sane-project-backends/backend/genesys/gl646.cpp

2984 wiersze
100 KiB
C++

/* sane - Scanner Access Now Easy.
Copyright (C) 2003 Oliver Rauch
Copyright (C) 2003, 2004 Henning Meier-Geinitz <henning@meier-geinitz.de>
Copyright (C) 2004 Gerhard Jaeger <gerhard@gjaeger.de>
Copyright (C) 2004-2013 Stéphane Voltz <stef.dev@free.fr>
Copyright (C) 2005-2009 Pierre Willenbrock <pierre@pirsoft.dnsalias.org>
Copyright (C) 2007 Luke <iceyfor@gmail.com>
Copyright (C) 2011 Alexey Osipov <simba@lerlan.ru> for HP2400 description
and tuning
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#define DEBUG_DECLARE_ONLY
#include "gl646.h"
#include "gl646_registers.h"
#include "test_settings.h"
#include <vector>
namespace genesys {
namespace gl646 {
namespace {
constexpr unsigned CALIBRATION_LINES = 10;
} // namespace
static void write_control(Genesys_Device* dev, const Genesys_Sensor& sensor, int resolution);
static void gl646_set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t set,
int dpi);
static void simple_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
const ScanSession& session, bool move,
std::vector<std::uint8_t>& data, const char* test_identifier);
/**
* Send the stop scan command
* */
static void end_scan_impl(Genesys_Device* dev, Genesys_Register_Set* reg, bool check_stop,
bool eject);
/**
* master motor settings table entry
*/
struct Motor_Master
{
MotorId motor_id;
unsigned dpi;
unsigned channels;
// settings
StepType steptype;
bool fastmod; // fast scanning
bool fastfed; // fast fed slope tables
SANE_Int mtrpwm;
MotorSlope slope1;
MotorSlope slope2;
SANE_Int fwdbwd; // forward/backward steps
};
/**
* master motor settings, for a given motor and dpi,
* it gives steps and speed information
*/
static Motor_Master motor_master[] = {
/* HP3670 motor settings */
{MotorId::HP3670, 50, 3, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(2329, 120, 229),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 75, 3, StepType::FULL, false, true, 1,
MotorSlope::create_from_steps(3429, 305, 200),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 100, 3, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(2905, 187, 143),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 150, 3, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(3429, 305, 73),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 300, 3, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(1055, 563, 11),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 600, 3, StepType::FULL, false, true, 0,
MotorSlope::create_from_steps(10687, 5126, 3),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670,1200, 3, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(15937, 6375, 3),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 50, 1, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(2329, 120, 229),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 75, 1, StepType::FULL, false, true, 1,
MotorSlope::create_from_steps(3429, 305, 200),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 100, 1, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(2905, 187, 143),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 150, 1, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(3429, 305, 73),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 300, 1, StepType::HALF, false, true, 1,
MotorSlope::create_from_steps(1055, 563, 11),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670, 600, 1, StepType::FULL, false, true, 0,
MotorSlope::create_from_steps(10687, 5126, 3),
MotorSlope::create_from_steps(3399, 337, 192), 192},
{MotorId::HP3670,1200, 1, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(15937, 6375, 3),
MotorSlope::create_from_steps(3399, 337, 192), 192},
/* HP2400/G2410 motor settings base motor dpi = 600 */
{MotorId::HP2400, 50, 3, StepType::FULL, false, true, 63,
MotorSlope::create_from_steps(8736, 601, 120),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 100, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(8736, 601, 120),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 150, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(15902, 902, 67),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 300, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(16703, 2188, 32),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 600, 3, StepType::FULL, false, true, 63,
MotorSlope::create_from_steps(18761, 18761, 3),
MotorSlope::create_from_steps(4905, 627, 192), 192},
{MotorId::HP2400,1200, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(43501, 43501, 3),
MotorSlope::create_from_steps(4905, 627, 192), 192},
{MotorId::HP2400, 50, 1, StepType::FULL, false, true, 63,
MotorSlope::create_from_steps(8736, 601, 120),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 100, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(8736, 601, 120),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 150, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(15902, 902, 67),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 300, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(16703, 2188, 32),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400, 600, 1, StepType::FULL, false, true, 63,
MotorSlope::create_from_steps(18761, 18761, 3),
MotorSlope::create_from_steps(4905, 337, 192), 192},
{MotorId::HP2400,1200, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(43501, 43501, 3),
MotorSlope::create_from_steps(4905, 337, 192), 192},
/* XP 200 motor settings */
{MotorId::XP200, 75, 3, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6000, 2136, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 100, 3, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6000, 2850, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 200, 3, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6999, 5700, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 250, 3, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6999, 6999, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 300, 3, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(13500, 13500, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 600, 3, StepType::HALF, true, true, 0,
MotorSlope::create_from_steps(31998, 31998, 4),
MotorSlope::create_from_steps(12000, 1200, 2), 1},
{MotorId::XP200, 75, 1, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6000, 2000, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 100, 1, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6000, 1300, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 200, 1, StepType::HALF, true, true, 0,
MotorSlope::create_from_steps(6000, 3666, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 300, 1, StepType::HALF, true, false, 0,
MotorSlope::create_from_steps(6500, 6500, 4),
MotorSlope::create_from_steps(12000, 1200, 8), 1},
{MotorId::XP200, 600, 1, StepType::HALF, true, true, 0,
MotorSlope::create_from_steps(24000, 24000, 4),
MotorSlope::create_from_steps(12000, 1200, 2), 1},
/* HP scanjet 2300c */
{MotorId::HP2300, 75, 3, StepType::FULL, false, true, 63,
MotorSlope::create_from_steps(8139, 560, 120),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 150, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(7903, 543, 67),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 300, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(2175, 1087, 3),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 600, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(8700, 4350, 3),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300,1200, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(17400, 8700, 3),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 75, 1, StepType::FULL, false, true, 63,
MotorSlope::create_from_steps(8139, 560, 120),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 150, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(7903, 543, 67),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 300, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(2175, 1087, 3),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 600, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(8700, 4350, 3),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300,1200, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(17400, 8700, 3),
MotorSlope::create_from_steps(4905, 337, 120), 16},
/* non half ccd settings for 300 dpi
{MotorId::HP2300, 300, 3, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(5386, 2175, 44),
MotorSlope::create_from_steps(4905, 337, 120), 16},
{MotorId::HP2300, 300, 1, StepType::HALF, false, true, 63,
MotorSlope::create_from_steps(5386, 2175, 44),
MotorSlope::create_from_steps(4905, 337, 120), 16},
*/
/* MD5345/6471 motor settings */
/* vfinal=(exposure/(1200/dpi))/step_type */
{MotorId::MD_5345, 50, 3, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 250, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 75, 3, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 343, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 100, 3, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 458, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 150, 3, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 687, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 200, 3, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 916, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 300, 3, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 1375, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 400, 3, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(2000, 1833, 32),
MotorSlope::create_from_steps(2000, 300, 255), 32},
{MotorId::MD_5345, 500, 3, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(2291, 2291, 32),
MotorSlope::create_from_steps(2000, 300, 255), 32},
{MotorId::MD_5345, 600, 3, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(2750, 2750, 32),
MotorSlope::create_from_steps(2000, 300, 255), 32},
{MotorId::MD_5345, 1200, 3, StepType::QUARTER, false, true, 0,
MotorSlope::create_from_steps(2750, 2750, 16),
MotorSlope::create_from_steps(2000, 300, 255), 146},
{MotorId::MD_5345, 2400, 3, StepType::QUARTER, false, true, 0,
MotorSlope::create_from_steps(5500, 5500, 16),
MotorSlope::create_from_steps(2000, 300, 255), 146},
{MotorId::MD_5345, 50, 1, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 250, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 75, 1, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 343, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 100, 1, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 458, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 150, 1, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 687, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 200, 1, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 916, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 300, 1, StepType::HALF, false, true, 2,
MotorSlope::create_from_steps(2500, 1375, 255),
MotorSlope::create_from_steps(2000, 300, 255), 64},
{MotorId::MD_5345, 400, 1, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(2000, 1833, 32),
MotorSlope::create_from_steps(2000, 300, 255), 32},
{MotorId::MD_5345, 500, 1, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(2291, 2291, 32),
MotorSlope::create_from_steps(2000, 300, 255), 32},
{MotorId::MD_5345, 600, 1, StepType::HALF, false, true, 0,
MotorSlope::create_from_steps(2750, 2750, 32),
MotorSlope::create_from_steps(2000, 300, 255), 32},
{MotorId::MD_5345, 1200, 1, StepType::QUARTER, false, true, 0,
MotorSlope::create_from_steps(2750, 2750, 16),
MotorSlope::create_from_steps(2000, 300, 255), 146},
{MotorId::MD_5345, 2400, 1, StepType::QUARTER, false, true, 0,
MotorSlope::create_from_steps(5500, 5500, 16),
MotorSlope::create_from_steps(2000, 300, 255), 146}, /* 5500 guessed */
};
/**
* reads value from gpio endpoint
*/
static void gl646_gpio_read(IUsbDevice& usb_dev, std::uint8_t* value)
{
DBG_HELPER(dbg);
usb_dev.control_msg(REQUEST_TYPE_IN, REQUEST_REGISTER, GPIO_READ, INDEX, 1, value);
}
/**
* writes the given value to gpio endpoint
*/
static void gl646_gpio_write(IUsbDevice& usb_dev, std::uint8_t value)
{
DBG_HELPER_ARGS(dbg, "(0x%02x)", value);
usb_dev.control_msg(REQUEST_TYPE_OUT, REQUEST_REGISTER, GPIO_WRITE, INDEX, 1, &value);
}
/**
* writes the given value to gpio output enable endpoint
*/
static void gl646_gpio_output_enable(IUsbDevice& usb_dev, std::uint8_t value)
{
DBG_HELPER_ARGS(dbg, "(0x%02x)", value);
usb_dev.control_msg(REQUEST_TYPE_OUT, REQUEST_REGISTER, GPIO_OUTPUT_ENABLE, INDEX, 1, &value);
}
/**
* stop scanner's motor
* @param dev scanner's device
*/
static void gl646_stop_motor(Genesys_Device* dev)
{
DBG_HELPER(dbg);
dev->interface->write_register(0x0f, 0x00);
}
/**
* Returns the cksel values used by the required scan mode.
