sane-project-backends/backend/p5.c

2037 wiersze
63 KiB
C

/* sane - Scanner Access Now Easy.
Copyright (C) 2009-12 Stéphane Voltz <stef.dev@free.fr>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/* --------------------------------------------------------------------------
*/
/* ------------------------------------------------------------------------- */
/*! \mainpage Primax PagePartner Parallel Port scanner Index Page
*
* \section intro_sec Introduction
*
* This backend provides support for the Prima PagePartner sheet fed parallel
* port scanner.
*
* \section sane_api SANE API
*
* \subsection sane_flow sane flow
SANE FLOW
- sane_init() : initialize backend, attach scanners.
- sane_get_devices() : query list of scanner devices, backend must
probe for new devices.
- sane_open() : open a particular scanner device, adding a handle
to the opened device
- sane_set_io_mode() : set blocking mode
- sane_get_select_fd() : get scanner fd
- sane_get_option_descriptor() : get option information
- sane_control_option() : change option values
- sane_start() : start image acquisition
- sane_get_parameters() : returns actual scan parameters for the ongoing scan
- sane_read() : read image data
- sane_cancel() : cancel operation, end scan
- sane_close() : close opened scanner device, freeing scanner handle
- sane_exit() : terminate use of backend, freeing all resources for attached
devices when last frontend quits
*/
/**
* the build number allow to know which version of the backend is running.
*/
#define BUILD 2301
#include "p5.h"
/**
* Import directly the low level part needed to
* operate scanner. The alternative is to prefix all public functions
* with sanei_p5_ ,and have all the functions prototyped in
* p5_device.h .
*/
#include "p5_device.c"
/**
* number of time the backend has been loaded by sane_init.
*/
static int init_count = 0;
/**
* NULL terminated list of opened frontend sessions. Sessions are
* inserted here on sane_open() and removed on sane_close().
*/
static P5_Session *sessions = NULL;
/**
* NULL terminated list of detected physical devices.
* The same device may be opened several time by different sessions.
* Entry are inserted here by the attach() function.
* */
static P5_Device *devices = NULL;
/**
* NULL terminated list of devices needed by sane_get_devices(), since
* the result returned must stay consistent until next call.
*/
static const SANE_Device **devlist = 0;
/**
* list of possible color modes
*/
static SANE_String_Const mode_list[] = {
SANE_I18N (COLOR_MODE),
SANE_I18N (GRAY_MODE),
/* SANE_I18N (LINEART_MODE), not supported yet */
0
};
static SANE_Range x_range = {
SANE_FIX (0.0), /* minimum */
SANE_FIX (216.0), /* maximum */
SANE_FIX (0.0) /* quantization */
};
static SANE_Range y_range = {
SANE_FIX (0.0), /* minimum */
SANE_FIX (299.0), /* maximum */
SANE_FIX (0.0) /* no quantization */
};
/**
* finds the maximum string length in a string array.
*/
static size_t
max_string_size (const SANE_String_Const strings[])
{
size_t size, max_size = 0;
SANE_Int i;
for (i = 0; strings[i]; ++i)
{
size = strlen (strings[i]) + 1;
if (size > max_size)
max_size = size;
}
return max_size;
}
/**> placeholders for decoded configuration values */
static P5_Config p5cfg;
/* ------------------------------------------------------------------------- */
/*
* SANE Interface
*/
/**
* Called by SANE initially.
*
* From the SANE spec:
* This function must be called before any other SANE function can be
* called. The behavior of a SANE backend is undefined if this
* function is not called first. The version code of the backend is
* returned in the value pointed to by version_code. If that pointer
* is NULL, no version code is returned. Argument authorize is either
* a pointer to a function that is invoked when the backend requires
* authentication for a specific resource or NULL if the frontend does
* not support authentication.
*/
SANE_Status
sane_init (SANE_Int * version_code, SANE_Auth_Callback authorize)
{
SANE_Status status;
(void) authorize; /* get rid of compiler warning */
init_count++;
/* init backend debug */
DBG_INIT ();
DBG (DBG_info, "SANE P5 backend version %d.%d-%d\n",
SANE_CURRENT_MAJOR, SANE_CURRENT_MINOR, BUILD);
DBG (DBG_proc, "sane_init: start\n");
DBG (DBG_trace, "sane_init: init_count=%d\n", init_count);
if (version_code)
*version_code = SANE_VERSION_CODE (SANE_CURRENT_MAJOR, SANE_CURRENT_MINOR, BUILD);
/* cold-plugging case : probe for already plugged devices */
status = probe_p5_devices ();
DBG (DBG_proc, "sane_init: exit\n");
return status;
}
/**
* Called by SANE to find out about supported devices.
*
* From the SANE spec:
* This function can be used to query the list of devices that are
* available. If the function executes successfully, it stores a
* pointer to a NULL terminated array of pointers to SANE_Device
* structures in *device_list. The returned list is guaranteed to
* remain unchanged and valid until (a) another call to this function
* is performed or (b) a call to sane_exit() is performed. This
* function can be called repeatedly to detect when new devices become
* available. If argument local_only is true, only local devices are
* returned (devices directly attached to the machine that SANE is
* running on). If it is false, the device list includes all remote
* devices that are accessible to the SANE library.
*
* SANE does not require that this function is called before a
* sane_open() call is performed. A device name may be specified
* explicitly by a user which would make it unnecessary and
* undesirable to call this function first.
* @param device_list pointer where to store the device list
* @param local_only SANE_TRUE if only local devices are required.
* @return SANE_STATUS_GOOD when successful
*/
SANE_Status
sane_get_devices (const SANE_Device *** device_list, SANE_Bool local_only)
{
int dev_num, devnr;
struct P5_Device *device;
SANE_Device *sane_device;
int i;
DBG (DBG_proc, "sane_get_devices: start: local_only = %s\n",
local_only == SANE_TRUE ? "true" : "false");
/* free existing devlist first */
if (devlist)
{
for (i = 0; devlist[i] != NULL; i++)
free ((void *)devlist[i]);
free (devlist);
devlist = NULL;
}
/**
* Since sane_get_devices() may be called repeatedly to detect new devices,
* the device detection must be run at each call. We are handling
* hot-plugging : we probe for devices plugged since sane_init() was called.
*/
probe_p5_devices ();
/* if no devices detected, just return an empty list */
if (devices == NULL)
{
devlist = malloc (sizeof (devlist[0]));
if (!devlist)
return SANE_STATUS_NO_MEM;
devlist[0] = NULL;
*device_list = devlist;
DBG (DBG_proc, "sane_get_devices: exit with no device\n");
return SANE_STATUS_GOOD;
}
/* count physical devices */
devnr = 1;
device = devices;
while (device->next)
{
devnr++;
device = device->next;
}
/* allocate room for the list, plus 1 for the NULL terminator */
devlist = malloc ((devnr + 1) * sizeof (devlist[0]));
if (!devlist)
return SANE_STATUS_NO_MEM;
*device_list = devlist;
dev_num = 0;
device = devices;
/* we build a list of SANE_Device from the list of attached devices */
for (i = 0; i < devnr; i++)
{
/* add device according to local only flag */
if ((local_only == SANE_TRUE && device->local == SANE_TRUE)
|| local_only == SANE_FALSE)
{
/* allocate memory to add the device */
sane_device = malloc (sizeof (*sane_device));
if (!sane_device)
{
return SANE_STATUS_NO_MEM;
}
/* copy data */
sane_device->name = device->name;
sane_device->vendor = device->model->vendor;
sane_device->model = device->model->product;
sane_device->type = device->model->type;
devlist[dev_num] = sane_device;
/* increment device counter */
dev_num++;
}
/* go to next detected device */
device = device->next;
}
devlist[dev_num] = 0;
*device_list = devlist;
DBG (DBG_proc, "sane_get_devices: exit\n");
return SANE_STATUS_GOOD;
}
/**
* Called to establish connection with the session. This function will
* also establish meaningful defaults and initialize the options.
*
* From the SANE spec:
* This function is used to establish a connection to a particular
* device. The name of the device to be opened is passed in argument
* name. If the call completes successfully, a handle for the device
* is returned in *h. As a special case, specifying a zero-length
* string as the device requests opening the first available device
* (if there is such a device). Another special case is to only give
* the name of the backend as the device name, in this case the first
* available device will also be used.
