIFT::create_shift (
1, // run
@ -571,6 +603,8 @@ void RXA::destroy_rxa (RXA *rxa)
GEN::destroy_gen (rxa->gen0.p);
RESAMPLE::destroy_resample (rxa->rsmpin.p);
SHIFT::destroy_shift (rxa->shift.p);
ANB::destroy_anb(rxa->anb.p);
NOB::destroy_nob(rxa->nob.p);
delete[] (rxa->midbuff);
delete[] (rxa->outbuff);
delete[] (rxa->inbuff);
@ -609,10 +643,14 @@ void RXA::flush_rxa (RXA *rxa)
SSQL::flush_ssql (rxa->ssql.p);
PANEL::flush_panel (rxa->panel.p);
RESAMPLE::flush_resample (rxa->rsmpout.p);
ANB::flush_anb (rxa->anb.p);
NOB::flush_nob(rxa->nob.p);
}
void RXA::xrxa (RXA *rxa)
{
ANB::xanb (rxa->anb.p);
NOB::xnob (rxa->nob.p);
SHIFT::xshift (rxa->shift.p);
RESAMPLE::xresample (rxa->rsmpin.p);
GEN::xgen (rxa->gen0.p);
@ -661,6 +699,14 @@ void RXA::setInputSamplerate (RXA *rxa, int in_rate)
// buffers
delete[] (rxa->inbuff);
rxa->inbuff = new float[1 * rxa->dsp_insize * 2]; // (float *)malloc0(1 * ch.dsp_insize * sizeof(complex));
// anb
ANB::setBuffers_anb(rxa->anb.p, rxa->inbuff, rxa->inbuff);
ANB::setSize_anb(rxa->anb.p, rxa->dsp_insize);
ANB::setSamplerate_anb(rxa->anb.p, rxa->in_rate);
// nob
NOB::setBuffers_nob(rxa->nob.p, rxa->inbuff, rxa->inbuff);
NOB::setSize_nob(rxa->nob.p, rxa->dsp_insize);
NOB::setSamplerate_nob(rxa->nob.p, rxa->in_rate);
// shift
SHIFT::setBuffers_shift (rxa->shift.p, rxa->inbuff, rxa->inbuff);
SHIFT::setSize_shift (rxa->shift.p, rxa->dsp_insize);
@ -708,6 +754,12 @@ void RXA::setDSPSamplerate (RXA *rxa, int dsp_rate)
rxa->inbuff = new float[1 * rxa->dsp_insize * 2]; // (float *)malloc0(1 * rxa->dsp_insize * sizeof(complex));
delete[] (rxa->outbuff);
rxa->outbuff = new float[1 * rxa->dsp_outsize * 2]; // (float *)malloc0(1 * rxa->dsp_outsize * sizeof(complex));
// anb
ANB::setBuffers_anb (rxa->anb.p, rxa->inbuff, rxa->inbuff);
ANB::setSize_anb(rxa->anb.p, rxa->dsp_insize);
// nob
NOB::setBuffers_nob(rxa->nob.p, rxa->inbuff, rxa->inbuff);
NOB::setSize_nob(rxa->nob.p, rxa->dsp_insize);
// shift
SHIFT::setBuffers_shift (rxa->shift.p, rxa->inbuff, rxa->inbuff);
SHIFT::setSize_shift (rxa->shift.p, rxa->dsp_insize);
@ -767,6 +819,12 @@ void RXA::setDSPBuffsize (RXA *rxa, int dsp_size)
rxa->midbuff = new float[2 * rxa->dsp_size * 2]; // (float *)malloc0(2 * rxa->dsp_size * sizeof(complex));
delete[] (rxa->outbuff);
rxa->outbuff = new float[1 * rxa->dsp_outsize * 2]; // (float *)malloc0(1 * rxa->dsp_outsize * sizeof(complex));
// anb
ANB::setBuffers_anb (rxa->anb.p, rxa->inbuff, rxa->inbuff);
ANB::setSize_anb (rxa->anb.p, rxa->dsp_insize);
// nob
NOB::setBuffers_nob(rxa->nob.p, rxa->inbuff, rxa->inbuff);
NOB::setSize_nob(rxa->nob.p, rxa->dsp_insize);
// shift
SHIFT::setBuffers_shift (rxa->shift.p, rxa->inbuff, rxa->inbuff);
SHIFT::setSize_shift (rxa->shift.p, rxa->dsp_insize);

Wyświetl plik

@ -63,6 +63,8 @@ class PANEL;
class SIPHON;
class CBL;
class SSQL;
class ANB;
class NOB;
class BufferProbe;
class WDSP_API RXA : public Unit
@ -203,6 +205,14 @@ public:
{
SSQL *p;
} ssql;
struct
{
ANB *p;
} anb;
struct
{
NOB *p;
} nob;
static RXA* create_rxa (
int in_rate, // input samplerate

282
wdsp/anb.cpp 100644
Wyświetl plik

@ -0,0 +1,282 @@
/* anb.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#include "anb.hpp"
#include "RXA.hpp"
#define MAX_TAU (0.002) // maximum transition time, signal<->zero
#define MAX_ADVTIME (0.002) // maximum deadtime (zero output) in advance of detected noise