* @param sensor id of the sensor
* @param required required resolution
* @param color true is color mode
* @return cksel value for mode
*/
static int get_cksel(SensorId sensor_id, int required, unsigned channels)
{
for (const auto& sensor : *s_sensors) {
// exit on perfect match
if (sensor.sensor_id == sensor_id && sensor.resolutions.matches(required) &&
sensor.matches_channel_count(channels))
{
unsigned cksel = sensor.ccd_pixels_per_system_pixel();
return cksel;
}
}
DBG(DBG_error, "%s: failed to find match for %d dpi\n", __func__, required);
/* fail safe fallback */
return 1;
}
void CommandSetGl646::init_regs_for_scan_session(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* regs,
const ScanSession& session) const
{
DBG_HELPER(dbg);
session.assert_computed();
debug_dump(DBG_info, sensor);
std::uint32_t move = session.params.starty;
Motor_Master *motor = nullptr;
std::uint32_t z1, z2;
int feedl;
/* for the given resolution, search for master
* motor mode setting */
for (unsigned i = 0; i < sizeof (motor_master) / sizeof (Motor_Master); ++i) {
if (dev->model->motor_id == motor_master[i].motor_id &&
motor_master[i].dpi == session.params.yres &&
motor_master[i].channels == session.params.channels)
{
motor = &motor_master[i];
}
}
if (motor == nullptr) {
throw SaneException("unable to find settings for motor %d at %d dpi, color=%d",
static_cast<unsigned>(dev->model->motor_id),
session.params.yres, session.params.channels);
}
scanner_setup_sensor(*dev, sensor, *regs);
/* now generate slope tables : we are not using generate_slope_table3 yet */
auto slope_table1 = create_slope_table_for_speed(motor->slope1, motor->slope1.max_speed_w,
StepType::FULL, 1, 4,
get_slope_table_max_size(AsicType::GL646));
auto slope_table2 = create_slope_table_for_speed(motor->slope2, motor->slope2.max_speed_w,
StepType::FULL, 1, 4,
get_slope_table_max_size(AsicType::GL646));
/* R01 */
/* now setup other registers for final scan (ie with shading enabled) */
/* watch dog + shading + scan enable */
regs->find_reg(0x01).value |= REG_0x01_DOGENB | REG_0x01_SCAN;
if (dev->model->is_cis) {
regs->find_reg(0x01).value |= REG_0x01_CISSET;
} else {
regs->find_reg(0x01).value &= ~REG_0x01_CISSET;
}
// if device has no calibration, don't enable shading correction
if (has_flag(dev->model->flags, ModelFlag::DISABLE_SHADING_CALIBRATION) ||
has_flag(session.params.flags, ScanFlag::DISABLE_SHADING))
{
regs->find_reg(0x01).value &= ~REG_0x01_DVDSET;
} else {
regs->find_reg(0x01).value |= REG_0x01_DVDSET;
}
regs->find_reg(0x01).value &= ~REG_0x01_FASTMOD;
if (motor->fastmod) {
regs->find_reg(0x01).value |= REG_0x01_FASTMOD;
}
/* R02 */
/* allow moving when buffer full by default */
if (!dev->model->is_sheetfed) {
dev->reg.find_reg(0x02).value &= ~REG_0x02_ACDCDIS;
} else {
dev->reg.find_reg(0x02).value |= REG_0x02_ACDCDIS;
}
/* setup motor power and direction */
sanei_genesys_set_motor_power(*regs, true);
if (has_flag(session.params.flags, ScanFlag::REVERSE)) {
regs->find_reg(0x02).value |= REG_0x02_MTRREV;
} else {
regs->find_reg(0x02).value &= ~REG_0x02_MTRREV;
}
/* fastfed enabled (2 motor slope tables) */
if (motor->fastfed) {
regs->find_reg(0x02).value |= REG_0x02_FASTFED;
} else {
regs->find_reg(0x02).value &= ~REG_0x02_FASTFED;
}
/* step type */
regs->find_reg(0x02).value &= ~REG_0x02_STEPSEL;
switch (motor->steptype)
{
case StepType::FULL:
break;
case StepType::HALF:
regs->find_reg(0x02).value |= 1;
break;
case StepType::QUARTER:
regs->find_reg(0x02).value |= 2;
break;
default:
regs->find_reg(0x02).value |= 3;
break;
}
if (dev->model->is_sheetfed || !has_flag(session.params.flags, ScanFlag::AUTO_GO_HOME)) {
regs->find_reg(0x02).value &= ~REG_0x02_AGOHOME;
} else {
regs->find_reg(0x02).value |= REG_0x02_AGOHOME;
}
/* R03 */
regs->find_reg(0x03).value &= ~REG_0x03_AVEENB;
// regs->find_reg(0x03).value |= REG_0x03_AVEENB;
regs->find_reg(0x03).value &= ~REG_0x03_LAMPDOG;
/* select XPA */
regs->find_reg(0x03).value &= ~REG_0x03_XPASEL;
if ((session.params.flags & ScanFlag::USE_XPA) != ScanFlag::NONE) {
regs->find_reg(0x03).value |= REG_0x03_XPASEL;
}
regs->state.is_xpa_on = (session.params.flags & ScanFlag::USE_XPA) != ScanFlag::NONE;
/* R04 */
/* monochrome / color scan */
switch (session.params.depth) {
case 8:
regs->find_reg(0x04).value &= ~(REG_0x04_LINEART | REG_0x04_BITSET);
break;
case 16:
regs->find_reg(0x04).value &= ~REG_0x04_LINEART;
regs->find_reg(0x04).value |= REG_0x04_BITSET;
break;
}
sanei_genesys_set_dpihw(*regs, sensor.full_resolution);
/* gamma enable for scans */
if (has_flag(dev->model->flags, ModelFlag::GAMMA_14BIT)) {
regs->find_reg(0x05).value |= REG_0x05_GMM14BIT;
}
if (!has_flag(session.params.flags, ScanFlag::DISABLE_GAMMA) &&
session.params.depth < 16)
{
regs->find_reg(REG_0x05).value |= REG_0x05_GMMENB;
} else {
regs->find_reg(REG_0x05).value &= ~REG_0x05_GMMENB;
}
/* true CIS gray if needed */
if (dev->model->is_cis && session.params.channels == 1 &&
session.params.color_filter == ColorFilter::NONE)
{
regs->find_reg(0x05).value |= REG_0x05_LEDADD;
} else {
regs->find_reg(0x05).value &= ~REG_0x05_LEDADD;
}
/* HP2400 1200dpi mode tuning */
if (dev->model->sensor_id == SensorId::CCD_HP2400) {
/* reset count of dummy lines to zero */
regs->find_reg(0x1e).value &= ~REG_0x1E_LINESEL;
if (session.params.xres >= 1200) {
/* there must be one dummy line */
regs->find_reg(0x1e).value |= 1 & REG_0x1E_LINESEL;
/* GPO12 need to be set to zero */
regs->find_reg(0x66).value &= ~0x20;
}
else
{
/* set GPO12 back to one */
regs->find_reg(0x66).value |= 0x20;
}
}
/* motor steps used */
unsigned forward_steps = motor->fwdbwd;
unsigned backward_steps = motor->fwdbwd;
// the steps count must be different by at most 128, otherwise it's impossible to construct
// a proper backtracking curve. We're using slightly lower limit to allow at least a minimum
// distance between accelerations (forward_steps, backward_steps)
if (slope_table1.table.size() > slope_table2.table.size() + 100) {
slope_table2.expand_table(slope_table1.table.size() - 100, 1);
}
if (slope_table2.table.size() > slope_table1.table.size() + 100) {
slope_table1.expand_table(slope_table2.table.size() - 100, 1);
}
if (slope_table1.table.size() >= slope_table2.table.size()) {
backward_steps += (slope_table1.table.size() - slope_table2.table.size()) * 2;
} else {
forward_steps += (slope_table2.table.size() - slope_table1.table.size()) * 2;
}
if (forward_steps > 255) {
if (backward_steps < (forward_steps - 255)) {
throw SaneException("Can't set backtracking parameters without skipping image");
}
backward_steps -= forward_steps - 255;
}
if (backward_steps > 255) {
if (forward_steps < (backward_steps - 255)) {
throw SaneException("Can't set backtracking parameters without skipping image");
}
forward_steps -= backward_steps - 255;
}
regs->find_reg(0x21).value = slope_table1.table.size();
regs->find_reg(0x24).value = slope_table2.table.size();
regs->find_reg(0x22).value = forward_steps;
regs->find_reg(0x23).value = backward_steps;
/* CIS scanners read one line per color channel
* since gray mode use 'add' we also read 3 channels even not in
* color mode */
if (dev->model->is_cis) {
regs->set24(REG_LINCNT, session.output_line_count * 3);
} else {
regs->set24(REG_LINCNT, session.output_line_count);
}
regs->set16(REG_STRPIXEL, session.pixel_startx);
regs->set16(REG_ENDPIXEL, session.pixel_endx);
regs->set24(REG_MAXWD, session.output_line_bytes);
// FIXME: the incoming sensor is selected for incorrect resolution
const auto& dpiset_sensor = sanei_genesys_find_sensor(dev, session.params.xres,
session.params.channels,
session.params.scan_method);
regs->set16(REG_DPISET, dpiset_sensor.register_dpiset);
regs->set16(REG_LPERIOD, sensor.exposure_lperiod);
/* move distance must be adjusted to take into account the extra lines
* read to reorder data */
feedl = move;
if (session.num_staggered_lines + session.max_color_shift_lines > 0 && feedl != 0) {
unsigned total_lines = session.max_color_shift_lines + session.num_staggered_lines;
int feed_offset = (total_lines * dev->motor.base_ydpi) / motor->dpi;
if (feedl > feed_offset) {
feedl = feedl - feed_offset;
}
}
/* we assume all scans are done with 2 tables */
/*
feedl = feed_steps - fast_slope_steps*2 -
(slow_slope_steps >> scan_step_type); */
/* but head has moved due to shading calibration => dev->scanhead_position_primary */
if (feedl > 0)
{
/* TODO clean up this when I'll fully understand.