* @param name name of the device to open
* @param handle opaque pointer where to store the pointer of
* the opened P5_Session
* @return SANE_STATUS_GOOD on success
*/
SANE_Status
sane_open (SANE_String_Const name, SANE_Handle * handle)
{
struct P5_Session *session = NULL;
struct P5_Device *device = NULL;
DBG (DBG_proc, "sane_open: start (devicename=%s)\n", name);
/* check there is at least a device */
if (devices == NULL)
{
DBG (DBG_proc, "sane_open: exit, no device to open!\n");
return SANE_STATUS_INVAL;
}
if (name[0] == 0 || strncmp (name, "p5", strlen ("p5")) == 0)
{
DBG (DBG_info,
"sane_open: no specific device requested, using default\n");
if (devices)
{
device = devices;
DBG (DBG_info, "sane_open: device %s used as default device\n",
device->name);
}
}
else
{
DBG (DBG_info, "sane_open: device %s requested\n", name);
/* walk the device list until we find a matching name */
device = devices;
while (device && strcmp (device->name, name) != 0)
{
DBG (DBG_trace, "sane_open: device %s doesn't match\n",
device->name);
device = device->next;
}
}
/* check whether we have found a match or reach the end of the device list */
if (!device)
{
DBG (DBG_info, "sane_open: no device found\n");
return SANE_STATUS_INVAL;
}
/* now we have a device, duplicate it and return it in handle */
DBG (DBG_info, "sane_open: device %s found\n", name);
/* device initialization */
if (device->initialized == SANE_FALSE)
{
/**
* call to hardware initialization function here.
*/
device->fd = open_pp (device->name);
if (device->fd < 0)
{
DBG (DBG_error, "sane_open: failed to open '%s' device!\n",
device->name);
return SANE_STATUS_INVAL;
}
/* now try to connect to scanner */
if (connect (device->fd) != SANE_TRUE)
{
DBG (DBG_error, "sane_open: failed to connect!\n");
close_pp (device->fd);
return SANE_STATUS_INVAL;
}
/* load calibration data */
restore_calibration (device);
/* device link is OK now */
device->initialized = SANE_TRUE;
}
device->buffer = NULL;
device->gain = NULL;
device->offset = NULL;
/* prepare handle to return */
session = (P5_Session *) malloc (sizeof (P5_Session));
if (session == NULL)
{
DBG (DBG_proc, "sane_open: exit OOM\n");
return SANE_STATUS_NO_MEM;
}
/* initialize session */
session->dev = device;
session->scanning = SANE_FALSE;
session->non_blocking = SANE_FALSE;
/* initialize SANE options for this session */
init_options (session);
/* add the handle to the linked list of sessions */
session->next = sessions;
sessions = session;
/* store result */
*handle = session;
/* exit success */
DBG (DBG_proc, "sane_open: exit\n");
return SANE_STATUS_GOOD;
}
/**
* Set non blocking mode. In this mode, read return immediately when
* no data is available within sane_read(), instead of polling the scanner.
*/
SANE_Status
sane_set_io_mode (SANE_Handle handle, SANE_Bool non_blocking)
{
P5_Session *session = (P5_Session *) handle;
DBG (DBG_proc, "sane_set_io_mode: start\n");
if (session->scanning != SANE_TRUE)
{
DBG (DBG_error, "sane_set_io_mode: called out of a scan\n");
return SANE_STATUS_INVAL;
}
session->non_blocking = non_blocking;
DBG (DBG_info, "sane_set_io_mode: I/O mode set to %sblocking.\n",
non_blocking ? "non " : " ");
DBG (DBG_proc, "sane_set_io_mode: exit\n");
return SANE_STATUS_GOOD;
}
/**
* An advanced method we don't support but have to define. At SANE API
* level this function is meant to provide a file descriptor on which the
* frontend can do select()/poll() to wait for data.
*/
SANE_Status
sane_get_select_fd (SANE_Handle handle, SANE_Int * fdp)
{
/* make compiler happy ... */
(void) handle;
(void) fdp;
DBG (DBG_proc, "sane_get_select_fd: start\n");
DBG (DBG_warn, "sane_get_select_fd: unsupported ...\n");
DBG (DBG_proc, "sane_get_select_fd: exit\n");
return SANE_STATUS_UNSUPPORTED;
}
/**
* Returns the options we know.
*
* From the SANE spec:
* This function is used to access option descriptors. The function
* returns the option descriptor for option number n of the device
* represented by handle h. Option number 0 is guaranteed to be a
* valid option. Its value is an integer that specifies the number of
* options that are available for device handle h (the count includes
* option 0). If n is not a valid option index, the function returns
* NULL. The returned option descriptor is guaranteed to remain valid
* (and at the returned address) until the device is closed.
*/
const SANE_Option_Descriptor *
sane_get_option_descriptor (SANE_Handle handle, SANE_Int option)
{
struct P5_Session *session = handle;
DBG (DBG_proc, "sane_get_option_descriptor: start\n");
if ((unsigned) option >= NUM_OPTIONS)
return NULL;
DBG (DBG_info, "sane_get_option_descriptor: \"%s\"\n",
session->options[option].descriptor.name);
DBG (DBG_proc, "sane_get_option_descriptor: exit\n");
return &(session->options[option].descriptor);
}
/**
* sets automatic value for an option , called by sane_control_option after
* all checks have been done */
static SANE_Status
set_automatic_value (P5_Session * s, int option, SANE_Int * myinfo)
{
SANE_Status status = SANE_STATUS_GOOD;
SANE_Int i, min;
SANE_Word *dpi_list;
switch (option)
{
case OPT_TL_X:
s->options[OPT_TL_X].value.w = x_range.min;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_TL_Y:
s->options[OPT_TL_Y].value.w = y_range.min;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_BR_X:
s->options[OPT_BR_X].value.w = x_range.max;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_BR_Y:
s->options[OPT_BR_Y].value.w = y_range.max;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_RESOLUTION:
/* we set up to the lowest available dpi value */
dpi_list =
(SANE_Word *) s->options[OPT_RESOLUTION].descriptor.constraint.
word_list;
min = 65536;
for (i = 1; i < dpi_list[0]; i++)
{
if (dpi_list[i] < min)
min = dpi_list[i];
}
s->options[OPT_RESOLUTION].value.w = min;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_PREVIEW:
s->options[OPT_PREVIEW].value.w = SANE_FALSE;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_MODE:
if (s->options[OPT_MODE].value.s)
free (s->options[OPT_MODE].value.s);
s->options[OPT_MODE].value.s = strdup (mode_list[0]);
*myinfo |= SANE_INFO_RELOAD_OPTIONS;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
default:
DBG (DBG_warn, "set_automatic_value: can't set unknown option %d\n",
option);
}
return status;
}
/**
* sets an option , called by sane_control_option after all
* checks have been done */
static SANE_Status
set_option_value (P5_Session * s, int option, void *val, SANE_Int * myinfo)
{
SANE_Status status = SANE_STATUS_GOOD;
SANE_Word tmpw;
switch (option)
{
case OPT_TL_X:
case OPT_BR_X:
case OPT_TL_Y:
case OPT_BR_Y:
s->options[option].value.w = *(SANE_Word *) val;
/* we ensure geometry is coherent */
/* this happens when user drags TL corner right or below the BR point */
if (s->options[OPT_BR_Y].value.w < s->options[OPT_TL_Y].value.w)
{
tmpw = s->options[OPT_BR_Y].value.w;
s->options[OPT_BR_Y].value.w = s->options[OPT_TL_Y].value.w;
s->options[OPT_TL_Y].value.w = tmpw;
}
if (s->options[OPT_BR_X].value.w < s->options[OPT_TL_X].value.w)
{
tmpw = s->options[OPT_BR_X].value.w;
s->options[OPT_BR_X].value.w = s->options[OPT_TL_X].value.w;
s->options[OPT_TL_X].value.w = tmpw;
}
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_RESOLUTION:
case OPT_PREVIEW:
s->options[option].value.w = *(SANE_Word *) val;
*myinfo |= SANE_INFO_RELOAD_PARAMS;
break;
case OPT_MODE:
if (s->options[option].value.s)
free (s->options[option].value.s);
s->options[option].value.s = strdup (val);
*myinfo |= SANE_INFO_RELOAD_PARAMS | SANE_INFO_RELOAD_OPTIONS;
break;
case OPT_CALIBRATE:
status = sheetfed_calibration (s->dev);
*myinfo |= SANE_INFO_RELOAD_OPTIONS;
break;
case OPT_CLEAR_CALIBRATION:
cleanup_calibration (s->dev);
*myinfo |= SANE_INFO_RELOAD_OPTIONS;
break;
default:
DBG (DBG_warn, "set_option_value: can't set unknown option %d\n",
option);
}
return status;
}
/**
* gets an option , called by sane_control_option after all checks
* have been done */
static SANE_Status
get_option_value (P5_Session * s, int option, void *val)
{
SANE_Status status;
switch (option)
{
/* word or word equivalent options: */
case OPT_NUM_OPTS:
case OPT_RESOLUTION:
case OPT_PREVIEW:
case OPT_TL_X:
case OPT_TL_Y:
case OPT_BR_X:
case OPT_BR_Y:
*(SANE_Word *) val = s->options[option].value.w;
break;
/* string options: */
case OPT_MODE:
strcpy (val, s->options[option].value.s);
break;
/* sensor options */
case OPT_PAGE_LOADED_SW:
status = test_document (s->dev->fd);
if (status == SANE_STATUS_GOOD)
s->options[option].value.b = SANE_TRUE;
else
s->options[option].value.b = SANE_FALSE;
*(SANE_Bool *) val = s->options[option].value.b;
break;
case OPT_NEED_CALIBRATION_SW:
*(SANE_Bool *) val = !s->dev->calibrated;
break;
/* unhandled options */
default:
DBG (DBG_warn, "get_option_value: can't get unknown option %d\n",
option);
}
return SANE_STATUS_GOOD;
}
/**
* Gets or sets an option value.