#define MAX_SAMPLERATE (1536000)
namespace WDSP {
void ANB::initBlanker(ANB *a)
{
int i;
a->trans_count = (int)(a->tau * a->samplerate);
if (a->trans_count < 2) a->trans_count = 2;
a->hang_count = (int)(a->hangtime * a->samplerate);
a->adv_count = (int)(a->advtime * a->samplerate);
a->count = 0;
a->in_idx = a->trans_count + a->adv_count;
a->out_idx = 0;
a->coef = PI / a->trans_count;
a->state = 0;
a->avg = 1.0;
a->power = 1.0;
a->backmult = exp(-1.0 / (a->samplerate * a->backtau));
a->ombackmult = 1.0 - a->backmult;
for (i = 0; i <= a->trans_count; i++)
a->wave[i] = 0.5 * cos(i * a->coef);
memset(a->dline, 0, a->dline_size * sizeof(wcomplex));
}
ANB* ANB::create_anb (
int run,
int buffsize,
float* in,
float* out,
double samplerate,
double tau,
double hangtime,
double advtime,
double backtau,
double threshold
)
{
ANB *a;
a = new ANB;
a->run = run;
a->buffsize = buffsize;
a->in = in;
a->out = out;
a->samplerate = samplerate;
a->tau = tau;
a->hangtime = hangtime;
a->advtime = advtime;
a->backtau = backtau;
a->threshold = threshold;
a->wave = new float[((int)(MAX_SAMPLERATE * MAX_TAU) + 1)];
a->dline_size = (int)((MAX_TAU + MAX_ADVTIME) * MAX_SAMPLERATE) + 1;
a->dline = new float[a->dline_size * 2];
initBlanker(a);
a->legacy = new float[2048 * 2]; /////////////// legacy interface - remove
return a;
}
void ANB::destroy_anb (ANB *a)
{
delete[] (a->legacy); /////////////// legacy interface - remove
delete[] (a->dline);
delete[] (a->wave);
delete (a);
}
void ANB::flush_anb (ANB *a)
{
a->cs_update.lock();
initBlanker (a);
a->cs_update.unlock();
}
void ANB::xanb (ANB *a)
{
double scale;
double mag;
int i;
if (a->run)
{
a->cs_update.lock();
for (i = 0; i < a->buffsize; i++)
{
mag = sqrt(a->in[2 * i + 0] * a->in[2 * i + 0] + a->in[2 * i + 1] * a->in[2 * i + 1]);
a->avg = a->backmult * a->avg + a->ombackmult * mag;
a->dline[2 * a->in_idx + 0] = a->in[2 * i + 0];
a->dline[2 * a->in_idx + 1] = a->in[2 * i + 1];
if (mag > (a->avg * a->threshold))
a->count = a->trans_count + a->adv_count;
switch (a->state)
{
case 0:
a->out[2 * i + 0] = a->dline[2 * a->out_idx + 0];
a->out[2 * i + 1] = a->dline[2 * a->out_idx + 1];
if (a->count > 0)
{
a->state = 1;
a->dtime = 0;
a->power = 1.0;
}
break;
case 1:
scale = a->power * (0.5 + a->wave[a->dtime]);
a->out[2 * i + 0] = a->dline[2 * a->out_idx + 0] * scale;
a->out[2 * i + 1] = a->dline[2 * a->out_idx + 1] * scale;
if (++a->dtime > a->trans_count)
{
a->state = 2;
a->atime = 0;
}
break;
case 2:
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
if (++a->atime > a->adv_count)
a->state = 3;
break;
case 3:
if (a->count > 0)
a->htime = -a->count;
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
if (++a->htime > a->hang_count)
{
a->state = 4;
a->itime = 0;
}
break;
case 4:
scale = 0.5 - a->wave[a->itime];
a->out[2 * i + 0] = a->dline[2 * a->out_idx + 0] * scale;
a->out[2 * i + 1] = a->dline[2 * a->out_idx + 1] * scale;
if (a->count > 0)
{
a->state = 1;
a->dtime = 0;
a->power = scale;
}
else if (++a->itime > a->trans_count)
a->state = 0;
break;
}
if (a->count > 0) a->count--;
if (++a->in_idx == a->dline_size) a->in_idx = 0;
if (++a->out_idx == a->dline_size) a->out_idx = 0;
}
a->cs_update.unlock();
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->buffsize * sizeof (wcomplex));
}
void ANB::setBuffers_anb (ANB *a, float* in, float* out)