* for now, special casing each motor */
switch (dev->model->motor_id) {
case MotorId::MD_5345:
switch (motor->dpi) {
case 200:
feedl -= 70;
break;
case 300:
feedl -= 70;
break;
case 400:
feedl += 130;
break;
case 600:
feedl += 160;
break;
case 1200:
feedl += 160;
break;
case 2400:
feedl += 180;
break;
default:
break;
}
break;
case MotorId::HP2300:
switch (motor->dpi) {
case 75:
feedl -= 180;
break;
case 150:
feedl += 0;
break;
case 300:
feedl += 30;
break;
case 600:
feedl += 35;
break;
case 1200:
feedl += 45;
break;
default:
break;
}
break;
case MotorId::HP2400:
switch (motor->dpi) {
case 150:
feedl += 150;
break;
case 300:
feedl += 220;
break;
case 600:
feedl += 260;
break;
case 1200:
feedl += 280; /* 300 */
break;
case 50:
feedl += 0;
break;
case 100:
feedl += 100;
break;
default:
break;
}
break;
/* theorical value */
default: {
unsigned step_shift = static_cast<unsigned>(motor->steptype);
if (motor->fastfed)
{
feedl = feedl - 2 * slope_table2.table.size() -
(slope_table1.table.size() >> step_shift);
}
else
{
feedl = feedl - (slope_table1.table.size() >> step_shift);
}
break;
}
}
/* security */
if (feedl < 0)
feedl = 0;
}
regs->set24(REG_FEEDL, feedl);
regs->find_reg(0x65).value = motor->mtrpwm;
sanei_genesys_calculate_zmod(regs->find_reg(0x02).value & REG_0x02_FASTFED,
sensor.exposure_lperiod,
slope_table1.table,
slope_table1.table.size(),
move, motor->fwdbwd, &z1, &z2);
/* no z1/z2 for sheetfed scanners */
if (dev->model->is_sheetfed) {
z1 = 0;
z2 = 0;
}
regs->set16(REG_Z1MOD, z1);
regs->set16(REG_Z2MOD, z2);
regs->find_reg(0x6b).value = slope_table2.table.size();
regs->find_reg(0x6c).value =
(regs->find_reg(0x6c).value & REG_0x6C_TGTIME) | ((z1 >> 13) & 0x38) | ((z2 >> 16)
& 0x07);
write_control(dev, sensor, session.output_resolution);
// setup analog frontend
gl646_set_fe(dev, sensor, AFE_SET, session.output_resolution);
setup_image_pipeline(*dev, session);
dev->read_active = true;
dev->session = session;
dev->total_bytes_read = 0;
dev->total_bytes_to_read = (size_t) session.output_line_bytes_requested
* (size_t) session.params.lines;
/* select color filter based on settings */
regs->find_reg(0x04).value &= ~REG_0x04_FILTER;
if (session.params.channels == 1) {
switch (session.params.color_filter) {
case ColorFilter::RED:
regs->find_reg(0x04).value |= 0x04;
break;
case ColorFilter::GREEN:
regs->find_reg(0x04).value |= 0x08;
break;
case ColorFilter::BLUE:
regs->find_reg(0x04).value |= 0x0c;
break;
default:
break;
}
}
scanner_send_slope_table(dev, sensor, 0, slope_table1.table);
scanner_send_slope_table(dev, sensor, 1, slope_table2.table);
}
/**
* Set all registers to default values after init
* @param dev scannerr's device to set
*/
static void
gl646_init_regs (Genesys_Device * dev)
{
int addr;
DBG(DBG_proc, "%s\n", __func__);
dev->reg.clear();
for (addr = 1; addr <= 0x0b; addr++)
dev->reg.init_reg(addr, 0);
for (addr = 0x10; addr <= 0x29; addr++)
dev->reg.init_reg(addr, 0);
for (addr = 0x2c; addr <= 0x39; addr++)
dev->reg.init_reg(addr, 0);
for (addr = 0x3d; addr <= 0x3f; addr++)
dev->reg.init_reg(addr, 0);
for (addr = 0x52; addr <= 0x5e; addr++)
dev->reg.init_reg(addr, 0);
for (addr = 0x60; addr <= 0x6d; addr++)
dev->reg.init_reg(addr, 0);
dev->reg.find_reg(0x01).value = 0x20 /*0x22 */ ; /* enable shading, CCD, color, 1M */
dev->reg.find_reg(0x02).value = 0x30 /*0x38 */ ; /* auto home, one-table-move, full step */
if (dev->model->motor_id == MotorId::MD_5345) {
dev->reg.find_reg(0x02).value |= 0x01; // half-step
}
switch (dev->model->motor_id) {
case MotorId::MD_5345:
dev->reg.find_reg(0x02).value |= 0x01; /* half-step */
break;
case MotorId::XP200:
/* for this sheetfed scanner, no AGOHOME, nor backtracking */
dev->reg.find_reg(0x02).value = 0x50;
break;
default:
break;
}
dev->reg.find_reg(0x03).value = 0x1f /*0x17 */ ; /* lamp on */
dev->reg.find_reg(0x04).value = 0x13 /*0x03 */ ; /* 8 bits data, 16 bits A/D, color, Wolfson fe *//* todo: according to spec, 0x0 is reserved? */
switch (dev->model->adc_id)
{
case AdcId::AD_XP200:
dev->reg.find_reg(0x04).value = 0x12;
break;
default:
/* Wolfson frontend */
dev->reg.find_reg(0x04).value = 0x13;
break;
}
const auto& sensor = sanei_genesys_find_sensor_any(dev);
dev->reg.find_reg(0x05).value = 0x00; /* 12 bits gamma, disable gamma, 24 clocks/pixel */
sanei_genesys_set_dpihw(dev->reg, sensor.full_resolution);
if (has_flag(dev->model->flags, ModelFlag::GAMMA_14BIT)) {
dev->reg.find_reg(0x05).value |= REG_0x05_GMM14BIT;
}
if (dev->model->adc_id == AdcId::AD_XP200) {
dev->reg.find_reg(0x05).value |= 0x01; /* 12 clocks/pixel */
}
if (dev->model->sensor_id == SensorId::CCD_HP2300) {
dev->reg.find_reg(0x06).value = 0x00; // PWRBIT off, shading gain=4, normal AFE image capture
} else {
dev->reg.find_reg(0x06).value = 0x18; // PWRBIT on, shading gain=8, normal AFE image capture
}
scanner_setup_sensor(*dev, sensor, dev->reg);
dev->reg.find_reg(0x1e).value = 0xf0; /* watch-dog time */
switch (dev->model->sensor_id)
{
case SensorId::CCD_HP2300:
dev->reg.find_reg(0x1e).value = 0xf0;
dev->reg.find_reg(0x1f).value = 0x10;
dev->reg.find_reg(0x20).value = 0x20;
break;
case SensorId::CCD_HP2400:
dev->reg.find_reg(0x1e).value = 0x80;
dev->reg.find_reg(0x1f).value = 0x10;
dev->reg.find_reg(0x20).value = 0x20;
break;
case SensorId::CCD_HP3670:
dev->reg.find_reg(0x19).value = 0x2a;
dev->reg.find_reg(0x1e).value = 0x80;
dev->reg.find_reg(0x1f).value = 0x10;
dev->reg.find_reg(0x20).value = 0x20;
break;
case SensorId::CIS_XP200:
dev->reg.find_reg(0x1e).value = 0x10;
dev->reg.find_reg(0x1f).value = 0x01;
dev->reg.find_reg(0x20).value = 0x50;
break;
default:
dev->reg.find_reg(0x1f).value = 0x01;
dev->reg.find_reg(0x20).value = 0x50;
break;
}
dev->reg.find_reg(0x21).value = 0x08 /*0x20 */ ; /* table one steps number for forward slope curve of the acc/dec */
dev->reg.find_reg(0x22).value = 0x10 /*0x08 */ ; /* steps number of the forward steps for start/stop */
dev->reg.find_reg(0x23).value = 0x10 /*0x08 */ ; /* steps number of the backward steps for start/stop */
dev->reg.find_reg(0x24).value = 0x08 /*0x20 */ ; /* table one steps number backward slope curve of the acc/dec */
dev->reg.find_reg(0x25).value = 0x00; /* scan line numbers (7000) */
dev->reg.find_reg(0x26).value = 0x00 /*0x1b */ ;
dev->reg.find_reg(0x27).value = 0xd4 /*0x58 */ ;
dev->reg.find_reg(0x28).value = 0x01; /* PWM duty for lamp control */
dev->reg.find_reg(0x29).value = 0xff;
dev->reg.find_reg(0x2c).value = 0x02; /* set resolution (600 DPI) */
dev->reg.find_reg(0x2d).value = 0x58;
dev->reg.find_reg(0x2e).value = 0x78; /* set black&white threshold high level */
dev->reg.find_reg(0x2f).value = 0x7f; /* set black&white threshold low level */
dev->reg.find_reg(0x30).value = 0x00; /* begin pixel position (16) */
dev->reg.find_reg(0x31).value = sensor.dummy_pixel /*0x10 */ ; /* TGW + 2*TG_SHLD + x */
dev->reg.find_reg(0x32).value = 0x2a /*0x15 */ ; /* end pixel position (5390) */
dev->reg.find_reg(0x33).value = 0xf8 /*0x0e */ ; /* TGW + 2*TG_SHLD + y */
dev->reg.find_reg(0x34).value = sensor.dummy_pixel;
dev->reg.find_reg(0x35).value = 0x01 /*0x00 */ ; /* set maximum word size per line, for buffer full control (10800) */
dev->reg.find_reg(0x36).value = 0x00 /*0x2a */ ;
dev->reg.find_reg(0x37).value = 0x00 /*0x30 */ ;
dev->reg.find_reg(0x38).value = 0x2a; // line period (exposure time = 11000 pixels) */
dev->reg.find_reg(0x39).value = 0xf8;
dev->reg.find_reg(0x3d).value = 0x00; /* set feed steps number of motor move */
dev->reg.find_reg(0x3e).value = 0x00;
dev->reg.find_reg(0x3f).value = 0x01 /*0x00 */ ;