*
* From the SANE spec:
* This function is used to set or inquire the current value of option
* number n of the device represented by handle h. The manner in which
* the option is controlled is specified by parameter action. The
* possible values of this parameter are described in more detail
* below. The value of the option is passed through argument val. It
* is a pointer to the memory that holds the option value. The memory
* area pointed to by v must be big enough to hold the entire option
* value (determined by member size in the corresponding option
* descriptor).
*
* The only exception to this rule is that when setting the value of a
* string option, the string pointed to by argument v may be shorter
* since the backend will stop reading the option value upon
* encountering the first NUL terminator in the string. If argument i
* is not NULL, the value of *i will be set to provide details on how
* well the request has been met.
* action is SANE_ACTION_GET_VALUE, SANE_ACTION_SET_VALUE or SANE_ACTION_SET_AUTO
*/
SANE_Status
sane_control_option (SANE_Handle handle, SANE_Int option,
SANE_Action action, void *val, SANE_Int * info)
{
P5_Session *s = handle;
SANE_Status status;
SANE_Word cap;
SANE_Int myinfo = 0;
DBG (DBG_io2,
"sane_control_option: start: action = %s, option = %s (%d)\n",
(action == SANE_ACTION_GET_VALUE) ? "get" : (action ==
SANE_ACTION_SET_VALUE) ?
"set" : (action == SANE_ACTION_SET_AUTO) ? "set_auto" : "unknown",
s->options[option].descriptor.name, option);
if (info)
*info = 0;
/* do checks before trying to apply action */
if (s->scanning)
{
DBG (DBG_warn, "sane_control_option: don't call this function while "
"scanning (option = %s (%d))\n",
s->options[option].descriptor.name, option);
return SANE_STATUS_DEVICE_BUSY;
}
/* option must be within existing range */
if (option >= NUM_OPTIONS || option < 0)
{
DBG (DBG_warn,
"sane_control_option: option %d >= NUM_OPTIONS || option < 0\n",
option);
return SANE_STATUS_INVAL;
}
/* don't access an inactive option */
cap = s->options[option].descriptor.cap;
if (!SANE_OPTION_IS_ACTIVE (cap))
{
DBG (DBG_warn, "sane_control_option: option %d is inactive\n", option);
return SANE_STATUS_INVAL;
}
/* now checks have been done, apply action */
switch (action)
{
case SANE_ACTION_GET_VALUE:
status = get_option_value (s, option, val);
break;
case SANE_ACTION_SET_VALUE:
if (!SANE_OPTION_IS_SETTABLE (cap))
{
DBG (DBG_warn, "sane_control_option: option %d is not settable\n",
option);
return SANE_STATUS_INVAL;
}
status =
sanei_constrain_value (&s->options[option].descriptor, val, &myinfo);
if (status != SANE_STATUS_GOOD)
{
DBG (DBG_warn,
"sane_control_option: sanei_constrain_value returned %s\n",
sane_strstatus (status));
return status;
}
/* return immediately if no change */
if (s->options[option].descriptor.type == SANE_TYPE_INT
&& *(SANE_Word *) val == s->options[option].value.w)
{
status = SANE_STATUS_GOOD;
}
else
{ /* apply change */
status = set_option_value (s, option, val, &myinfo);
}
break;
case SANE_ACTION_SET_AUTO:
/* sets automatic values */
if (!(cap & SANE_CAP_AUTOMATIC))
{
DBG (DBG_warn,
"sane_control_option: option %d is not autosettable\n",
option);
return SANE_STATUS_INVAL;
}
status = set_automatic_value (s, option, &myinfo);
break;
default:
DBG (DBG_error, "sane_control_option: invalid action %d\n", action);
status = SANE_STATUS_INVAL;
break;
}
if (info)
*info = myinfo;
DBG (DBG_io2, "sane_control_option: exit\n");
return status;
}
/**
* Called by SANE when a page acquisition operation is to be started.
* @param handle opaque handle to a frontend session
* @return SANE_STATUS_GOOD on success, SANE_STATUS_BUSY if the device is
* in use by another session or SANE_STATUS_WARMING_UP if the device is
* warming up. In this case the fronted as to call sane_start again until
* warming up is done. Any other values returned are error status.
*/
SANE_Status
sane_start (SANE_Handle handle)
{
struct P5_Session *session = handle;
int status = SANE_STATUS_GOOD;
P5_Device *dev = session->dev;
DBG (DBG_proc, "sane_start: start\n");
/* if already scanning, tell we're busy */
if (session->scanning == SANE_TRUE)
{
DBG (DBG_info, "sane_start: device is already scanning\n");
return SANE_STATUS_DEVICE_BUSY;
}
/* check that the device has been initialized */
if (dev->initialized == SANE_FALSE)
{
DBG (DBG_error, "sane_start: device is not initialized\n");
return SANE_STATUS_INVAL;
}
/* check if there is a document */
status = test_document (dev->fd);
if (status != SANE_STATUS_GOOD)
{
DBG (DBG_error, "sane_start: device is already scanning\n");
return status;
}
/* we compute all the scan parameters so that */
/* we will be able to set up the registers correctly */
compute_parameters (session);
/* move to scan area if needed */
if (dev->ystart > 0)
{
status = move (dev);
if (status != SANE_STATUS_GOOD)
{
DBG (DBG_error, "sane_start: failed to move to scan area\n");
return SANE_STATUS_INVAL;
}
}
/* send scan command */
status = start_scan (dev, dev->mode, dev->ydpi, dev->xstart, dev->pixels);
if (status != SANE_STATUS_GOOD)
{
DBG (DBG_error, "sane_start: failed to start scan\n");
return SANE_STATUS_INVAL;
}
/* allocates work buffer */
if (dev->buffer != NULL)
{
free (dev->buffer);
}
dev->position = 0;
dev->top = 0;
/* compute amount of lines needed for lds correction */
dev->bottom = dev->bytes_per_line * 2 * dev->lds;
/* computes buffer size, 66 color lines plus eventual amount needed for lds */
dev->size = dev->pixels * 3 * 66 + dev->bottom;
dev->buffer = (uint8_t *) malloc (dev->size);
if (dev->buffer == NULL)
{
DBG (DBG_error, "sane_start: failed to allocate %lu bytes\n", (unsigned long)dev->size);
sane_cancel (handle);
return SANE_STATUS_NO_MEM;
}
/* return now the scan has been initiated */
session->scanning = SANE_TRUE;
session->sent = 0;
DBG (DBG_io, "sane_start: to_send=%d\n", session->to_send);
DBG (DBG_io, "sane_start: size=%lu\n", (unsigned long)dev->size);
DBG (DBG_io, "sane_start: top=%lu\n", (unsigned long)dev->top);
DBG (DBG_io, "sane_start: bottom=%lu\n", (unsigned long)dev->bottom);
DBG (DBG_io, "sane_start: position=%lu\n", (unsigned long)dev->position);
DBG (DBG_proc, "sane_start: exit\n");
return status;
}
/** @brief compute scan parameters
* This function computes two set of parameters. The one for the SANE's standard
* and the other for the hardware. Among these parameters are the bit depth, total
* number of lines, total number of columns, extra line to read for data reordering...