{
a->in = in;
a->out = out;
}
void ANB::setSamplerate_anb (ANB *a, int rate)
{
a->samplerate = rate;
initBlanker (a);
}
void ANB::setSize_anb (ANB *a, int size)
{
a->buffsize = size;
initBlanker (a);
}
/********************************************************************************************************
* *
* RXA PROPERTIES *
* *
********************************************************************************************************/
void ANB::SetRXAANBRun (RXA& rxa, int run)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->run = run;
a->cs_update.unlock();
}
void ANB::SetRXAANBBuffsize (RXA& rxa, int size)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->buffsize = size;
a->cs_update.unlock();
}
void ANB::SetRXAANBSamplerate (RXA& rxa, int rate)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->samplerate = (double) rate;
initBlanker (a);
a->cs_update.unlock();
}
void ANB::SetRXAANBTau (RXA& rxa, double tau)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->tau = tau;
initBlanker (a);
a->cs_update.unlock();
}
void ANB::SetRXAANBHangtime (RXA& rxa, double time)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->hangtime = time;
initBlanker (a);
a->cs_update.unlock();
}
void ANB::SetRXAANBAdvtime (RXA& rxa, double time)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->advtime = time;
initBlanker (a);
a->cs_update.unlock();
}
void ANB::SetRXAANBBacktau (RXA& rxa, double tau)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->backtau = tau;
initBlanker (a);
a->cs_update.unlock();
}
void ANB::SetRXAANBThreshold (RXA& rxa, double thresh)
{
ANB *a = rxa.anb.p;
a->cs_update.lock();
a->threshold = thresh;
a->cs_update.unlock();
}
}

109
wdsp/anb.hpp 100644
Wyświetl plik

@ -0,0 +1,109 @@
/* anb.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013, 2014 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_anb_h
#define wdsp_anb_h
#include <QRecursiveMutex>
namespace WDSP {
class RXA;
class ANB
{
public:
int run;
int buffsize; // size of input/output buffer
float* in; // input buffer
float* out; // output buffer
int dline_size; // length of delay line which is 'double dline[length][2]'
float *dline; // pointer to delay line
double samplerate; // samplerate, used to convert times into sample counts
double tau; // transition time, signal<->zero
double hangtime; // time to stay at zero after noise is no longer detected
double advtime; // deadtime (zero output) in advance of detected noise
double backtau; // time constant used in averaging the magnitude of the input signal
double threshold; // triggers if (noise > threshold * average_signal_magnitude)
float *wave; // pointer to array holding transition waveform
int state; // state of the state machine
double avg; // average value of the signal magnitude
int dtime; // count when decreasing the signal magnitude
int htime; // count when hanging
int itime; // count when increasing the signal magnitude
int atime; // count at zero before the noise burst (advance count)
double coef; // parameter in calculating transition waveform
int trans_count; // number of samples to equal 'tau' time
int hang_count; // number of samples to equal 'hangtime' time
int adv_count; // number of samples to equal 'advtime' time
int in_idx; // ring buffer position into which new samples are inserted
int out_idx; // ring buffer position from which delayed samples are pulled