dev->reg.find_reg(0x60).value = 0x00; /* Z1MOD, 60h:61h:(6D b5:b3), remainder for start/stop */
dev->reg.find_reg(0x61).value = 0x00; /* (21h+22h)/LPeriod */
dev->reg.find_reg(0x62).value = 0x00; /* Z2MODE, 62h:63h:(6D b2:b0), remainder for start scan */
dev->reg.find_reg(0x63).value = 0x00; /* (3Dh+3Eh+3Fh)/LPeriod for one-table mode,(21h+1Fh)/LPeriod */
dev->reg.find_reg(0x64).value = 0x00; /* motor PWM frequency */
dev->reg.find_reg(0x65).value = 0x00; /* PWM duty cycle for table one motor phase (63 = max) */
if (dev->model->motor_id == MotorId::MD_5345) {
// PWM duty cycle for table one motor phase (63 = max)
dev->reg.find_reg(0x65).value = 0x02;
}
for (const auto& reg : dev->gpo.regs) {
dev->reg.set8(reg.address, reg.value);
}
switch (dev->model->motor_id) {
case MotorId::HP2300:
case MotorId::HP2400:
dev->reg.find_reg(0x6a).value = 0x7f; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6b).value = 0x78; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6d).value = 0x7f;
break;
case MotorId::MD_5345:
dev->reg.find_reg(0x6a).value = 0x42; /* table two fast moving step type, PWM duty for table two */
dev->reg.find_reg(0x6b).value = 0xff; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6d).value = 0x41; /* select deceleration steps whenever go home (0), accel/decel stop time (31 * LPeriod) */
break;
case MotorId::XP200:
dev->reg.find_reg(0x6a).value = 0x7f; /* table two fast moving step type, PWM duty for table two */
dev->reg.find_reg(0x6b).value = 0x08; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6d).value = 0x01; /* select deceleration steps whenever go home (0), accel/decel stop time (31 * LPeriod) */
break;
case MotorId::HP3670:
dev->reg.find_reg(0x6a).value = 0x41; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6b).value = 0xc8; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6d).value = 0x7f;
break;
default:
dev->reg.find_reg(0x6a).value = 0x40; /* table two fast moving step type, PWM duty for table two */
dev->reg.find_reg(0x6b).value = 0xff; /* table two steps number for acc/dec */
dev->reg.find_reg(0x6d).value = 0x01; /* select deceleration steps whenever go home (0), accel/decel stop time (31 * LPeriod) */
break;
}
dev->reg.find_reg(0x6c).value = 0x00; /* period times for LPeriod, expR,expG,expB, Z1MODE, Z2MODE (one period time) */
}
// Set values of Analog Device type frontend
static void gl646_set_ad_fe(Genesys_Device* dev, std::uint8_t set)
{
DBG_HELPER(dbg);
int i;
if (set == AFE_INIT) {
dev->frontend = dev->frontend_initial;
// write them to analog frontend
dev->interface->write_fe_register(0x00, dev->frontend.regs.get_value(0x00));
dev->interface->write_fe_register(0x01, dev->frontend.regs.get_value(0x01));
}
if (set == AFE_SET)
{
for (i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x02 + i, dev->frontend.get_gain(i));
}
for (i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x05 + i, dev->frontend.get_offset(i));
}
}
/*
if (set == AFE_POWER_SAVE)
{
dev->interface->write_fe_register(0x00, dev->frontend.reg[0] | 0x04);
} */
}
/** set up analog frontend
* set up analog frontend
* @param dev device to set up
* @param set action from AFE_SET, AFE_INIT and AFE_POWERSAVE
* @param dpi resolution of the scan since it affects settings
*/
static void gl646_wm_hp3670(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t set,
unsigned dpi)
{
DBG_HELPER(dbg);
int i;
switch (set)
{
case AFE_INIT:
dev->interface->write_fe_register(0x04, 0x80);
dev->interface->sleep_ms(200);
dev->interface->write_register(0x50, 0x00);
dev->frontend = dev->frontend_initial;
dev->interface->write_fe_register(0x01, dev->frontend.regs.get_value(0x01));
dev->interface->write_fe_register(0x02, dev->frontend.regs.get_value(0x02));
gl646_gpio_output_enable(dev->interface->get_usb_device(), 0x07);
break;
case AFE_POWER_SAVE:
dev->interface->write_fe_register(0x01, 0x06);
dev->interface->write_fe_register(0x06, 0x0f);
return;
break;
default: /* AFE_SET */
/* mode setup */
i = dev->frontend.regs.get_value(0x03);
if (dpi > sensor.full_resolution / 2) {
/* fe_reg_0x03 must be 0x12 for 1200 dpi in WOLFSON_HP3670.
* WOLFSON_HP2400 in 1200 dpi mode works well with
* fe_reg_0x03 set to 0x32 or 0x12 but not to 0x02 */
i = 0x12;
}
dev->interface->write_fe_register(0x03, i);
/* offset and sign (or msb/lsb ?) */
for (i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x20 + i, dev->frontend.get_offset(i));
dev->interface->write_fe_register(0x24 + i, dev->frontend.regs.get_value(0x24 + i));
}
// gain
for (i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x28 + i, dev->frontend.get_gain(i));
}
}
}
/** Set values of analog frontend
* @param dev device to set
* @param set action to execute
* @param dpi dpi to setup the AFE
*/
static void gl646_set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t set,
int dpi)
{
DBG_HELPER_ARGS(dbg, "%s,%d", set == AFE_INIT ? "init" :
set == AFE_SET ? "set" :
set == AFE_POWER_SAVE ? "powersave" : "huh?", dpi);
int i;
std::uint8_t val;
/* Analog Device type frontend */
std::uint8_t frontend_type = dev->reg.find_reg(0x04).value & REG_0x04_FESET;
if (frontend_type == 0x02) {
gl646_set_ad_fe(dev, set);
return;
}
/* Wolfson type frontend */
if (frontend_type != 0x03) {
throw SaneException("unsupported frontend type %d", frontend_type);
}
/* per frontend function to keep code clean */
switch (dev->model->adc_id)
{
case AdcId::WOLFSON_HP3670:
case AdcId::WOLFSON_HP2400:
gl646_wm_hp3670(dev, sensor, set, dpi);
return;
default:
DBG(DBG_proc, "%s(): using old method\n", __func__);
break;
}
/* initialize analog frontend */
if (set == AFE_INIT) {
dev->frontend = dev->frontend_initial;
// reset only done on init
dev->interface->write_fe_register(0x04, 0x80);
/* enable GPIO for some models */
if (dev->model->sensor_id == SensorId::CCD_HP2300) {
val = 0x07;
gl646_gpio_output_enable(dev->interface->get_usb_device(), val);
}
return;
}
// set fontend to power saving mode
if (set == AFE_POWER_SAVE) {
dev->interface->write_fe_register(0x01, 0x02);
return;
}
/* here starts AFE_SET */
/* TODO : base this test on cfg reg3 or a CCD family flag to be created */
/* if (dev->model->ccd_type != SensorId::CCD_HP2300
&& dev->model->ccd_type != SensorId::CCD_HP3670
&& dev->model->ccd_type != SensorId::CCD_HP2400) */
{
dev->interface->write_fe_register(0x00, dev->frontend.regs.get_value(0x00));
dev->interface->write_fe_register(0x02, dev->frontend.regs.get_value(0x02));
}
// start with reg3
dev->interface->write_fe_register(0x03, dev->frontend.regs.get_value(0x03));
switch (dev->model->sensor_id)
{
default:
for (i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x24 + i, dev->frontend.regs.get_value(0x24 + i));
dev->interface->write_fe_register(0x28 + i, dev->frontend.get_gain(i));
dev->interface->write_fe_register(0x20 + i, dev->frontend.get_offset(i));
}
break;
/* just can't have it to work ....
case SensorId::CCD_HP2300:
case SensorId::CCD_HP2400:
case SensorId::CCD_HP3670:
dev->interface->write_fe_register(0x23, dev->frontend.get_offset(1));
dev->interface->write_fe_register(0x28, dev->frontend.get_gain(1));
break; */
}
// end with reg1
dev->interface->write_fe_register(0x01, dev->frontend.regs.get_value(0x01));
}
/** Set values of analog frontend
* this this the public interface, the gl646 as to use one more
* parameter to work effectively, hence the redirection
* @param dev device to set
* @param set action to execute
*/
void CommandSetGl646::set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor,
std::uint8_t set) const
{
gl646_set_fe(dev, sensor, set, dev->settings.yres);
}
/**
* enters or leaves power saving mode
* limited to AFE for now.