* @param session fronted session to compute final scan parameters
* @return SANE_STATUS_GOOD on success
*/
static SANE_Status
compute_parameters (P5_Session * session)
{
P5_Device *dev = session->dev;
SANE_Int dpi; /* dpi for scan */
SANE_String mode;
SANE_Status status = SANE_STATUS_GOOD;
int tl_x, tl_y, br_x, br_y;
mode = session->options[OPT_MODE].value.s;
dpi = session->options[OPT_RESOLUTION].value.w;
/* scan coordinates */
tl_x = SANE_UNFIX (session->options[OPT_TL_X].value.w);
tl_y = SANE_UNFIX (session->options[OPT_TL_Y].value.w);
br_x = SANE_UNFIX (session->options[OPT_BR_X].value.w);
br_y = SANE_UNFIX (session->options[OPT_BR_Y].value.w);
/* only single pass scanning supported */
session->params.last_frame = SANE_TRUE;
/* gray modes */
if (strcmp (mode, GRAY_MODE) == 0)
{
session->params.format = SANE_FRAME_GRAY;
dev->mode = MODE_GRAY;
dev->lds = 0;
}
else if (strcmp (mode, LINEART_MODE) == 0)
{
session->params.format = SANE_FRAME_GRAY;
dev->mode = MODE_LINEART;
dev->lds = 0;
}
else
{
/* Color */
session->params.format = SANE_FRAME_RGB;
dev->mode = MODE_COLOR;
dev->lds = (dev->model->lds * dpi) / dev->model->max_ydpi;
}
/* SANE level values */
session->params.lines = ((br_y - tl_y) * dpi) / MM_PER_INCH;
if (session->params.lines == 0)
session->params.lines = 1;
session->params.pixels_per_line = ((br_x - tl_x) * dpi) / MM_PER_INCH;
if (session->params.pixels_per_line == 0)
session->params.pixels_per_line = 1;
DBG (DBG_data, "compute_parameters: pixels_per_line =%d\n",
session->params.pixels_per_line);
if (strcmp (mode, LINEART_MODE) == 0)
{
session->params.depth = 1;
/* in lineart, having pixels multiple of 8 avoids a costly test */
/* at each bit to see we must go to the next byte */
/* TODO : implement this requirement in sane_control_option */
session->params.pixels_per_line =
((session->params.pixels_per_line + 7) / 8) * 8;
}
else
session->params.depth = 8;
/* width needs to be even */
if (session->params.pixels_per_line & 1)
session->params.pixels_per_line++;
/* Hardware settings : they can differ from the ones at SANE level */
/* for instance the effective DPI used by a sensor may be higher */
/* than the one needed for the SANE scan parameters */
dev->lines = session->params.lines;
dev->pixels = session->params.pixels_per_line;
/* motor and sensor DPI */
dev->xdpi = dpi;
dev->ydpi = dpi;
/* handle bounds of motor's dpi range */
if (dev->ydpi > dev->model->max_ydpi)
{
dev->ydpi = dev->model->max_ydpi;
dev->lines = (dev->lines * dev->model->max_ydpi) / dpi;
if (dev->lines == 0)
dev->lines = 1;
/* round number of lines */
session->params.lines =
(session->params.lines / dev->lines) * dev->lines;
if (session->params.lines == 0)
session->params.lines = 1;
}
if (dev->ydpi < dev->model->min_ydpi)
{
dev->ydpi = dev->model->min_ydpi;
dev->lines = (dev->lines * dev->model->min_ydpi) / dpi;
}
/* hardware values */
dev->xstart =
((SANE_UNFIX (dev->model->x_offset) + tl_x) * dpi) / MM_PER_INCH;
dev->ystart =
((SANE_UNFIX (dev->model->y_offset) + tl_y) * dev->ydpi) / MM_PER_INCH;
/* take lds correction into account when moving to scan area */
if (dev->ystart > 2 * dev->lds)
dev->ystart -= 2 * dev->lds;
/* computes bytes per line */
session->params.bytes_per_line = session->params.pixels_per_line;
dev->bytes_per_line = dev->pixels;
if (session->params.format == SANE_FRAME_RGB)
{
dev->bytes_per_line *= 3;
}
/* in lineart mode we adjust bytes_per_line needed by frontend */
/* we do that here because we needed sent/to_send to be as if */
/* there was no lineart */
if (session->params.depth == 1)
{
session->params.bytes_per_line =
(session->params.bytes_per_line + 7) / 8;
}
session->params.bytes_per_line = dev->bytes_per_line;
session->to_send = session->params.bytes_per_line * session->params.lines;
session->params.bytes_per_line = dev->bytes_per_line;
DBG (DBG_data, "compute_parameters: bytes_per_line =%d\n",
session->params.bytes_per_line);
DBG (DBG_data, "compute_parameters: depth =%d\n",
session->params.depth);
DBG (DBG_data, "compute_parameters: lines =%d\n",
session->params.lines);
DBG (DBG_data, "compute_parameters: image size =%d\n",
session->to_send);
DBG (DBG_data, "compute_parameters: xstart =%d\n", dev->xstart);
DBG (DBG_data, "compute_parameters: ystart =%d\n", dev->ystart);
DBG (DBG_data, "compute_parameters: dev lines =%d\n", dev->lines);
DBG (DBG_data, "compute_parameters: dev bytes per line=%d\n",
dev->bytes_per_line);
DBG (DBG_data, "compute_parameters: dev pixels =%d\n", dev->pixels);
DBG (DBG_data, "compute_parameters: lds =%d\n", dev->lds);
return status;
}
/**
* Called by SANE to retrieve information about the type of data
* that the current scan will return.
*
* From the SANE spec:
* This function is used to obtain the current scan parameters. The
* returned parameters are guaranteed to be accurate between the time
* a scan has been started (sane_start() has been called) and the
* completion of that request. Outside of that window, the returned
* values are best-effort estimates of what the parameters will be
* when sane_start() gets invoked.
*
* Calling this function before a scan has actually started allows,
* for example, to get an estimate of how big the scanned image will
* be. The parameters passed to this function are the handle of the
* device for which the parameters should be obtained and a pointer
* to a parameter structure.
*/
SANE_Status
sane_get_parameters (SANE_Handle handle, SANE_Parameters * params)
{
SANE_Status status;
struct P5_Session *session = (struct P5_Session *) handle;
DBG (DBG_proc, "sane_get_parameters: start\n");
/* call parameters computing function */
status = compute_parameters (session);
if (status == SANE_STATUS_GOOD && params)
*params = session->params;
DBG (DBG_proc, "sane_get_parameters: exit\n");
return status;
}
/**
* Called by SANE to read data.
*
* From the SANE spec:
* This function is used to read image data from the device
* represented by handle h. Argument buf is a pointer to a memory
* area that is at least maxlen bytes long. The number of bytes
* returned is stored in *len. A backend must set this to zero when
* the call fails (i.e., when a status other than SANE_STATUS_GOOD is
* returned).
*
* When the call succeeds, the number of bytes returned can be
* anywhere in the range from 0 to maxlen bytes.
*
* Returned data is read from working buffer.
