sdrangel/plugins/samplesource/airspy/airspyinput.cpp

430 wiersze
11 KiB
C++
Czysty Zwykły widok Historia

2015-09-09 07:13:24 +00:00
///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see <http://www.gnu.org/licenses/>. //
///////////////////////////////////////////////////////////////////////////////////
#include <string.h>
#include <errno.h>
#include <QDebug>
#include "airspygui.h"
#include "airspyinput.h"
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "airspyserializer.h"
#include "airspythread.h"
MESSAGE_CLASS_DEFINITION(AirspyInput::MsgConfigureAirspy, Message)
MESSAGE_CLASS_DEFINITION(AirspyInput::MsgReportAirspy, Message)
AirspyInput::Settings::Settings() :
m_centerFrequency(435000*1000),
m_devSampleRate(2500000),
m_LOppmTenths(0),
m_lnaGain(1),
m_mixerGain(5),
m_vgaGain(5),
m_log2Decim(0),
m_fcPos(FC_POS_INFRA),
m_biasT(false)
{
}
void AirspyInput::Settings::resetToDefaults()
{
m_centerFrequency = 435000*1000;
m_devSampleRate = 2500000;
m_LOppmTenths = 0;
m_lnaGain = 1;
m_mixerGain = 5;
m_vgaGain = 5;
m_log2Decim = 0;
m_fcPos = FC_POS_INFRA;
m_biasT = false;
}
QByteArray AirspyInput::Settings::serialize() const
{
AirspySerializer::AirspyData data;
data.m_data.m_frequency = m_centerFrequency;
data.m_LOppmTenths = m_LOppmTenths;
data.m_sampleRate = m_devSampleRate;
data.m_log2Decim = m_log2Decim;
data.m_fcPos = m_fcPos;
data.m_lnaGain = m_lnaGain;
data.m_mixerGain = m_mixerGain;
data.m_vgaGain = m_vgaGain;
data.m_biasT = m_biasT;
QByteArray byteArray;
AirspySerializer::writeSerializedData(data, byteArray);
return byteArray;
}
bool AirspyInput::Settings::deserialize(const QByteArray& serializedData)
{
AirspySerializer::AirspyData data;
bool valid = AirspySerializer::readSerializedData(serializedData, data);
m_centerFrequency = data.m_data.m_frequency;
m_LOppmTenths = data.m_LOppmTenths;
m_devSampleRate = data.m_sampleRate;
m_log2Decim = data.m_log2Decim;
m_fcPos = data.m_fcPos;
m_lnaGain = data.m_lnaGain;
m_mixerGain = data.m_mixerGain;
m_vgaGain = data.m_vgaGain;
m_biasT = data.m_biasT;
return valid;
}
AirspyInput::AirspyInput() :
m_settings(),
m_dev(0),
m_airspyThread(0),
m_deviceDescription("Airspy")
{
}
AirspyInput::~AirspyInput()
{
stop();
}
bool AirspyInput::init(const Message& cmd)
{
return false;
}
bool AirspyInput::start(int device)
{
QMutexLocker mutexLocker(&m_mutex);
airspy_error rc;
rc = airspy_init();
if (rc != AIRSPY_SUCCESS)
{
qCritical("AirspyInput::start: failed to initiate Airspy library %s", airspy_error_name(rc));
}
if (m_dev != 0)
{
stop();
}
if (!m_sampleFifo.setSize(96000 * 4))
{
qCritical("AirspyInput::start: could not allocate SampleFifo");
return false;
}
if ((m_dev = open_airspy_from_sequence(device)) == 0) // TODO: fix; Open first available device as there is no proper handling for multiple devices
{
qCritical("AirspyInput::start: could not open Airspy");
return false;
}
#ifdef LIBAIRSPY_OLD
m_sampleRates.push_back(2500000);
m_sampleRates.push_back(10000000)
#else
uint32_t nbSampleRates;
uint32_t sampleRates[];
airspy_get_samplerates(m_dev, &nbSampleRates, 0);
sampleRates = new uint32_t[nbSampleRates];
airspy_get_samplerates(m_dev, sampleRates, nbSampleRates);
for (int i=0; i<nbSampleRates; i++)
{
m_sampleRates.push_back(sampleRates[i]);
}
delete[] sampleRates;
#endif
MsgReportAirspy *message = MsgReportAirspy::create(m_sampleRates);
getOutputMessageQueueToGUI()->push(message);
if((m_airspyThread = new AirspyThread(m_dev, &m_sampleFifo)) == NULL) {
qFatal("out of memory");
goto failed;
}
m_airspyThread->startWork();
mutexLocker.unlock();
applySettings(m_settings, true);
qDebug("AirspyInput::startInput: started");
return true;
}
void AirspyInput::stop()
{
QMutexLocker mutexLocker(&m_mutex);
if(m_airspyThread != 0)
{
m_airspyThread->stopWork();
delete m_airspyThread;
m_airspyThread = 0;
}
if(m_dev != 0)
{
airspy_stop_rx(m_dev);
airspy_close(m_dev);
m_dev = 0;
}
airspy_exit();
}
const QString& AirspyInput::getDeviceDescription() const
{
return m_deviceDescription;
}
int AirspyInput::getSampleRate() const
{
int rate = m_settings.m_devSampleRate;
return (rate / (1<<m_settings.m_log2Decim));
}
quint64 AirspyInput::getCenterFrequency() const
{
return m_settings.m_centerFrequency;
}
bool AirspyInput::handleMessage(const Message& message)
{
if (MsgConfigureAirspy::match(message))
{
MsgConfigureAirspy& conf = (MsgConfigureAirspy&) message;
qDebug() << "AirspyInput::handleMessage: MsgConfigureAirspy";
if (!applySettings(conf.getSettings(), false))
{
qDebug("Airspy config error");
}
return true;
}
else
{
return false;
}
}