* @param dev scanner's device
* @param enable true to enable power saving, false to leave it
*/
void CommandSetGl646::save_power(Genesys_Device* dev, bool enable) const
{
DBG_HELPER_ARGS(dbg, "enable = %d", enable);
const auto& sensor = sanei_genesys_find_sensor_any(dev);
if (enable)
{
// gl646_set_fe(dev, sensor, AFE_POWER_SAVE);
}
else
{
gl646_set_fe(dev, sensor, AFE_INIT, 0);
}
}
void CommandSetGl646::set_powersaving(Genesys_Device* dev, int delay /* in minutes */) const
{
DBG_HELPER_ARGS(dbg, "delay = %d", delay);
Genesys_Register_Set local_reg(Genesys_Register_Set::SEQUENTIAL);
int rate, exposure_time, tgtime, time;
local_reg.init_reg(0x01, dev->reg.get8(0x01)); // disable fastmode
local_reg.init_reg(0x03, dev->reg.get8(0x03)); // Lamp power control
local_reg.init_reg(0x05, dev->reg.get8(0x05) & ~REG_0x05_BASESEL); // 24 clocks/pixel
local_reg.init_reg(0x38, 0x00); // line period low
local_reg.init_reg(0x39, 0x00); //line period high
local_reg.init_reg(0x6c, 0x00); // period times for LPeriod, expR,expG,expB, Z1MODE, Z2MODE
if (!delay)
local_reg.find_reg(0x03).value &= 0xf0; /* disable lampdog and set lamptime = 0 */
else if (delay < 20)
local_reg.find_reg(0x03).value = (local_reg.get8(0x03) & 0xf0) | 0x09; /* enable lampdog and set lamptime = 1 */
else
local_reg.find_reg(0x03).value = (local_reg.get8(0x03) & 0xf0) | 0x0f; /* enable lampdog and set lamptime = 7 */
time = delay * 1000 * 60; /* -> msec */
exposure_time = static_cast<std::uint32_t>((time * 32000.0 /
(24.0 * 64.0 * (local_reg.get8(0x03) & REG_0x03_LAMPTIM) *
1024.0) + 0.5));
/* 32000 = system clock, 24 = clocks per pixel */
rate = (exposure_time + 65536) / 65536;
if (rate > 4)
{
rate = 8;
tgtime = 3;
}
else if (rate > 2)
{
rate = 4;
tgtime = 2;
}
else if (rate > 1)
{
rate = 2;
tgtime = 1;
}
else
{
rate = 1;
tgtime = 0;
}
local_reg.find_reg(0x6c).value |= tgtime << 6;
exposure_time /= rate;
if (exposure_time > 65535)
exposure_time = 65535;
local_reg.find_reg(0x38).value = exposure_time / 256;
local_reg.find_reg(0x39).value = exposure_time & 255;
dev->interface->write_registers(local_reg);
}
/**
* loads document into scanner
* currently only used by XP200
* bit2 (0x04) of gpio is paper event (document in/out) on XP200
* HOMESNR is set if no document in front of sensor, the sequence of events is
* paper event -> document is in the sheet feeder
* HOMESNR becomes 0 -> document reach sensor
* HOMESNR becomes 1 ->document left sensor
* paper event -> document is out
*/
void CommandSetGl646::load_document(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
// FIXME: sequential not really needed in this case
Genesys_Register_Set regs(Genesys_Register_Set::SEQUENTIAL);
unsigned count;
/* no need to load document is flatbed scanner */
if (!dev->model->is_sheetfed) {
DBG(DBG_proc, "%s: nothing to load\n", __func__);
DBG(DBG_proc, "%s: end\n", __func__);
return;
}
auto status = scanner_read_status(*dev);
// home sensor is set if a document is inserted
if (status.is_at_home) {
/* if no document, waits for a paper event to start loading */
/* with a 60 seconde minutes timeout */
count = 0;
std::uint8_t val = 0;
do {
gl646_gpio_read(dev->interface->get_usb_device(), &val);
DBG(DBG_info, "%s: GPIO=0x%02x\n", __func__, val);
if ((val & 0x04) != 0x04)
{
DBG(DBG_warn, "%s: no paper detected\n", __func__);
}
dev->interface->sleep_ms(200);
count++;
}
while (((val & 0x04) != 0x04) && (count < 300)); /* 1 min time out */
if (count == 300)
{
throw SaneException(SANE_STATUS_NO_DOCS, "timeout waiting for document");
}
}
/* set up to fast move before scan then move until document is detected */
regs.init_reg(0x01, 0x90);
/* AGOME, 2 slopes motor moving */
regs.init_reg(0x02, 0x79);
/* motor feeding steps to 0 */
regs.init_reg(0x3d, 0);
regs.init_reg(0x3e, 0);
regs.init_reg(0x3f, 0);
/* 50 fast moving steps */
regs.init_reg(0x6b, 50);
/* set GPO */
regs.init_reg(0x66, 0x30);
/* stesp NO */
regs.init_reg(0x21, 4);
regs.init_reg(0x22, 1);
regs.init_reg(0x23, 1);
regs.init_reg(0x24, 4);
/* generate slope table 2 */
auto slope_table = create_slope_table_for_speed(MotorSlope::create_from_steps(6000, 2400, 50),
2400, StepType::FULL, 1, 4,
get_slope_table_max_size(AsicType::GL646));
// document loading:
// send regs
// start motor
// wait e1 status to become e0
const auto& sensor = sanei_genesys_find_sensor_any(dev);
scanner_send_slope_table(dev, sensor, 1, slope_table.table);
dev->interface->write_registers(regs);
scanner_start_action(*dev, true);
count = 0;
do
{
status = scanner_read_status(*dev);
dev->interface->sleep_ms(200);
count++;
} while (status.is_motor_enabled && (count < 300));
if (count == 300)
{
throw SaneException(SANE_STATUS_JAMMED, "can't load document");
}
/* when loading OK, document is here */
dev->document = true;
/* set up to idle */
regs.set8(0x02, 0x71);
regs.set8(0x3f, 1);
regs.set8(0x6b, 8);
dev->interface->write_registers(regs);
}
/**
* detects end of document and adjust current scan
* to take it into account
* used by sheetfed scanners
*/
void CommandSetGl646::detect_document_end(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
std::uint8_t gpio;
unsigned int bytes_left;
// test for document presence
scanner_read_print_status(*dev);
gl646_gpio_read(dev->interface->get_usb_device(), &gpio);
DBG(DBG_info, "%s: GPIO=0x%02x\n", __func__, gpio);
/* detect document event. There one event when the document go in,
* then another when it leaves */
if (dev->document && (gpio & 0x04) && (dev->total_bytes_read > 0)) {
DBG(DBG_info, "%s: no more document\n", __func__);
dev->document = false;
/* adjust number of bytes to read:
* total_bytes_to_read is the number of byte to send to frontend
* total_bytes_read is the number of bytes sent to frontend
* read_bytes_left is the number of bytes to read from the scanner
*/
DBG(DBG_io, "%s: total_bytes_to_read=%zu\n", __func__, dev->total_bytes_to_read);
DBG(DBG_io, "%s: total_bytes_read =%zu\n", __func__, dev->total_bytes_read);
// amount of data available from scanner is what to scan
sanei_genesys_read_valid_words(dev, &bytes_left);
unsigned lines_in_buffer = bytes_left / dev->session.output_line_bytes_raw;
// we add the number of lines needed to read the last part of the document in
unsigned lines_offset = static_cast<unsigned>(
(dev->model->y_offset * dev->session.params.yres) / MM_PER_INCH);
unsigned remaining_lines = lines_in_buffer + lines_offset;
bytes_left = remaining_lines * dev->session.output_line_bytes_raw;
if (bytes_left < dev->get_pipeline_source().remaining_bytes()) {
dev->get_pipeline_source().set_remaining_bytes(bytes_left);
dev->total_bytes_to_read = dev->total_bytes_read + bytes_left;
}
DBG(DBG_io, "%s: total_bytes_to_read=%zu\n", __func__, dev->total_bytes_to_read);
DBG(DBG_io, "%s: total_bytes_read =%zu\n", __func__, dev->total_bytes_read);
}
}
/**
* eject document from the feeder
* currently only used by XP200
* TODO we currently rely on AGOHOME not being set for sheetfed scanners,
* maybe check this flag in eject to let the document being eject automatically
*/
void CommandSetGl646::eject_document(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
// FIXME: SEQUENTIAL not really needed in this case
Genesys_Register_Set regs((Genesys_Register_Set::SEQUENTIAL));
unsigned count;
std::uint8_t gpio;
/* at the end there will be no more document */
dev->document = false;
// first check for document event
gl646_gpio_read(dev->interface->get_usb_device(), &gpio);
DBG(DBG_info, "%s: GPIO=0x%02x\n", __func__, gpio);
// test status : paper event + HOMESNR -> no more doc ?
auto status = scanner_read_status(*dev);
// home sensor is set when document is inserted
if (status.is_at_home) {
dev->document = false;
DBG(DBG_info, "%s: no more document to eject\n", __func__);
return;
}
// there is a document inserted, eject it
dev->interface->write_register(0x01, 0xb0);
/* wait for motor to stop */
do {
dev->interface->sleep_ms(200);
status = scanner_read_status(*dev);
}
while (status.is_motor_enabled);
/* set up to fast move before scan then move until document is detected */
regs.init_reg(0x01, 0xb0);
/* AGOME, 2 slopes motor moving , eject 'backward' */
regs.init_reg(0x02, 0x5d);
/* motor feeding steps to 119880 */
regs.init_reg(0x3d, 1);
regs.init_reg(0x3e, 0xd4);
regs.init_reg(0x3f, 0x48);
/* 60 fast moving steps */
regs.init_reg(0x6b, 60);
/* set GPO */
regs.init_reg(0x66, 0x30);
/* stesp NO */
regs.init_reg(0x21, 4);
regs.init_reg(0x22, 1);
regs.init_reg(0x23, 1);
regs.init_reg(0x24, 4);
/* generate slope table 2 */
auto slope_table = create_slope_table_for_speed(MotorSlope::create_from_steps(10000, 1600, 60),
1600, StepType::FULL, 1, 4,
get_slope_table_max_size(AsicType::GL646));
// document eject:
// send regs
// start motor
// wait c1 status to become c8 : HOMESNR and ~MOTFLAG
// FIXME: sensor is not used.