*/
SANE_Status
sane_read (SANE_Handle handle, SANE_Byte * buf,
SANE_Int max_len, SANE_Int * len)
{
struct P5_Session *session = (struct P5_Session *) handle;
struct P5_Device *dev = session->dev;
SANE_Status status = SANE_STATUS_GOOD;
int count;
int size, lines;
SANE_Bool x2;
SANE_Int i;
DBG (DBG_proc, "sane_read: start\n");
DBG (DBG_io, "sane_read: up to %d bytes required by frontend\n", max_len);
/* some sanity checks first to protect from would be buggy frontends */
if (!session)
{
DBG (DBG_error, "sane_read: handle is null!\n");
return SANE_STATUS_INVAL;
}
if (!buf)
{
DBG (DBG_error, "sane_read: buf is null!\n");
return SANE_STATUS_INVAL;
}
if (!len)
{
DBG (DBG_error, "sane_read: len is null!\n");
return SANE_STATUS_INVAL;
}
/* no data read yet */
*len = 0;
/* check if session is scanning */
if (!session->scanning)
{
DBG (DBG_warn,
"sane_read: scan was cancelled, is over or has not been initiated yet\n");
return SANE_STATUS_CANCELLED;
}
/* check for EOF, must be done before any physical read */
if (session->sent >= session->to_send)
{
DBG (DBG_io, "sane_read: end of scan reached\n");
return SANE_STATUS_EOF;
}
/* if working buffer is empty, we do a physical data read */
if (dev->top <= dev->bottom)
{
DBG (DBG_io, "sane_read: physical data read\n");
/* check is there is data available. In case of non-blocking mode we return
* as soon it is detected there is no data yet. Reads must by done line by
* line, so we read only when count is bigger than bytes per line
* */
count = available_bytes (dev->fd);
DBG (DBG_io, "sane_read: count=%d bytes\n", count);
if (count < dev->bytes_per_line && session->non_blocking == SANE_TRUE)
{
DBG (DBG_io, "sane_read: scanner hasn't enough data available\n");
DBG (DBG_proc, "sane_read: exit\n");
return SANE_STATUS_GOOD;
}
/* now we can wait for data here */
while (count < dev->bytes_per_line)
{
/* test if document left the feeder, so we have to terminate the scan */
status = test_document (dev->fd);
if (status == SANE_STATUS_NO_DOCS)
{
session->to_send = session->sent;
return SANE_STATUS_EOF;
}
/* don't call scanner too often */
usleep (10000);
count = available_bytes (dev->fd);
}
/** compute size of physical data to read
* on first read, position will be 0, while it will be 'bottom'
* for the subsequent reads.
* We try to read a complete buffer */
size = dev->size - dev->position;
if (session->to_send - session->sent < size)
{
/* not enough data left, so read remainder of scan */
size = session->to_send - session->sent;
}
/* 600 dpi is 300x600 physical, and 400 is 200x400 */
if (dev->ydpi > dev->model->max_xdpi)
{
x2 = SANE_TRUE;
}
else
{
x2 = SANE_FALSE;
}
lines = read_line (dev,
dev->buffer + dev->position,
dev->bytes_per_line,
size / dev->bytes_per_line,
SANE_TRUE, x2, dev->mode, dev->calibrated);
/* handle document end detection TODO try to recover the partial
* buffer already read before EOD */
if (lines == -1)
{
DBG (DBG_io, "sane_read: error reading line\n");
return SANE_STATUS_IO_ERROR;
}
/* gather lines until we have more than needed for lds */
dev->position += lines * dev->bytes_per_line;
dev->top = dev->position;
if (dev->position > dev->bottom)
{
dev->position = dev->bottom;
}
DBG (DBG_io, "sane_read: size =%lu\n", (unsigned long)dev->size);
DBG (DBG_io, "sane_read: bottom =%lu\n", (unsigned long)dev->bottom);
DBG (DBG_io, "sane_read: position=%lu\n", (unsigned long)dev->position);
DBG (DBG_io, "sane_read: top =%lu\n", (unsigned long)dev->top);
} /* end of physical data reading */
/* logical data reading */
/* check if there data available in working buffer */
if (dev->position < dev->top && dev->position >= dev->bottom)
{
DBG (DBG_io, "sane_read: logical data read\n");
/* we have more data in internal buffer than asked ,
* then send only max data */
size = dev->top - dev->position;
if (max_len < size)
{
*len = max_len;
}
else
/* if we don't have enough, send all what we have */
{
*len = dev->top - dev->position;
}
/* data copy */
if (dev->lds == 0)
{
memcpy (buf, dev->buffer + dev->position, *len);
}
else
{
/* compute count of bytes for lds */
count = dev->lds * dev->bytes_per_line;
/* adjust for lds as we copy data to frontend */
for (i = 0; i < *len; i++)
{
switch ((dev->position + i) % 3)
{
/* red */
case 0:
buf[i] = dev->buffer[dev->position + i - 2 * count];
break;
/* green */
case 1:
buf[i] = dev->buffer[dev->position + i - count];
break;
/* blue */
default:
buf[i] = dev->buffer[dev->position + i];
break;
}
}
}
dev->position += *len;
/* update byte accounting */
session->sent += *len;
DBG (DBG_io, "sane_read: sent %d bytes from buffer to frontend\n",
*len);
return SANE_STATUS_GOOD;
}
/* check if we exhausted working buffer */
if (dev->position >= dev->top && dev->position >= dev->bottom)
{
/* copy extra lines needed for lds in next buffer */
if (dev->position > dev->bottom && dev->lds > 0)
{
memcpy (dev->buffer,
dev->buffer + dev->position - dev->bottom, dev->bottom);
}
/* restart buffer */
dev->position = dev->bottom;
dev->top = 0;
}
DBG (DBG_io, "sane_read: size =%lu\n", (unsigned long)dev->size);
DBG (DBG_io, "sane_read: bottom =%lu\n", (unsigned long)dev->bottom);
DBG (DBG_io, "sane_read: position=%lu\n", (unsigned long)dev->position);
DBG (DBG_io, "sane_read: top =%lu\n", (unsigned long)dev->top);
DBG (DBG_proc, "sane_read: exit\n");
return status;
}
/**
* Cancels a scan.
*
* From the SANE spec:
* This function is used to immediately or as quickly as possible
* cancel the currently pending operation of the device represented by
* handle h. This function can be called at any time (as long as
* handle h is a valid handle) but usually affects long-running
* operations only (such as image is acquisition). It is safe to call
* this function asynchronously (e.g., from within a signal handler).
* It is important to note that completion of this operation does not
* imply that the currently pending operation has been cancelled. It
* only guarantees that cancellation has been initiated. Cancellation
* completes only when the cancelled call returns (typically with a
* status value of SANE_STATUS_CANCELLED). Since the SANE API does
* not require any other operations to be re-entrant, this implies
* that a frontend must not call any other operation until the
* cancelled operation has returned.
*/
void
sane_cancel (SANE_Handle handle)
{
P5_Session *session = handle;
DBG (DBG_proc, "sane_cancel: start\n");
/* if scanning, abort and park head */
if (session->scanning == SANE_TRUE)
{
/* detects if we are called after the scan is finished,
* or if the scan is aborted */
if (session->sent < session->to_send)
{
DBG (DBG_info, "sane_cancel: aborting scan.\n");
/* device hasn't finished scan, we are aborting it
* and we may have to do something specific for it here */
}
else
{
DBG (DBG_info, "sane_cancel: cleaning up after scan.\n");
}
session->scanning = SANE_FALSE;
}
eject (session->dev->fd);
DBG (DBG_proc, "sane_cancel: exit\n");
}
/**
* Ends use of the session.
*
* From the SANE spec:
* This function terminates the association between the device handle
* passed in argument h and the device it represents. If the device is
* presently active, a call to sane_cancel() is performed first. After
* this function returns, handle h must not be used anymore.
*
* Handle resources are free'd before disposing the handle. But devices
* resources must not be mdofied, since it could be used or reused until
* sane_exit() is called.