double power; // level at which signal was increasing when a new decrease is started
int count; // set each time a noise sample is detected, counts down
double backmult; // multiplier for waveform averaging
double ombackmult; // multiplier for waveform averaging
QRecursiveMutex cs_update;
float *legacy;
static ANB* create_anb (
int run,
int buffsize,
float* in,
float* out,
double samplerate,
double tau,
double hangtime,
double advtime,
double backtau,
double threshold
);
static void destroy_anb (ANB *a);
static void flush_anb (ANB *a);
static void xanb (ANB *a);
static void setBuffers_anb (ANB *a, float* in, float* out);
static void setSamplerate_anb (ANB *a, int rate);
static void setSize_anb (ANB *a, int size);
// RXA
static void SetRXAANBRun (RXA& rxa, int run);
static void SetRXAANBBuffsize (RXA& rxa, int size);
static void SetRXAANBSamplerate (RXA& rxa, int rate);
static void SetRXAANBTau (RXA& rxa, double tau);
static void SetRXAANBHangtime (RXA& rxa, double time);
static void SetRXAANBAdvtime (RXA& rxa, double time);
static void SetRXAANBBacktau (RXA& rxa, double tau);
static void SetRXAANBThreshold (RXA& rxa, double thresh);
private:
static void initBlanker(ANB *a); //////////// legacy interface - remove
};
} // namespace
#endif

600
wdsp/nob.cpp 100644
Wyświetl plik

@ -0,0 +1,600 @@
/* nobII.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#include "comm.hpp"
#define MAX_ADV_SLEW_TIME (0.002)
#define MAX_ADV_TIME (0.002)
#define MAX_HANG_SLEW_TIME (0.002)
#define MAX_HANG_TIME (0.002)
#define MAX_SEQ_TIME (0.025)
#define MAX_SAMPLERATE (1536000.0)
#include "nob.hpp"
#include "RXA.hpp"
namespace WDSP {
void NOB::init_nob (NOB *a)
{
int i;
double coef;
a->adv_slew_count = (int)(a->advslewtime * a->samplerate);
a->adv_count = (int)(a->advtime * a->samplerate);
a->hang_count = (int)(a->hangtime * a->samplerate);
a->hang_slew_count = (int)(a->hangslewtime * a->samplerate);
a->max_imp_seq = (int)(a->max_imp_seq_time * a->samplerate);
a->backmult = exp (-1.0 / (a->samplerate * a->backtau));
a->ombackmult = 1.0 - a->backmult;
if (a->adv_slew_count > 0)
{
coef = PI / (a->adv_slew_count + 1);
for (i = 0; i < a->adv_slew_count; i++)
a->awave[i] = 0.5 * cos ((i + 1) * coef);
}
if (a->hang_slew_count > 0)
{
coef = PI / a->hang_slew_count;
for (i = 0; i < a->hang_slew_count; i++)
a->hwave[i] = 0.5 * cos (i * coef);
}
flush_nob (a);
}
NOB* NOB::create_nob (
int run,
int buffsize,
float* in,
float* out,
double samplerate,
int mode,
double advslewtime,
double advtime,
double hangslewtime,
double hangtime,
double max_imp_seq_time,
double backtau,
double threshold
)
{
NOB *a = new NOB;
a->run = run;
a->buffsize = buffsize;
a->in = in;
a->out = out;
a->samplerate = samplerate;
a->mode = mode;
a->advslewtime = advslewtime;
a->advtime = advtime;
a->hangslewtime = hangslewtime;
a->hangtime = hangtime;
a->max_imp_seq_time = max_imp_seq_time;
a->backtau = backtau;
a->threshold = threshold;
a->dline_size = (int)(MAX_SAMPLERATE * (MAX_ADV_SLEW_TIME +
MAX_ADV_TIME +
MAX_HANG_SLEW_TIME +
MAX_HANG_TIME +
MAX_SEQ_TIME ) + 2);
a->dline = new double[a->dline_size * 2];
a->imp = new int[a->dline_size];
a->awave = new double[(int)(MAX_ADV_SLEW_TIME * MAX_SAMPLERATE + 1)];
a->hwave = new double[(int)(MAX_HANG_SLEW_TIME * MAX_SAMPLERATE + 1)];
a->filterlen = 10;