const auto& sensor = sanei_genesys_find_sensor_any(dev);
scanner_send_slope_table(dev, sensor, 1, slope_table.table);
dev->interface->write_registers(regs);
scanner_start_action(*dev, true);
/* loop until paper sensor tells paper is out, and till motor is running */
/* use a 30 timeout */
count = 0;
do {
status = scanner_read_status(*dev);
dev->interface->sleep_ms(200);
count++;
} while (!status.is_at_home && (count < 150));
// read GPIO on exit
gl646_gpio_read(dev->interface->get_usb_device(), &gpio);
DBG(DBG_info, "%s: GPIO=0x%02x\n", __func__, gpio);
}
// Send the low-level scan command
void CommandSetGl646::begin_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg, bool start_motor) const
{
DBG_HELPER(dbg);
(void) sensor;
// FIXME: SEQUENTIAL not really needed in this case
Genesys_Register_Set local_reg(Genesys_Register_Set::SEQUENTIAL);
local_reg.init_reg(0x03, reg->get8(0x03));
local_reg.init_reg(0x01, reg->get8(0x01) | REG_0x01_SCAN);
if (start_motor) {
local_reg.init_reg(0x0f, 0x01);
} else {
local_reg.init_reg(0x0f, 0x00); // do not start motor yet
}
dev->interface->write_registers(local_reg);
dev->advance_head_pos_by_session(ScanHeadId::PRIMARY);
}
// Send the stop scan command
static void end_scan_impl(Genesys_Device* dev, Genesys_Register_Set* reg, bool check_stop,
bool eject)
{
DBG_HELPER_ARGS(dbg, "check_stop = %d, eject = %d", check_stop, eject);
scanner_stop_action_no_move(*dev, *reg);
unsigned wait_limit_seconds = 30;
/* for sheetfed scanners, we may have to eject document */
if (dev->model->is_sheetfed) {
if (eject && dev->document) {
dev->cmd_set->eject_document(dev);
}
wait_limit_seconds = 3;
}
if (is_testing_mode()) {
return;
}
dev->interface->sleep_ms(100);
if (check_stop) {
for (unsigned i = 0; i < wait_limit_seconds * 10; i++) {
if (scanner_is_motor_stopped(*dev)) {
return;
}
dev->interface->sleep_ms(100);
}
throw SaneException(SANE_STATUS_IO_ERROR, "could not stop motor");
}
}
// Send the stop scan command
void CommandSetGl646::end_scan(Genesys_Device* dev, Genesys_Register_Set* reg,
bool check_stop) const
{
end_scan_impl(dev, reg, check_stop, false);
}
/**
* parks head
* @param dev scanner's device
* @param wait_until_home true if the function waits until head parked
*/
void CommandSetGl646::move_back_home(Genesys_Device* dev, bool wait_until_home) const
{
DBG_HELPER_ARGS(dbg, "wait_until_home = %d\n", wait_until_home);
int i;
int loop = 0;
auto status = scanner_read_status(*dev);
if (status.is_at_home) {
DBG(DBG_info, "%s: end since already at home\n", __func__);
dev->set_head_pos_zero(ScanHeadId::PRIMARY);
return;
}
/* stop motor if needed */
if (status.is_motor_enabled) {
gl646_stop_motor(dev);
dev->interface->sleep_ms(200);
}
/* when scanhead is moving then wait until scanhead stops or timeout */
DBG(DBG_info, "%s: ensuring that motor is off\n", __func__);
for (i = 400; i > 0; i--) {
// do not wait longer than 40 seconds, count down to get i = 0 when busy
status = scanner_read_status(*dev);
if (!status.is_motor_enabled && status.is_at_home) {
DBG(DBG_info, "%s: already at home and not moving\n", __func__);
dev->set_head_pos_zero(ScanHeadId::PRIMARY);
return;
}
if (!status.is_motor_enabled) {
break;
}
dev->interface->sleep_ms(100);
}
if (!i) /* the loop counted down to 0, scanner still is busy */
{
dev->set_head_pos_unknown(ScanHeadId::PRIMARY | ScanHeadId::SECONDARY);
throw SaneException(SANE_STATUS_DEVICE_BUSY, "motor is still on: device busy");
}
// setup for a backward scan of 65535 steps, with no actual data reading
auto resolution = sanei_genesys_get_lowest_dpi(dev);
const auto& sensor = sanei_genesys_find_sensor(dev, resolution, 3,
dev->model->default_method);
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = 0;
session.params.starty = 65535;
session.params.pixels = 600;
session.params.lines = 1;
session.params.depth = 8;
session.params.channels = 3;
session.params.scan_method = dev->model->default_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = ColorFilter::RED;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = ScanFlag::REVERSE |
ScanFlag::AUTO_GO_HOME |
ScanFlag::DISABLE_GAMMA;
if (dev->model->default_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, sensor);
init_regs_for_scan_session(dev, sensor, &dev->reg, session);
/* backward , no actual data scanned TODO more setup flags to avoid this register manipulations ? */
regs_set_optical_off(dev->model->asic_type, dev->reg);
// sets frontend
gl646_set_fe(dev, sensor, AFE_SET, resolution);
/* write scan registers */
try {
dev->interface->write_registers(dev->reg);
} catch (...) {
DBG(DBG_error, "%s: failed to bulk write registers\n", __func__);
}
/* registers are restored to an iddl state, give up if no head to park */
if (dev->model->is_sheetfed) {
return;
}
// starts scan
{
// this is effectively the same as dev->cmd_set->begin_scan(dev, sensor, &dev->reg, true);
// except that we don't modify the head position calculations
// FIXME: SEQUENTIAL not really needed in this case
Genesys_Register_Set scan_local_reg(Genesys_Register_Set::SEQUENTIAL);
scan_local_reg.init_reg(0x03, dev->reg.get8(0x03));
scan_local_reg.init_reg(0x01, dev->reg.get8(0x01) | REG_0x01_SCAN);
scan_local_reg.init_reg(0x0f, 0x01);
dev->interface->write_registers(scan_local_reg);
}
if (is_testing_mode()) {
dev->interface->test_checkpoint("move_back_home");
dev->set_head_pos_zero(ScanHeadId::PRIMARY);
return;
}
/* loop until head parked */
if (wait_until_home)
{
while (loop < 300) /* do not wait longer then 30 seconds */
{
auto status = scanner_read_status(*dev);
if (status.is_at_home) {
DBG(DBG_info, "%s: reached home position\n", __func__);
dev->interface->sleep_ms(500);
dev->set_head_pos_zero(ScanHeadId::PRIMARY);
return;
}
dev->interface->sleep_ms(100);
++loop;
}
// when we come here then the scanner needed too much time for this, so we better
// stop the motor
catch_all_exceptions(__func__, [&](){ gl646_stop_motor (dev); });
catch_all_exceptions(__func__, [&](){ end_scan_impl(dev, &dev->reg, true, false); });
dev->set_head_pos_unknown(ScanHeadId::PRIMARY | ScanHeadId::SECONDARY);
throw SaneException(SANE_STATUS_IO_ERROR, "timeout while waiting for scanhead to go home");
}
DBG(DBG_info, "%s: scanhead is still moving\n", __func__);
}
/**
* init registers for shading calibration
* we assume that scanner's head is on an area suiting shading calibration.
* We scan a full scan width area by the shading line number for the device
*/
void CommandSetGl646::init_regs_for_shading(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
DBG_HELPER(dbg);
(void) regs;
/* fill settings for scan : always a color scan */
int channels = 3;
unsigned cksel = get_cksel(dev->model->sensor_id, dev->settings.xres, channels);
unsigned resolution = sensor.get_optical_resolution() / cksel;
// FIXME: we select wrong calibration sensor
const auto& calib_sensor = sanei_genesys_find_sensor(dev, dev->settings.xres, channels,
dev->settings.scan_method);
auto pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH;
unsigned calib_lines =
static_cast<unsigned>(dev->model->y_size_calib_mm * resolution / MM_PER_INCH);
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = 0;
session.params.starty = 0;
session.params.pixels = pixels;
session.params.lines = calib_lines;
session.params.depth = 16;
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = dev->settings.color_filter;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = ScanFlag::DISABLE_SHADING |
ScanFlag::DISABLE_GAMMA |
ScanFlag::IGNORE_COLOR_OFFSET |
ScanFlag::IGNORE_STAGGER_OFFSET;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, calib_sensor);
dev->cmd_set->init_regs_for_scan_session(dev, calib_sensor, &dev->reg, session);
dev->calib_session = session;
/* no shading */
dev->reg.find_reg(0x02).value |= REG_0x02_ACDCDIS; /* ease backtracking */
dev->reg.find_reg(0x02).value &= ~REG_0x02_FASTFED;
sanei_genesys_set_motor_power(dev->reg, false);
}
bool CommandSetGl646::needs_home_before_init_regs_for_scan(Genesys_Device* dev) const
{
return dev->is_head_pos_known(ScanHeadId::PRIMARY) &&
dev->head_pos(ScanHeadId::PRIMARY) &&
dev->settings.scan_method == ScanMethod::FLATBED;
}
/**
* this function send gamma table to ASIC
*/
void CommandSetGl646::send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) const
{
DBG_HELPER(dbg);
int size;
int address;
int bits;
if (has_flag(dev->model->flags, ModelFlag::GAMMA_14BIT)) {
size = 16384;
bits = 14;
}
else
{
size = 4096;
bits = 12;
}
auto gamma = generate_gamma_buffer(dev, sensor, bits, size-1, size);
/* table address */
switch (dev->reg.find_reg(0x05).value >> 6)
{
case 0: /* 600 dpi */
address = 0x09000;
break;
case 1: /* 1200 dpi */
address = 0x11000;
break;
case 2: /* 2400 dpi */
address = 0x20000;
break;
default:
throw SaneException("invalid dpi");
}
dev->interface->write_buffer(0x3c, address, gamma.data(), size * 2 * 3);
}
/** @brief this function does the led calibration.