*/
void
sane_close (SANE_Handle handle)
{
P5_Session *prev, *session;
DBG (DBG_proc, "sane_close: start\n");
/* remove handle from list of open handles: */
prev = NULL;
for (session = sessions; session; session = session->next)
{
if (session == handle)
break;
prev = session;
}
if (!session)
{
DBG (DBG_error0, "close: invalid handle %p\n", handle);
return; /* oops, not a handle we know about */
}
/* cancel any active scan */
if (session->scanning == SANE_TRUE)
{
sane_cancel (handle);
}
if (prev)
prev->next = session->next;
else
sessions = session->next;
/* close low level device */
if (session->dev->initialized == SANE_TRUE)
{
if (session->dev->calibrated == SANE_TRUE)
{
save_calibration (session->dev);
}
disconnect (session->dev->fd);
close_pp (session->dev->fd);
session->dev->fd = -1;
session->dev->initialized = SANE_FALSE;
/* free device data */
if (session->dev->buffer != NULL)
{
free (session->dev->buffer);
}
if (session->dev->buffer != NULL)
{
free (session->dev->gain);
free (session->dev->offset);
}
if (session->dev->calibrated == SANE_TRUE)
{
cleanup_calibration (session->dev);
}
}
/* free per session data */
free (session->options[OPT_MODE].value.s);
free ((void *)session->options[OPT_RESOLUTION].descriptor.constraint.word_list);
free (session);
DBG (DBG_proc, "sane_close: exit\n");
}
/**
* Terminates the backend.
*
* From the SANE spec:
* This function must be called to terminate use of a backend. The
* function will first close all device handles that still might be
* open (it is recommended to close device handles explicitly through
* a call to sane_close(), but backends are required to release all
* resources upon a call to this function). After this function
* returns, no function other than sane_init() may be called
* (regardless of the status value returned by sane_exit(). Neglecting
* to call this function may result in some resources not being
* released properly.
*/
void
sane_exit (void)
{
struct P5_Session *session, *next;
struct P5_Device *dev, *nextdev;
int i;
DBG (DBG_proc, "sane_exit: start\n");
init_count--;
if (init_count > 0)
{
DBG (DBG_info,
"sane_exit: still %d fronteds to leave before effective exit.\n",
init_count);
return;
}
/* free session structs */
for (session = sessions; session; session = next)
{
next = session->next;
sane_close ((SANE_Handle *) session);
free (session);
}
sessions = NULL;
/* free devices structs */
for (dev = devices; dev; dev = nextdev)
{
nextdev = dev->next;
free (dev->name);
free (dev);
}
devices = NULL;
/* now list of devices */
if (devlist)
{
i = 0;
while ((SANE_Device *) devlist[i])
{
free ((SANE_Device *) devlist[i]);
i++;
}
free (devlist);
devlist = NULL;
}
DBG (DBG_proc, "sane_exit: exit\n");
}
/** @brief probe for all supported devices
* This functions tries to probe if any of the supported devices of
* the backend is present. Each detected device will be added to the
* 'devices' list
*/
static SANE_Status
probe_p5_devices (void)
{
/**> configuration structure used during attach */
SANEI_Config config;
/**> list of configuration options */
SANE_Option_Descriptor *cfg_options[NUM_CFG_OPTIONS];
/**> placeholders pointers for option values */
void *values[NUM_CFG_OPTIONS];
int i;
SANE_Status status;
DBG (DBG_proc, "probe_p5_devices: start\n");
/* initialize configuration options */
cfg_options[CFG_MODEL_NAME] =
(SANE_Option_Descriptor *) malloc (sizeof (SANE_Option_Descriptor));
cfg_options[CFG_MODEL_NAME]->name = "modelname";
cfg_options[CFG_MODEL_NAME]->desc = "user provided scanner's model name";
cfg_options[CFG_MODEL_NAME]->type = SANE_TYPE_INT;
cfg_options[CFG_MODEL_NAME]->unit = SANE_UNIT_NONE;
cfg_options[CFG_MODEL_NAME]->size = sizeof (SANE_Word);
cfg_options[CFG_MODEL_NAME]->cap = SANE_CAP_SOFT_SELECT;
cfg_options[CFG_MODEL_NAME]->constraint_type = SANE_CONSTRAINT_NONE;
values[CFG_MODEL_NAME] = &p5cfg.modelname;
/* set configuration options structure */
config.descriptors = cfg_options;
config.values = values;
config.count = NUM_CFG_OPTIONS;
/* generic configure and attach function */
status = sanei_configure_attach (P5_CONFIG_FILE, &config,
config_attach, NULL);
/* free allocated options */
for (i = 0; i < NUM_CFG_OPTIONS; i++)
{
free (cfg_options[i]);
}
DBG (DBG_proc, "probe_p5_devices: end\n");
return status;
}
/** This function is called by sanei_configure_attach to try
* to attach the backend to a device specified by the configuration file.
*
* @param config configuration structure filled with values read
* from configuration file
* @param devname name of the device to try to attach to, it is
* the unprocessed line of the configuration file
*
* @return status SANE_STATUS_GOOD if no errors (even if no matching
* devices found)
* SANE_STATUS_INVAL in case of error
*/
static SANE_Status
config_attach (SANEI_Config __sane_unused__ * config, const char *devname,
void __sane_unused__ *data)
{
/* currently, the config is a global variable so config is useless here */
/* the correct thing would be to have a generic sanei_attach_matching_devices
* using an attach function with a config parameter */
(void) config;
/* the devname has been processed and is ready to be used
* directly. The config struct contains all the configuration data for
* the corresponding device. Since there is no resources common to each
* backends regarding parallel port, we can directly call the attach
* function. */
attach_p5 (devname, config);
return SANE_STATUS_GOOD;
}
/** @brief try to attach to a device by its name
* The attach tries to open the given device and match it
* with devices handled by the backend. The configuration parameter
* contains the values of the already parsed configuration options
* from the conf file.
* @param config configuration structure filled with values read
* from configuration file
* @param devicename name of the device to try to attach to, it is
* the unprocessed line of the configuration file
*
* @return status SANE_STATUS_GOOD if no errors (even if no matching
* devices found)
* SANE_STATUS_NOM_MEM if there isn't enough memory to allocate the
* device structure
* SANE_STATUS_UNSUPPORTED if the device if unknown by the backend
* SANE_STATUS_INVAL in case of other error
*/
static SANE_Status
attach_p5 (const char *devicename, SANEI_Config * config)
{
struct P5_Device *device;
struct P5_Model *model;
DBG (DBG_proc, "attach(%s): start\n", devicename);
if(config==NULL)
{
DBG (DBG_warn, "attach: config is NULL\n");
}
/* search if we already have it attached */
for (device = devices; device; device = device->next)
{
if (strcmp (device->name, devicename) == 0)
{
DBG (DBG_info, "attach: device already attached\n");
DBG (DBG_proc, "attach: exit\n");
return SANE_STATUS_GOOD;
}
}
/**
* do physical probe of the device here. In case the device is recognized,
* we allocate a device struct and give it options and model.
* Else we return SANE_STATUS_UNSUPPORTED.
*/
model = probe (devicename);
if (model == NULL)
{
DBG (DBG_info,
"attach: device %s is not managed by the backend\n", devicename);
DBG (DBG_proc, "attach: exit\n");
return SANE_STATUS_UNSUPPORTED;
}
/* allocate device struct */
device = malloc (sizeof (*device));
if (device == NULL)
{
return SANE_STATUS_NO_MEM;
DBG (DBG_proc, "attach: exit\n");
}
memset (device, 0, sizeof (*device));
device->model = model;
/* name of the device */
device->name = strdup (devicename);
DBG (DBG_info, "attach: found %s %s %s at %s\n",
device->model->vendor, device->model->product, device->model->type,
device->name);
/* we insert new device at start of the chained list */
/* head of the list becomes the next, and start is replaced */
/* with the new session struct */
device->next = devices;
devices = device;
/* initialization is done at sane_open */
device->initialized = SANE_FALSE;
device->calibrated = SANE_FALSE;
DBG (DBG_proc, "attach: exit\n");
return SANE_STATUS_GOOD;
}
/** @brief set initial value for the scanning options
* for each sessions, control options are initialized based on the capability
* of the model of the physical device.