a->bfbuff = new double[a->filterlen * 2];
a->ffbuff = new double[a->filterlen * 2];
a->fcoefs = new double[a->filterlen];
a->fcoefs[0] = 0.308720593;
a->fcoefs[1] = 0.216104415;
a->fcoefs[2] = 0.151273090;
a->fcoefs[3] = 0.105891163;
a->fcoefs[4] = 0.074123814;
a->fcoefs[5] = 0.051886670;
a->fcoefs[6] = 0.036320669;
a->fcoefs[7] = 0.025424468;
a->fcoefs[8] = 0.017797128;
a->fcoefs[9] = 0.012457989;
init_nob (a);
a->legacy = new double[2048 * 2]; /////////////// legacy interface - remove
return a;
}
void NOB::destroy_nob (NOB *a)
{
delete[] (a->legacy); /////////////// remove
delete[] (a->fcoefs);
delete[] (a->ffbuff);
delete[] (a->bfbuff);
delete[] (a->hwave);
delete[] (a->awave);
delete[] (a->imp);
delete[] (a->dline);
delete (a);
}
void NOB::flush_nob (NOB *a)
{
a->out_idx = 0;
a->scan_idx = a->out_idx + a->adv_slew_count + a->adv_count + 1;
a->in_idx = a->scan_idx + a->max_imp_seq + a->hang_count + a->hang_slew_count + a->filterlen;
a->state = 0;
a->overflow = 0;
a->avg = 1.0;
a->bfb_in_idx = a->filterlen - 1;
a->ffb_in_idx = a->filterlen - 1;
memset (a->dline, 0, a->dline_size * sizeof (wcomplex));
memset (a->imp, 0, a->dline_size * sizeof (int));
memset (a->bfbuff, 0, a->filterlen * sizeof (wcomplex));
memset (a->ffbuff, 0, a->filterlen * sizeof (wcomplex));
}
void NOB::xnob (NOB *a)
{
double scale;
double mag;
int bf_idx;
int ff_idx;
int lidx, tidx;
int i, j, k;
int bfboutidx;
int ffboutidx;
int hcount;
int len;
int ffcount;
int staydown;
a->cs_update.lock();
if (a->run)
{
for (i = 0; i < a->buffsize; i++)
{
a->dline[2 * a->in_idx + 0] = a->in[2 * i + 0];
a->dline[2 * a->in_idx + 1] = a->in[2 * i + 1];
mag = sqrt(a->dline[2 * a->in_idx + 0] * a->dline[2 * a->in_idx + 0] + a->dline[2 * a->in_idx + 1] * a->dline[2 * a->in_idx + 1]);
a->avg = a->backmult * a->avg + a->ombackmult * mag;
if (mag > (a->avg * a->threshold))
a->imp[a->in_idx] = 1;
else
a->imp[a->in_idx] = 0;
if ((bf_idx = a->out_idx + a->adv_slew_count) >= a->dline_size) bf_idx -= a->dline_size;
if (a->imp[bf_idx] == 0)
{
if (++a->bfb_in_idx == a->filterlen) a->bfb_in_idx -= a->filterlen;
a->bfbuff[2 * a->bfb_in_idx + 0] = a->dline[2 * bf_idx + 0];
a->bfbuff[2 * a->bfb_in_idx + 1] = a->dline[2 * bf_idx + 1];
}
switch (a->state)
{
case 0: // normal output & impulse setup
{
a->out[2 * i + 0] = a->dline[2 * a->out_idx + 0];
a->out[2 * i + 1] = a->dline[2 * a->out_idx + 1];
a->Ilast = a->dline[2 * a->out_idx + 0];
a->Qlast = a->dline[2 * a->out_idx + 1];
if (a->imp[a->scan_idx] > 0)
{
a->time = 0;
if (a->adv_slew_count > 0)
a->state = 1;
else if (a->adv_count > 0)
a->state = 2;
else
a->state = 3;
tidx = a->scan_idx;
a->blank_count = 0;
do
{
len = 0;
hcount = 0;
while ((a->imp[tidx] > 0 || hcount > 0) && a->blank_count < a->max_imp_seq)
{
a->blank_count++;
if (hcount > 0) hcount--;
if (a->imp[tidx] > 0) hcount = a->hang_count + a->hang_slew_count;
if (++tidx >= a->dline_size) tidx -= a->dline_size;
}
j = 1;
len = 0;
lidx = tidx;
while (j <= a->adv_slew_count + a->adv_count && len == 0)
{
if (a->imp[lidx] == 1)
{
len = j;
tidx = lidx;
}
if (++lidx >= a->dline_size) lidx -= a->dline_size;
j++;
}
if((a->blank_count += len) > a->max_imp_seq)
{
a->blank_count = a->max_imp_seq;
a->overflow = 1;
break;
}
} while (len != 0);
if (a->overflow == 0)
{
a->blank_count -= a->hang_slew_count;
a->Inext = a->dline[2 * tidx + 0];