* this function does the led calibration by scanning one line of the calibration
* area below scanner's top on white strip. The scope of this function is
* currently limited to the XP200
*/
SensorExposure CommandSetGl646::led_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
DBG_HELPER(dbg);
(void) regs;
unsigned int i, j;
int val;
int avg[3], avga, avge;
int turn;
std::uint16_t expr, expg, expb;
unsigned channels = dev->settings.get_channels();
ScanColorMode scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
if (dev->settings.scan_mode != ScanColorMode::COLOR_SINGLE_PASS) {
scan_mode = ScanColorMode::GRAY;
}
// offset calibration is always done in color mode
unsigned pixels = dev->model->x_size_calib_mm * sensor.full_resolution / MM_PER_INCH;
ScanSession session;
session.params.xres = sensor.full_resolution;
session.params.yres = sensor.full_resolution;
session.params.startx = 0;
session.params.starty = 0;
session.params.pixels = pixels;
session.params.lines = 1;
session.params.depth = 16;
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = scan_mode;
session.params.color_filter = ColorFilter::RED;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = ScanFlag::DISABLE_SHADING;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, sensor);
// colors * bytes_per_color * scan lines
unsigned total_size = pixels * channels * 2 * 1;
std::vector<std::uint8_t> line(total_size);
/*
we try to get equal bright leds here:
loop:
average per color
adjust exposure times
*/
expr = sensor.exposure.red;
expg = sensor.exposure.green;
expb = sensor.exposure.blue;
turn = 0;
auto calib_sensor = sensor;
bool acceptable = false;
do {
calib_sensor.exposure.red = expr;
calib_sensor.exposure.green = expg;
calib_sensor.exposure.blue = expb;
DBG(DBG_info, "%s: starting first line reading\n", __func__);
dev->cmd_set->init_regs_for_scan_session(dev, calib_sensor, &dev->reg, session);
simple_scan(dev, calib_sensor, session, false, line, "led_calibration");
if (is_testing_mode()) {
return calib_sensor.exposure;
}
if (dbg_log_image_data()) {
char fn[30];
std::snprintf(fn, 30, "gl646_led_%02d.tiff", turn);
write_tiff_file(fn, line.data(), 16, channels, pixels, 1);
}
acceptable = true;
for (j = 0; j < channels; j++)
{
avg[j] = 0;
for (i = 0; i < pixels; i++) {
if (dev->model->is_cis) {
val = line[i * 2 + j * 2 * pixels + 1] * 256 + line[i * 2 + j * 2 * pixels];
} else {
val = line[i * 2 * channels + 2 * j + 1] * 256 + line[i * 2 * channels + 2 * j];
}
avg[j] += val;
}
avg[j] /= pixels;
}
DBG(DBG_info, "%s: average: %d,%d,%d\n", __func__, avg[0], avg[1], avg[2]);
acceptable = true;
if (!acceptable)
{
avga = (avg[0] + avg[1] + avg[2]) / 3;
expr = (expr * avga) / avg[0];
expg = (expg * avga) / avg[1];
expb = (expb * avga) / avg[2];
/* keep exposure time in a working window */
avge = (expr + expg + expb) / 3;
if (avge > 0x2000)
{
expr = (expr * 0x2000) / avge;
expg = (expg * 0x2000) / avge;
expb = (expb * 0x2000) / avge;
}
if (avge < 0x400)
{
expr = (expr * 0x400) / avge;
expg = (expg * 0x400) / avge;
expb = (expb * 0x400) / avge;
}
}
turn++;
}
while (!acceptable && turn < 100);
DBG(DBG_info,"%s: acceptable exposure: 0x%04x,0x%04x,0x%04x\n", __func__, expr, expg, expb);
// BUG: we don't store the result of the last iteration to the sensor
return calib_sensor.exposure;
}
/**
* average dark pixels of a scan
*/
static int dark_average(std::uint8_t * data, unsigned int pixels, unsigned int lines,
unsigned int channels, unsigned int black)
{
unsigned int i, j, k, average, count;
unsigned int avg[3];
std::uint8_t val;
/* computes average value on black margin */
for (k = 0; k < channels; k++)
{
avg[k] = 0;
count = 0;
for (i = 0; i < lines; i++)
{
for (j = 0; j < black; j++)
{
val = data[i * channels * pixels + j + k];
avg[k] += val;
count++;
}
}
if (count)
avg[k] /= count;
DBG(DBG_info, "%s: avg[%d] = %d\n", __func__, k, avg[k]);
}
average = 0;
for (i = 0; i < channels; i++)
average += avg[i];
average /= channels;
DBG(DBG_info, "%s: average = %d\n", __func__, average);
return average;
}
/** @brief calibration for AD frontend devices
* we do simple scan until all black_pixels are higher than 0,
* raising offset at each turn.
*/
static void ad_fe_offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor)
{
DBG_HELPER(dbg);
(void) sensor;
unsigned int channels;
int pass = 0;
unsigned adr, min;
unsigned int bottom, black_pixels;
channels = 3;
// FIXME: maybe reuse `sensor`
const auto& calib_sensor = sanei_genesys_find_sensor(dev, sensor.full_resolution, 3,
ScanMethod::FLATBED);
black_pixels = (calib_sensor.black_pixels * sensor.full_resolution) / calib_sensor.full_resolution;
unsigned pixels = dev->model->x_size_calib_mm * sensor.full_resolution / MM_PER_INCH;
unsigned lines = CALIBRATION_LINES;
if (dev->model->is_cis) {
lines = ((lines + 2) / 3) * 3;
}
ScanSession session;
session.params.xres = sensor.full_resolution;
session.params.yres = sensor.full_resolution;
session.params.startx = 0;
session.params.starty = 0;
session.params.pixels = pixels;
session.params.lines = lines;
session.params.depth = 8;
session.params.channels = 3;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = ColorFilter::RED;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = ScanFlag::DISABLE_SHADING;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, calib_sensor);
/* scan first line of data with no gain */
dev->frontend.set_gain(0, 0);
dev->frontend.set_gain(1, 0);
dev->frontend.set_gain(2, 0);
std::vector<std::uint8_t> line;
/* scan with no move */
bottom = 1;
do
{
pass++;
dev->frontend.set_offset(0, bottom);
dev->frontend.set_offset(1, bottom);
dev->frontend.set_offset(2, bottom);
dev->cmd_set->init_regs_for_scan_session(dev, calib_sensor, &dev->reg, session);
simple_scan(dev, calib_sensor, session, false, line, "ad_fe_offset_calibration");
if (is_testing_mode()) {
return;
}
if (dbg_log_image_data()) {
char title[30];
std::snprintf(title, 30, "gl646_offset%03d.tiff", static_cast<int>(bottom));
write_tiff_file(title, line.data(), 8, channels, pixels, lines);
}
min = 0;
for (unsigned y = 0; y < lines; y++) {
for (unsigned x = 0; x < black_pixels; x++) {
adr = (x + y * pixels) * channels;
if (line[adr] > min)
min = line[adr];
if (line[adr + 1] > min)
min = line[adr + 1];
if (line[adr + 2] > min)
min = line[adr + 2];
}
}
DBG(DBG_info, "%s: pass=%d, min=%d\n", __func__, pass, min);
bottom++;
}
while (pass < 128 && min == 0);
if (pass == 128)
{
throw SaneException(SANE_STATUS_INVAL, "failed to find correct offset");
}
DBG(DBG_info, "%s: offset=(%d,%d,%d)\n", __func__,
dev->frontend.get_offset(0),
dev->frontend.get_offset(1),
dev->frontend.get_offset(2));
}
/**
* This function does the offset calibration by scanning one line of the calibration
* area below scanner's top. There is a black margin and the remaining is white.
* genesys_search_start() must have been called so that the offsets and margins
* are already known.
* @param dev scanner's device
*/
void CommandSetGl646::offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
DBG_HELPER(dbg);
(void) regs;
int pass = 0, avg;
int topavg, bottomavg;
int top, bottom, black_pixels;
if (dev->model->adc_id == AdcId::AD_XP200) {
ad_fe_offset_calibration(dev, sensor);
return;
}
/* setup for a RGB scan, one full sensor's width line */
/* resolution is the one from the final scan */
unsigned resolution = dev->settings.xres;
unsigned channels = 3;
const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels,
ScanMethod::FLATBED);
black_pixels = (calib_sensor.black_pixels * resolution) / calib_sensor.full_resolution;
unsigned pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH;
unsigned lines = CALIBRATION_LINES;
if (dev->model->is_cis) {
lines = ((lines + 2) / 3) * 3;
}
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = 0;
session.params.starty = 0;
session.params.pixels = pixels;
session.params.lines = lines;
session.params.depth = 8;
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = ColorFilter::RED;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = ScanFlag::DISABLE_SHADING;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, sensor);
/* scan first line of data with no gain, but with offset from
* last calibration */
dev->frontend.set_gain(0, 0);
dev->frontend.set_gain(1, 0);
dev->frontend.set_gain(2, 0);
/* scan with no move */
bottom = 90;
dev->frontend.set_offset(0, bottom);
dev->frontend.set_offset(1, bottom);
dev->frontend.set_offset(2, bottom);
std::vector<std::uint8_t> first_line, second_line;
dev->cmd_set->init_regs_for_scan_session(dev, sensor, &dev->reg, session);
simple_scan(dev, calib_sensor, session, false, first_line, "offset_first_line");
if (dbg_log_image_data()) {
char title[30];
std::snprintf(title, 30, "gl646_offset%03d.tiff", bottom);
write_tiff_file(title, first_line.data(), 8, channels, pixels, lines);
}
bottomavg = dark_average(first_line.data(), pixels, lines, channels, black_pixels);
DBG(DBG_info, "%s: bottom avg=%d\n", __func__, bottomavg);
/* now top value */
top = 231;
dev->frontend.set_offset(0, top);
dev->frontend.set_offset(1, top);
dev->frontend.set_offset(2, top);
dev->cmd_set->init_regs_for_scan_session(dev, calib_sensor, &dev->reg, session);
simple_scan(dev, calib_sensor, session, false, second_line, "offset_second_line");
if (dbg_log_image_data()) {
char title[30];
std::snprintf(title, 30, "gl646_offset%03d.tiff", top);
write_tiff_file(title, second_line.data(), 8, channels, pixels, lines);
}
topavg = dark_average(second_line.data(), pixels, lines, channels, black_pixels);
DBG(DBG_info, "%s: top avg=%d\n", __func__, topavg);
if (is_testing_mode()) {
return;
}
/* loop until acceptable level */
while ((pass < 32) && (top - bottom > 1))
{
pass++;
/* settings for new scan */
dev->frontend.set_offset(0, (top + bottom) / 2);
dev->frontend.set_offset(1, (top + bottom) / 2);
dev->frontend.set_offset(2, (top + bottom) / 2);
// scan with no move
dev->cmd_set->init_regs_for_scan_session(dev, calib_sensor, &dev->reg, session);
simple_scan(dev, calib_sensor, session, false, second_line,
"offset_calibration_i");
if (dbg_log_image_data()) {
char title[30];
std::snprintf(title, 30, "gl646_offset%03d.tiff", dev->frontend.get_offset(1));
write_tiff_file(title, second_line.data(), 8, channels, pixels, lines);
}
avg = dark_average(second_line.data(), pixels, lines, channels, black_pixels);
DBG(DBG_info, "%s: avg=%d offset=%d\n", __func__, avg, dev->frontend.get_offset(1));
/* compute new boundaries */
if (topavg == avg)
{
topavg = avg;
top = dev->frontend.get_offset(1);
}
else
{
bottomavg = avg;
bottom = dev->frontend.get_offset(1);
}
}
DBG(DBG_info, "%s: offset=(%d,%d,%d)\n", __func__,
dev->frontend.get_offset(0),
dev->frontend.get_offset(1),
dev->frontend.get_offset(2));
}
/**
* Alternative coarse gain calibration
* this on uses the settings from offset_calibration. First scan moves so
* we can go to calibration area for XPA.