* @param session scanner session to initialize options
* @return SANE_STATUS_GOOD on success
*/
static SANE_Status
init_options (struct P5_Session *session)
{
SANE_Int option, i, min, idx;
SANE_Word *dpi_list;
P5_Model *model = session->dev->model;
DBG (DBG_proc, "init_options: start\n");
/* we first initialize each options with a default value */
memset (session->options, 0, sizeof (session->options[OPT_NUM_OPTS]));
for (option = 0; option < NUM_OPTIONS; option++)
{
session->options[option].descriptor.size = sizeof (SANE_Word);
session->options[option].descriptor.cap =
SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
}
/* we set up all the options listed in the P5_Option enum */
/* last option / end of list marker */
session->options[OPT_NUM_OPTS].descriptor.name = SANE_NAME_NUM_OPTIONS;
session->options[OPT_NUM_OPTS].descriptor.title = SANE_TITLE_NUM_OPTIONS;
session->options[OPT_NUM_OPTS].descriptor.desc = SANE_DESC_NUM_OPTIONS;
session->options[OPT_NUM_OPTS].descriptor.type = SANE_TYPE_INT;
session->options[OPT_NUM_OPTS].descriptor.cap = SANE_CAP_SOFT_DETECT;
session->options[OPT_NUM_OPTS].value.w = NUM_OPTIONS;
/* "Standard" group: */
session->options[OPT_STANDARD_GROUP].descriptor.title = SANE_TITLE_STANDARD;
session->options[OPT_STANDARD_GROUP].descriptor.name = SANE_NAME_STANDARD;
session->options[OPT_STANDARD_GROUP].descriptor.desc = SANE_DESC_STANDARD;
session->options[OPT_STANDARD_GROUP].descriptor.type = SANE_TYPE_GROUP;
session->options[OPT_STANDARD_GROUP].descriptor.size = 0;
session->options[OPT_STANDARD_GROUP].descriptor.cap = 0;
session->options[OPT_STANDARD_GROUP].descriptor.constraint_type =
SANE_CONSTRAINT_NONE;
/* scan mode */
session->options[OPT_MODE].descriptor.name = SANE_NAME_SCAN_MODE;
session->options[OPT_MODE].descriptor.title = SANE_TITLE_SCAN_MODE;
session->options[OPT_MODE].descriptor.desc = SANE_DESC_SCAN_MODE;
session->options[OPT_MODE].descriptor.type = SANE_TYPE_STRING;
session->options[OPT_MODE].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_MODE].descriptor.constraint_type =
SANE_CONSTRAINT_STRING_LIST;
session->options[OPT_MODE].descriptor.size = max_string_size (mode_list);
session->options[OPT_MODE].descriptor.constraint.string_list = mode_list;
session->options[OPT_MODE].value.s = strdup (mode_list[0]);
/* preview */
session->options[OPT_PREVIEW].descriptor.name = SANE_NAME_PREVIEW;
session->options[OPT_PREVIEW].descriptor.title = SANE_TITLE_PREVIEW;
session->options[OPT_PREVIEW].descriptor.desc = SANE_DESC_PREVIEW;
session->options[OPT_PREVIEW].descriptor.type = SANE_TYPE_BOOL;
session->options[OPT_PREVIEW].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_PREVIEW].descriptor.unit = SANE_UNIT_NONE;
session->options[OPT_PREVIEW].descriptor.constraint_type =
SANE_CONSTRAINT_NONE;
session->options[OPT_PREVIEW].value.w = SANE_FALSE;
/** @brief build resolution list
* We merge xdpi and ydpi list to provide only one resolution option control.
* This is the most common case for backends and fronteds and give 'square'
* pixels. The SANE API allow to control x and y dpi independently, but this is
* rarely done and may confuse both frontends and users. In case a dpi value exists
* for one but not for the other, the backend will have to crop data so that the
* frontend is unaffected. A common case is that motor resolution (ydpi) is higher
* than sensor resolution (xdpi), so scan lines must be scaled up to keep square
* pixel when doing sane_read().
* TODO this deserves a dedicated function and some unit testing
*/
/* find minimum first */
min = 65535;
for (i = 0; i < MAX_RESOLUTIONS && model->xdpi_values[i] > 0; i++)
{
if (model->xdpi_values[i] < min)
min = model->xdpi_values[i];
}
for (i = 0; i < MAX_RESOLUTIONS && model->ydpi_values[i] > 0; i++)
{
if (model->ydpi_values[i] < min)
min = model->ydpi_values[i];
}
dpi_list = malloc ((MAX_RESOLUTIONS * 2 + 1) * sizeof (SANE_Word));
if (!dpi_list)
return SANE_STATUS_NO_MEM;
dpi_list[1] = min;
idx = 2;
/* find any value greater than the last used min and
* less than the max value
*/
do
{
min = 65535;
for (i = 0; i < MAX_RESOLUTIONS && model->xdpi_values[i] > 0; i++)
{
if (model->xdpi_values[i] < min
&& model->xdpi_values[i] > dpi_list[idx - 1])
min = model->xdpi_values[i];
}
for (i = 0; i < MAX_RESOLUTIONS && model->ydpi_values[i] > 0; i++)
{
if (model->ydpi_values[i] < min
&& model->ydpi_values[i] > dpi_list[idx - 1])
min = model->ydpi_values[i];
}
if (min < 65535)
{
dpi_list[idx] = min;
idx++;
}
}
while (min != 65535);
dpi_list[idx] = 0;
/* the count of different resolution is put at the beginning */
dpi_list[0] = idx - 1;
session->options[OPT_RESOLUTION].descriptor.name =
SANE_NAME_SCAN_RESOLUTION;
session->options[OPT_RESOLUTION].descriptor.title =
SANE_TITLE_SCAN_RESOLUTION;
session->options[OPT_RESOLUTION].descriptor.desc =
SANE_DESC_SCAN_RESOLUTION;
session->options[OPT_RESOLUTION].descriptor.type = SANE_TYPE_INT;
session->options[OPT_RESOLUTION].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_RESOLUTION].descriptor.unit = SANE_UNIT_DPI;
session->options[OPT_RESOLUTION].descriptor.constraint_type =
SANE_CONSTRAINT_WORD_LIST;
session->options[OPT_RESOLUTION].descriptor.constraint.word_list = dpi_list;
/* initial value is lowest available dpi */
session->options[OPT_RESOLUTION].value.w = min;
/* "Geometry" group: */
session->options[OPT_GEOMETRY_GROUP].descriptor.title = SANE_TITLE_GEOMETRY;
session->options[OPT_GEOMETRY_GROUP].descriptor.name = SANE_NAME_GEOMETRY;
session->options[OPT_GEOMETRY_GROUP].descriptor.desc = SANE_DESC_GEOMETRY;
session->options[OPT_GEOMETRY_GROUP].descriptor.type = SANE_TYPE_GROUP;
session->options[OPT_GEOMETRY_GROUP].descriptor.cap = SANE_CAP_ADVANCED;
session->options[OPT_GEOMETRY_GROUP].descriptor.size = 0;
session->options[OPT_GEOMETRY_GROUP].descriptor.constraint_type =
SANE_CONSTRAINT_NONE;
/* adapt the constraint range to the detected model */
x_range.max = model->x_size;
y_range.max = model->y_size;
/* top-left x */
session->options[OPT_TL_X].descriptor.name = SANE_NAME_SCAN_TL_X;
session->options[OPT_TL_X].descriptor.title = SANE_TITLE_SCAN_TL_X;
session->options[OPT_TL_X].descriptor.desc = SANE_DESC_SCAN_TL_X;
session->options[OPT_TL_X].descriptor.type = SANE_TYPE_FIXED;
session->options[OPT_TL_X].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_TL_X].descriptor.unit = SANE_UNIT_MM;
session->options[OPT_TL_X].descriptor.constraint_type =
SANE_CONSTRAINT_RANGE;
session->options[OPT_TL_X].descriptor.constraint.range = &x_range;
session->options[OPT_TL_X].value.w = 0;
/* top-left y */
session->options[OPT_TL_Y].descriptor.name = SANE_NAME_SCAN_TL_Y;