a->Qnext = a->dline[2 * tidx + 1];
if (a->mode == 1 || a->mode == 2 || a->mode == 4)
{
bfboutidx = a->bfb_in_idx;
a->I1 = 0.0;
a->Q1 = 0.0;
for (k = 0; k < a->filterlen; k++)
{
a->I1 += a->fcoefs[k] * a->bfbuff[2 * bfboutidx + 0];
a->Q1 += a->fcoefs[k] * a->bfbuff[2 * bfboutidx + 1];
if (--bfboutidx < 0) bfboutidx += a->filterlen;
}
}
if (a->mode == 2 || a->mode == 3 || a->mode == 4)
{
if ((ff_idx = a->scan_idx + a->blank_count) >= a->dline_size) ff_idx -= a->dline_size;
ffcount = 0;
while (ffcount < a->filterlen)
{
if (a->imp[ff_idx] == 0)
{
if (++a->ffb_in_idx == a->filterlen) a->ffb_in_idx -= a->filterlen;
a->ffbuff[2 * a->ffb_in_idx + 0] = a->dline[2 * ff_idx + 0];
a->ffbuff[2 * a->ffb_in_idx + 1] = a->dline[2 * ff_idx + 1];
++ffcount;
}
if (++ff_idx >= a->dline_size) ff_idx -= a->dline_size;
}
if ((ffboutidx = a->ffb_in_idx + 1) >= a->filterlen) ffboutidx -= a->filterlen;
a->I2 = 0.0;
a->Q2 = 0.0;
for (k = 0; k < a->filterlen; k++)
{
a->I2 += a->fcoefs[k] * a->ffbuff[2 * ffboutidx + 0];
a->Q2 += a->fcoefs[k] * a->ffbuff[2 * ffboutidx + 1];
if (++ffboutidx >= a->filterlen) ffboutidx -= a->filterlen;
}
}
switch (a->mode)
{
case 0: // zero
a->deltaI = 0.0;
a->deltaQ = 0.0;
a->I = 0.0;
a->Q = 0.0;
break;
case 1: // sample-hold
a->deltaI = 0.0;
a->deltaQ = 0.0;
a->I = a->I1;
a->Q = a->Q1;
break;
case 2: // mean-hold
a->deltaI = 0.0;
a->deltaQ = 0.0;
a->I = 0.5 * (a->I1 + a->I2);
a->Q = 0.5 * (a->Q1 + a->Q2);
break;
case 3: // hold-sample
a->deltaI = 0.0;
a->deltaQ = 0.0;
a->I = a->I2;
a->Q = a->Q2;
break;
case 4: // linear interpolation
a->deltaI = (a->I2 - a->I1) / (a->adv_count + a->blank_count);
a->deltaQ = (a->Q2 - a->Q1) / (a->adv_count + a->blank_count);
a->I = a->I1;
a->Q = a->Q1;
break;
}
}
else
{
if (a->adv_slew_count > 0)
a->state = 5;
else
{
a->state = 6;
a->time = 0;
a->blank_count += a->adv_count + a->filterlen;
}
}
}
break;
}
case 1: // slew output in advance of blanking period
{
scale = 0.5 + a->awave[a->time];
a->out[2 * i + 0] = a->Ilast * scale + (1.0 - scale) * a->I;
a->out[2 * i + 1] = a->Qlast * scale + (1.0 - scale) * a->Q;
if (++a->time == a->adv_slew_count)
{
a->time = 0;
if (a->adv_count > 0)
a->state = 2;
else
a->state = 3;
}
break;
}
case 2: // initial advance period
{
a->out[2 * i + 0] = a->I;
a->out[2 * i + 1] = a->Q;
a->I += a->deltaI;
a->Q += a->deltaQ;
if (++a->time == a->adv_count)
{
a->state = 3;
a->time = 0;
}
break;
}
case 3: // impulse & hang period
{
a->out[2 * i + 0] = a->I;
a->out[2 * i + 1] = a->Q;
a->I += a->deltaI;
a->Q += a->deltaQ;
if (++a->time == a->blank_count)
{
if (a->hang_slew_count > 0)
{
a->state = 4;
a->time = 0;
}
else
a->state = 0;
}
break;
}
case 4: // slew output after blanking period
{
scale = 0.5 - a->hwave[a->time];
a->out[2 * i + 0] = a->Inext * scale + (1.0 - scale) * a->I;
a->out[2 * i + 1] = a->Qnext * scale + (1.0 - scale) * a->Q;
if (++a->time == a->hang_slew_count)
a->state = 0;
break;
}
case 5:
{
scale = 0.5 + a->awave[a->time];
a->out[2 * i + 0] = a->Ilast * scale;
a->out[2 * i + 1] = a->Qlast * scale;
if (++a->time == a->adv_slew_count)
{
a->state = 6;
a->time = 0;
a->blank_count += a->adv_count + a->filterlen;
}
break;
}
case 6:
{
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
if (++a->time == a->blank_count)
a->state = 7;
break;
}
case 7:
{
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
staydown = 0;
a->time = 0;