bool AirspyInput::applySettings(const Settings& settings, bool force)
{
bool forwardChange = false;
airspy_error rc;
QMutexLocker mutexLocker(&m_mutex);
qDebug() << "AirspyInput::applySettings: m_dev: " << m_dev;
if ((m_settings.m_lnaGain != settings.m_lnaGain) || force)
{
m_settings.m_lnaGain = settings.m_lnaGain;
if (m_dev != 0)
{
rc = airspy_set_lna_gain(m_dev, m_settings.m_lnaGain);
if(rc != AIRSPY_SUCCESS)
{
qDebug("AirspyInput::applySettings: airspy_set_lna_gain failed: %s", airspy_error_name(rc));
}
else
{
qDebug() << "AirspyInput:applySettings: LNA gain set to " << m_settings.m_lnaGain;
}
}
}
if ((m_settings.m_mixerGain != settings.m_mixerGain) || force)
{
m_settings.m_mixerGain = settings.m_mixerGain;
if (m_dev != 0)
{
rc = airspy_set_mixer_gain(m_dev, m_settings.m_mixerGain);
if(rc != AIRSPY_SUCCESS)
{
qDebug("AirspyInput::applySettings: airspy_set_mixer_gain failed: %s", airspy_error_name(rc));
}
else
{
qDebug() << "AirspyInput:applySettings: mixer gain set to " << m_settings.m_mixerGain;
}
}
}
if ((m_settings.m_vgaGain != settings.m_vgaGain) || force)
{
m_settings.m_vgaGain = settings.m_vgaGain;
if (m_dev != 0)
{
rc = airspy_set_vga_gain(m_dev, m_settings.m_vgaGain);
if(rc != AIRSPY_SUCCESS)
{
qDebug("AirspyInput::applySettings: airspy_set_vga_gain failed: %s", airspy_error_name(rc));
}
else
{
qDebug() << "AirspyInput:applySettings: VGA gain set to " << m_settings.m_vgaGain;
}
}
}
if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
{
m_settings.m_devSampleRate = settings.m_devSampleRate;
forwardChange = true;
if (m_dev != 0)
{
unsigned int actualSamplerate;
if (bladerf_set_sample_rate(m_dev, BLADERF_MODULE_RX, m_settings.m_devSampleRate, &actualSamplerate) < 0)
{
qCritical("could not set sample rate: %d", m_settings.m_devSampleRate);
}
else
{
qDebug() << "bladerf_set_sample_rate(BLADERF_MODULE_RX) actual sample rate is " << actualSamplerate;
m_airspyThread->setSamplerate(m_settings.m_devSampleRate);
}
}
}
if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
{
m_settings.m_log2Decim = settings.m_log2Decim;
forwardChange = true;
if(m_dev != 0)
{
m_airspyThread->setLog2Decimation(m_settings.m_log2Decim);
qDebug() << "AirspyInput: set decimation to " << (1<<m_settings.m_log2Decim);
}
}
if ((m_settings.m_fcPos != settings.m_fcPos) || force)
{
m_settings.m_fcPos = settings.m_fcPos;
if(m_dev != 0)
{
m_airspyThread->setFcPos((int) m_settings.m_fcPos);
qDebug() << "AirspyInput: set fc pos (enum) to " << (int) m_settings.m_fcPos;
}
}
if (m_settings.m_centerFrequency != settings.m_centerFrequency)
{
forwardChange = true;
}
m_settings.m_centerFrequency = settings.m_centerFrequency;
qint64 deviceCenterFrequency = m_settings.m_centerFrequency;
qint64 f_img = deviceCenterFrequency;
qint64 f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == FC_POS_CENTER))
{
deviceCenterFrequency = m_settings.m_centerFrequency;
f_img = deviceCenterFrequency;
f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
}
else
{
if (m_settings.m_fcPos == FC_POS_INFRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency + (m_settings.m_devSampleRate / 4);
f_img = deviceCenterFrequency + m_settings.m_devSampleRate/2;
f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
}
else if (m_settings.m_fcPos == FC_POS_SUPRA)
{
deviceCenterFrequency = m_settings.m_centerFrequency - (m_settings.m_devSampleRate / 4);
f_img = deviceCenterFrequency - m_settings.m_devSampleRate/2;
f_cut = deviceCenterFrequency - m_settings.m_bandwidth/2;
}
}
if (m_dev != NULL)
{
if (bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, deviceCenterFrequency ) != 0)
{
qDebug("bladerf_set_frequency(%lld) failed", m_settings.m_centerFrequency);
}
}
if (forwardChange)
{
int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2Decim);
DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency);
getOutputMessageQueue()->push(notif);
}
qDebug() << "AirspyInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
<< " device center freq: " << deviceCenterFrequency << " Hz"
<< " device sample rate: " << m_settings.m_devSampleRate << "Hz"
<< " Actual sample rate: " << m_settings.m_devSampleRate/(1<<m_settings.m_log2Decim) << "Hz"
<< " BW: " << m_settings.m_bandwidth << "Hz"
<< " img: " << f_img << "Hz"
<< " cut: " << f_cut << "Hz"
<< " img - cut: " << f_img - f_cut;
return true;
}
struct airspy_device *AirspyInput::open_airspy_from_sequence(int sequence)
{
struct airspy_device *devinfo;
int rc;
for (int i=0; i < AIRSPY_MAX_DEVICE; i++)
{
rc = airspy_open(&devinfo);
if ((rc == AIRSPY_SUCCESS) && (i == sequence))
{
return devinfo;
}
else
{
break; // finished
}
}
return 0;
}