session->options[OPT_TL_Y].descriptor.title = SANE_TITLE_SCAN_TL_Y;
session->options[OPT_TL_Y].descriptor.desc = SANE_DESC_SCAN_TL_Y;
session->options[OPT_TL_Y].descriptor.type = SANE_TYPE_FIXED;
session->options[OPT_TL_Y].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_TL_Y].descriptor.unit = SANE_UNIT_MM;
session->options[OPT_TL_Y].descriptor.constraint_type =
SANE_CONSTRAINT_RANGE;
session->options[OPT_TL_Y].descriptor.constraint.range = &y_range;
session->options[OPT_TL_Y].value.w = 0;
/* bottom-right x */
session->options[OPT_BR_X].descriptor.name = SANE_NAME_SCAN_BR_X;
session->options[OPT_BR_X].descriptor.title = SANE_TITLE_SCAN_BR_X;
session->options[OPT_BR_X].descriptor.desc = SANE_DESC_SCAN_BR_X;
session->options[OPT_BR_X].descriptor.type = SANE_TYPE_FIXED;
session->options[OPT_BR_X].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_BR_X].descriptor.unit = SANE_UNIT_MM;
session->options[OPT_BR_X].descriptor.constraint_type =
SANE_CONSTRAINT_RANGE;
session->options[OPT_BR_X].descriptor.constraint.range = &x_range;
session->options[OPT_BR_X].value.w = x_range.max;
/* bottom-right y */
session->options[OPT_BR_Y].descriptor.name = SANE_NAME_SCAN_BR_Y;
session->options[OPT_BR_Y].descriptor.title = SANE_TITLE_SCAN_BR_Y;
session->options[OPT_BR_Y].descriptor.desc = SANE_DESC_SCAN_BR_Y;
session->options[OPT_BR_Y].descriptor.type = SANE_TYPE_FIXED;
session->options[OPT_BR_Y].descriptor.cap |= SANE_CAP_AUTOMATIC;
session->options[OPT_BR_Y].descriptor.unit = SANE_UNIT_MM;
session->options[OPT_BR_Y].descriptor.constraint_type =
SANE_CONSTRAINT_RANGE;
session->options[OPT_BR_Y].descriptor.constraint.range = &y_range;
session->options[OPT_BR_Y].value.w = y_range.max;
/* sensor group */
session->options[OPT_SENSOR_GROUP].descriptor.name = SANE_NAME_SENSORS;
session->options[OPT_SENSOR_GROUP].descriptor.title = SANE_TITLE_SENSORS;
session->options[OPT_SENSOR_GROUP].descriptor.desc = SANE_DESC_SENSORS;
session->options[OPT_SENSOR_GROUP].descriptor.type = SANE_TYPE_GROUP;
session->options[OPT_SENSOR_GROUP].descriptor.constraint_type =
SANE_CONSTRAINT_NONE;
/* page loaded sensor */
session->options[OPT_PAGE_LOADED_SW].descriptor.name =
SANE_NAME_PAGE_LOADED;
session->options[OPT_PAGE_LOADED_SW].descriptor.title =
SANE_TITLE_PAGE_LOADED;
session->options[OPT_PAGE_LOADED_SW].descriptor.desc =
SANE_DESC_PAGE_LOADED;
session->options[OPT_PAGE_LOADED_SW].descriptor.type = SANE_TYPE_BOOL;
session->options[OPT_PAGE_LOADED_SW].descriptor.unit = SANE_UNIT_NONE;
session->options[OPT_PAGE_LOADED_SW].descriptor.cap =
SANE_CAP_SOFT_DETECT | SANE_CAP_HARD_SELECT | SANE_CAP_ADVANCED;
session->options[OPT_PAGE_LOADED_SW].value.b = 0;
/* calibration needed */
session->options[OPT_NEED_CALIBRATION_SW].descriptor.name =
"need-calibration";
session->options[OPT_NEED_CALIBRATION_SW].descriptor.title =
SANE_I18N ("Need calibration");
session->options[OPT_NEED_CALIBRATION_SW].descriptor.desc =
SANE_I18N ("The scanner needs calibration for the current settings");
session->options[OPT_NEED_CALIBRATION_SW].descriptor.type = SANE_TYPE_BOOL;
session->options[OPT_NEED_CALIBRATION_SW].descriptor.unit = SANE_UNIT_NONE;
session->options[OPT_NEED_CALIBRATION_SW].descriptor.cap =
SANE_CAP_SOFT_DETECT | SANE_CAP_HARD_SELECT | SANE_CAP_ADVANCED;
session->options[OPT_NEED_CALIBRATION_SW].value.b = 0;
/* button group */
session->options[OPT_BUTTON_GROUP].descriptor.name = "Buttons";
session->options[OPT_BUTTON_GROUP].descriptor.title = SANE_I18N ("Buttons");
session->options[OPT_BUTTON_GROUP].descriptor.desc = SANE_I18N ("Buttons");
session->options[OPT_BUTTON_GROUP].descriptor.type = SANE_TYPE_GROUP;
session->options[OPT_BUTTON_GROUP].descriptor.constraint_type =
SANE_CONSTRAINT_NONE;
/* calibrate button */
session->options[OPT_CALIBRATE].descriptor.name = "calibrate";
session->options[OPT_CALIBRATE].descriptor.title = SANE_I18N ("Calibrate");
session->options[OPT_CALIBRATE].descriptor.desc =
SANE_I18N ("Start calibration using special sheet");
session->options[OPT_CALIBRATE].descriptor.type = SANE_TYPE_BUTTON;
session->options[OPT_CALIBRATE].descriptor.unit = SANE_UNIT_NONE;
session->options[OPT_CALIBRATE].descriptor.cap =
SANE_CAP_SOFT_DETECT | SANE_CAP_SOFT_SELECT | SANE_CAP_ADVANCED |
SANE_CAP_AUTOMATIC;
session->options[OPT_CALIBRATE].value.b = 0;
/* clear calibration cache button */
session->options[OPT_CLEAR_CALIBRATION].descriptor.name = "clear";
session->options[OPT_CLEAR_CALIBRATION].descriptor.title =
SANE_I18N ("Clear calibration");
session->options[OPT_CLEAR_CALIBRATION].descriptor.desc =
SANE_I18N ("Clear calibration cache");
session->options[OPT_CLEAR_CALIBRATION].descriptor.type = SANE_TYPE_BUTTON;
session->options[OPT_CLEAR_CALIBRATION].descriptor.unit = SANE_UNIT_NONE;
session->options[OPT_CLEAR_CALIBRATION].descriptor.cap =
SANE_CAP_SOFT_DETECT | SANE_CAP_SOFT_SELECT | SANE_CAP_ADVANCED |
SANE_CAP_AUTOMATIC;
session->options[OPT_CLEAR_CALIBRATION].value.b = 0;
/* until work on calibration isfinished */
DISABLE (OPT_CALIBRATE);
DISABLE (OPT_CLEAR_CALIBRATION);
DBG (DBG_proc, "init_options: exit\n");
return SANE_STATUS_GOOD;
}
/** @brief physical probe of a device
* This function probes for a scanning device using the given name. If the
* device is managed, a model structure describing the device will be returned.
* @param devicename low level device to access to probe hardware
* @return NULL is the device is unsupported, or a model struct describing the
* device.
*/
P5_Model *
probe (const char *devicename)
{
int fd;
/* open parallel port device */
fd = open_pp (devicename);
if (fd < 0)
{
DBG (DBG_error, "probe: failed to open '%s' device!\n", devicename);
return NULL;
}
/* now try to connect to scanner */
if (connect (fd) != SANE_TRUE)
{
DBG (DBG_error, "probe: failed to connect!\n");
close_pp (fd);
return NULL;
}
/* set up for memory test */
write_reg (fd, REG1, 0x00);
write_reg (fd, REG7, 0x00);
write_reg (fd, REG0, 0x00);
write_reg (fd, REG1, 0x00);
write_reg (fd, REGF, 0x80);
if (memtest (fd, 0x0100) != SANE_TRUE)
{
disconnect (fd);
close_pp (fd);
DBG (DBG_error, "probe: memory test failed!\n");
return NULL;
}
else
{
DBG (DBG_info, "memtest() OK...\n");
}
write_reg (fd, REG7, 0x00);
/* check for document presence 0xC6: present, 0xC3 no document */
test_document (fd);
/* release device and parport for next uses */
disconnect (fd);
close_pp (fd);
/* for there is only one supported model, so we use hardcoded values */
DBG (DBG_proc, "probe: exit\n");
return &pagepartner_model;
}
/* vim: set sw=2 cino=>2se-1sn-1s{s^-1st0(0u0 smarttab expandtab: */