if ((tidx = a->scan_idx + a->hang_slew_count + a->hang_count) >= a->dline_size) tidx -= a->dline_size;
while (a->time++ <= a->adv_count + a->adv_slew_count + a->hang_slew_count + a->hang_count) // CHECK EXACT COUNTS!!!!!!!!!!!!!!!!!!!!!!!
{
if (a->imp[tidx] == 1) staydown = 1;
if (--tidx < 0) tidx += a->dline_size;
}
if (staydown == 0)
{
if (a->hang_count > 0)
{
a->state = 8;
a->time = 0;
}
else if (a->hang_slew_count > 0)
{
a->state = 9;
a->time = 0;
if ((tidx = a->scan_idx + a->hang_slew_count + a->hang_count - a->adv_count - a->adv_slew_count) >= a->dline_size) tidx -= a->dline_size;
if (tidx < 0) tidx += a->dline_size;
a->Inext = a->dline[2 * tidx + 0];
a->Qnext = a->dline[2 * tidx + 1];
}
else
{
a->state = 0;
a->overflow = 0;
}
}
break;
}
case 8:
{
a->out[2 * i + 0] = 0.0;
a->out[2 * i + 1] = 0.0;
if (++a->time == a->hang_count)
{
if (a->hang_slew_count > 0)
{
a->state = 9;
a->time = 0;
if ((tidx = a->scan_idx + a->hang_slew_count - a->adv_count - a->adv_slew_count) >= a->dline_size) tidx -= a->dline_size;
if (tidx < 0) tidx += a->dline_size;
a->Inext = a->dline[2 * tidx + 0];
a->Qnext = a->dline[2 * tidx + 1];
}
else
{
a->state = 0;
a->overflow = 0;
}
}
break;
}
case 9:
{
scale = 0.5 - a->hwave[a->time];
a->out[2 * i + 0] = a->Inext * scale;
a->out[2 * i + 1] = a->Qnext * scale;
if (++a->time >= a->hang_slew_count)
{
a->state = 0;
a->overflow = 0;
}
break;
}
}
if (++a->in_idx == a->dline_size) a->in_idx = 0;
if (++a->scan_idx == a->dline_size) a->scan_idx = 0;
if (++a->out_idx == a->dline_size) a->out_idx = 0;
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->buffsize * sizeof (wcomplex));
a->cs_update.unlock();
}
void NOB::setBuffers_nob (NOB *a, float* in, float* out)
{
a->in = in;
a->out = out;
}
void NOB::setSamplerate_nob (NOB *a, int rate)
{
a->samplerate = rate;
init_nob (a);
}
void NOB::setSize_nob (NOB *a, int size)
{
a->buffsize = size;
flush_nob (a);
}
/********************************************************************************************************
* *
* RXA PROPERTIES *
* *
********************************************************************************************************/
void NOB::SetRXANOBRun (RXA& rxa, int run)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->run = run;
a->cs_update.unlock();
}
void NOB::SetRXANOBMode (RXA& rxa, int mode)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->mode = mode;
a->cs_update.unlock();
}
void NOB::SetRXANOBBuffsize (RXA& rxa, int size)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->buffsize = size;
a->cs_update.unlock();
}
void NOB::SetRXANOBSamplerate (RXA& rxa, int rate)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->samplerate = (double) rate;
init_nob (a);
a->cs_update.unlock();
}
void NOB::SetRXANOBTau (RXA& rxa, double tau)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->advslewtime = tau;
a->hangslewtime = tau;
init_nob (a);
a->cs_update.unlock();
}
void NOB::SetRXANOBHangtime (RXA& rxa, double time)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->hangtime = time;
init_nob (a);
a->cs_update.unlock();
}
void NOB::SetRXANOBAdvtime (RXA& rxa, double time)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->advtime = time;
init_nob (a);
a->cs_update.unlock();
}
void NOB::SetRXANOBBacktau (RXA& rxa, double tau)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->backtau = tau;
init_nob (a);
a->cs_update.unlock();
}
void NOB::SetRXANOBThreshold (RXA& rxa, double thresh)
{
NOB *a = rxa.nob.p;
a->cs_update.lock();
a->threshold = thresh;
a->cs_update.unlock();
}
} // namespace

129
wdsp/nob.hpp 100644
Wyświetl plik

@ -0,0 +1,129 @@
/* nobII.h
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2014 Warren Pratt, NR0V
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
warren@wpratt.com
*/
#ifndef wdsp_nob_h
#define wdsp_nob_h
#include <QRecursiveMutex>
namespace WDSP {
class RXA;
class NOB
{
public:
int run;
int buffsize; // size of input/output buffer
float* in; // input buffer
float* out; // output buffer
int mode;
int dline_size; // length of delay line which is 'double dline[length][2]'
double *dline; // pointer to delay line
int *imp;
double samplerate; // samplerate, used to convert times into sample counts
double advslewtime; // transition time, signal<->zero
double advtime; // deadtime (zero output) in advance of detected noise
double hangslewtime;
double hangtime; // time to stay at zero after noise is no longer detected
double max_imp_seq_time;
int filterlen;
double *fcoefs;
double *bfbuff;
int bfb_in_idx;
double *ffbuff;
int ffb_in_idx;
double backtau; // time constant used in averaging the magnitude of the input signal
double threshold; // triggers if (noise > threshold * average_signal_magnitude)
double *awave; // pointer to array holding transition waveform
double *hwave;
int state; // state of the state machine
double avg; // average value of the signal magnitude
int time; // count when decreasing the signal magnitude
int adv_slew_count;
int adv_count; // number of samples to equal 'tau' time
int hang_count; // number of samples to equal 'hangtime' time
int hang_slew_count; // number of samples to equal 'advtime' time
int max_imp_seq;
int blank_count;
int in_idx; // ring buffer position into which new samples are inserted
int scan_idx;
int out_idx; // ring buffer position from which delayed samples are pulled
double backmult; // multiplier for waveform averaging
double ombackmult; // multiplier for waveform averaging
double I1, Q1;
double I2, Q2;
double I, Q;
double Ilast, Qlast;
double deltaI, deltaQ;
double Inext, Qnext;
int overflow;
QRecursiveMutex cs_update;
double *legacy;
//////////// legacy interface - remove
static NOB* create_nob (
int run,
int buffsize,
float* in,
float* out,
double samplerate,
int mode,
double advslewtime,
double advtime,
double hangslewtime,
double hangtime,
double max_imp_seq_time,
double backtau,
double threshold
);
static void destroy_nob (NOB* a);
static void flush_nob (NOB* a);
static void xnob (NOB* a);
static void setBuffers_nob (NOB *a, float* in, float* out);
static void setSamplerate_nob (NOB *a, int rate);
static void setSize_nob (NOB *a, int size);
// RXA
static void SetRXANOBRun (RXA& rxa, int run);
static void SetRXANOBMode (RXA& rxa, int mode);
static void SetRXANOBBuffsize (RXA& rxa, int size);
static void SetRXANOBSamplerate (RXA& rxa, int size);
static void SetRXANOBTau (RXA& rxa, double tau);
static void SetRXANOBHangtime (RXA& rxa, double time);
static void SetRXANOBAdvtime (RXA& rxa, double time);
static void SetRXANOBBacktau (RXA& rxa, double tau);
static void SetRXANOBThreshold (RXA& rxa, double thresh);
private:
static void init_nob (NOB *a);
};
} // namespace
#endif