* @param dev device for scan
* @param dpi resolutnio to calibrate at
*/
void CommandSetGl646::coarse_gain_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs, int dpi) const
{
DBG_HELPER(dbg);
(void) dpi;
(void) sensor;
(void) regs;
float average[3];
char title[32];
/* setup for a RGB scan, one full sensor's width line */
/* resolution is the one from the final scan */
unsigned channels = 3;
// BUG: the following comment is incorrect
// we are searching a sensor resolution */
const auto& calib_sensor = sanei_genesys_find_sensor(dev, dev->settings.xres, channels,
ScanMethod::FLATBED);
unsigned pixels = 0;
float start = 0;
if (dev->settings.scan_method == ScanMethod::FLATBED) {
pixels = dev->model->x_size_calib_mm * dev->settings.xres / MM_PER_INCH;
} else {
start = dev->model->x_offset_ta;
pixels = static_cast<unsigned>(
(dev->model->x_size_ta * dev->settings.xres) / MM_PER_INCH);
}
unsigned lines = CALIBRATION_LINES;
// round up to multiple of 3 in case of CIS scanner
if (dev->model->is_cis) {
lines = ((lines + 2) / 3) * 3;
}
start = static_cast<float>((start * dev->settings.xres) / MM_PER_INCH);
ScanSession session;
session.params.xres = dev->settings.xres;
session.params.yres = dev->settings.xres;
session.params.startx = static_cast<unsigned>(start);
session.params.starty = 0;
session.params.pixels = pixels;
session.params.lines = lines;
session.params.depth = 8;
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = ColorFilter::RED;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = ScanFlag::DISABLE_SHADING;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, calib_sensor);
/* start gain value */
dev->frontend.set_gain(0, 1);
dev->frontend.set_gain(1, 1);
dev->frontend.set_gain(2, 1);
average[0] = 0;
average[1] = 0;
average[2] = 0;
unsigned pass = 0;
std::vector<std::uint8_t> line;
/* loop until each channel raises to acceptable level */
while (((average[0] < calib_sensor.gain_white_ref) ||
(average[1] < calib_sensor.gain_white_ref) ||
(average[2] < calib_sensor.gain_white_ref)) && (pass < 30))
{
// scan with no move
dev->cmd_set->init_regs_for_scan_session(dev, calib_sensor, &dev->reg, session);
simple_scan(dev, calib_sensor, session, false, line, "coarse_gain_calibration");
if (dbg_log_image_data()) {
std::sprintf(title, "gl646_gain%02d.tiff", pass);
write_tiff_file(title, line.data(), 8, channels, pixels, lines);
}
pass++;
// average high level for each channel and compute gain to reach the target code
// we only use the central half of the CCD data
for (unsigned k = 0; k < channels; k++) {
// we find the maximum white value, so we can deduce a threshold
// to average white values
unsigned maximum = 0;
for (unsigned i = 0; i < lines; i++) {
for (unsigned j = 0; j < pixels; j++) {
unsigned val = line[i * channels * pixels + j + k];
maximum = std::max(maximum, val);
}
}
maximum = static_cast<int>(maximum * 0.9);
// computes white average
average[k] = 0;
unsigned count = 0;
for (unsigned i = 0; i < lines; i++) {
for (unsigned j = 0; j < pixels; j++) {
// averaging only white points allow us not to care about dark margins
unsigned val = line[i * channels * pixels + j + k];
if (val > maximum) {
average[k] += val;
count++;
}
}
}
average[k] = average[k] / count;
// adjusts gain for the channel
if (average[k] < calib_sensor.gain_white_ref) {
dev->frontend.set_gain(k, dev->frontend.get_gain(k) + 1);
}
DBG(DBG_info, "%s: channel %d, average = %.2f, gain = %d\n", __func__, k, average[k],
dev->frontend.get_gain(k));
}
}
DBG(DBG_info, "%s: gains=(%d,%d,%d)\n", __func__,
dev->frontend.get_gain(0),
dev->frontend.get_gain(1),
dev->frontend.get_gain(2));
}
/**
* sets up the scanner's register for warming up. We scan 2 lines without moving.
*
*/
void CommandSetGl646::init_regs_for_warmup(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* local_reg) const
{
DBG_HELPER(dbg);
(void) sensor;
dev->frontend = dev->frontend_initial;
unsigned resolution = 300;
const auto& local_sensor = sanei_genesys_find_sensor(dev, resolution, 1,
dev->settings.scan_method);
// set up for a full width 2 lines gray scan without moving
unsigned pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH;
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = 0;
session.params.starty = 0;
session.params.pixels = pixels;
session.params.lines = 2;
session.params.depth = dev->model->bpp_gray_values.front();
session.params.channels = 1;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::GRAY;
session.params.color_filter = ColorFilter::RED;
session.params.contrast_adjustment = 0;
session.params.brightness_adjustment = 0;
session.params.flags = ScanFlag::DISABLE_SHADING |
ScanFlag::DISABLE_GAMMA;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, local_sensor);
dev->cmd_set->init_regs_for_scan_session(dev, local_sensor, &dev->reg, session);
/* we are not going to move, so clear these bits */
dev->reg.find_reg(0x02).value &= ~REG_0x02_FASTFED;
/* copy to local_reg */
*local_reg = dev->reg;
/* turn off motor during this scan */
sanei_genesys_set_motor_power(*local_reg, false);
// now registers are ok, write them to scanner
gl646_set_fe(dev, local_sensor, AFE_SET, session.params.xres);
}
/* *
* initialize ASIC : registers, motor tables, and gamma tables
* then ensure scanner's head is at home
* @param dev device description of the scanner to initialize
*/
void CommandSetGl646::init(Genesys_Device* dev) const
{
DBG_INIT();
DBG_HELPER(dbg);
std::uint8_t val = 0;
std::uint32_t addr = 0xdead;
size_t len;
// to detect real power up condition, we write to REG_0x41 with pwrbit set, then read it back.
// When scanner is cold (just replugged) PWRBIT will be set in the returned value
auto status = scanner_read_status(*dev);
if (status.is_replugged) {
DBG(DBG_info, "%s: device is cold\n", __func__);
} else {
DBG(DBG_info, "%s: device is hot\n", __func__);
}
const auto& sensor = sanei_genesys_find_sensor_any(dev);
/* if scanning session hasn't been initialized, set it up */
if (!dev->already_initialized)
{
dev->dark_average_data.clear();
dev->white_average_data.clear();
dev->settings.color_filter = ColorFilter::GREEN;
/* Set default values for registers */
gl646_init_regs (dev);
// Init shading data
sanei_genesys_init_shading_data(dev, sensor,
dev->model->x_size_calib_mm * sensor.full_resolution /
MM_PER_INCH);
dev->initial_regs = dev->reg;
}
// execute physical unit init only if cold
if (status.is_replugged)
{
DBG(DBG_info, "%s: device is cold\n", __func__);
val = 0x04;
dev->interface->get_usb_device().control_msg(REQUEST_TYPE_OUT, REQUEST_REGISTER,
VALUE_INIT, INDEX, 1, &val);
// ASIC reset
dev->interface->write_register(0x0e, 0x00);
dev->interface->sleep_ms(100);
// Write initial registers
dev->interface->write_registers(dev->reg);
// send gamma tables if needed
dev->cmd_set->send_gamma_table(dev, sensor);
// Set powersaving(default = 15 minutes)
dev->cmd_set->set_powersaving(dev, 15);
}
// Set analog frontend
gl646_set_fe(dev, sensor, AFE_INIT, 0);
/* GPO enabling for XP200 */
if (dev->model->sensor_id == SensorId::CIS_XP200) {
dev->interface->write_register(0x68, dev->gpo.regs.get_value(0x68));
dev->interface->write_register(0x69, dev->gpo.regs.get_value(0x69));
// enable GPIO
gl646_gpio_output_enable(dev->interface->get_usb_device(), 6);
// writes 0 to GPIO
gl646_gpio_write(dev->interface->get_usb_device(), 0);
// clear GPIO enable
gl646_gpio_output_enable(dev->interface->get_usb_device(), 0);
dev->interface->write_register(0x66, 0x10);
dev->interface->write_register(0x66, 0x00);
dev->interface->write_register(0x66, 0x10);
}
/* MD6471/G2410 and XP200 read/write data from an undocumented memory area which
* is after the second slope table */
if (dev->model->gpio_id != GpioId::HP3670 &&
dev->model->gpio_id != GpioId::HP2400)
{
switch (sensor.full_resolution)
{
case 600:
addr = 0x08200;
break;
case 1200:
addr = 0x10200;
break;
case 2400:
addr = 0x1fa00;
break;
}
sanei_genesys_set_buffer_address(dev, addr);
sanei_usb_set_timeout (2 * 1000);
len = 6;
// for some reason, read fails here for MD6471, HP2300 and XP200 one time out of
// 2 scanimage launches
try {
dev->interface->bulk_read_data(0x45, dev->control, len);
} catch (...) {
dev->interface->bulk_read_data(0x45, dev->control, len);
}
sanei_usb_set_timeout (30 * 1000);
}
else
/* HP2400 and HP3670 case */
{
dev->control[0] = 0x00;
dev->control[1] = 0x00;
dev->control[2] = 0x01;
dev->control[3] = 0x00;
dev->control[4] = 0x00;
dev->control[5] = 0x00;
}
/* ensure head is correctly parked, and check lock */
if (!dev->model->is_sheetfed) {
move_back_home(dev, true);
}
/* here session and device are initialized */
dev->already_initialized = true;
}
static void simple_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
const ScanSession& session, bool move,
std::vector<std::uint8_t>& data, const char* scan_identifier)
{
unsigned lines = session.output_line_count;
if (!dev->model->is_cis) {
lines++;
}
std::size_t size = lines * session.params.pixels;
unsigned bpp = session.params.depth == 16 ? 2 : 1;
size *= bpp * session.params.channels;
data.clear();
data.resize(size);
// initialize frontend
gl646_set_fe(dev, sensor, AFE_SET, session.params.xres);
// no watch dog for simple scan
dev->reg.find_reg(0x01).value &= ~REG_0x01_DOGENB;
/* one table movement for simple scan */
dev->reg.find_reg(0x02).value &= ~REG_0x02_FASTFED;
if (!move) {
sanei_genesys_set_motor_power(dev->reg, false);
}
/* no automatic go home when using XPA */
if (session.params.scan_method == ScanMethod::TRANSPARENCY) {
dev->reg.find_reg(0x02).value &= ~REG_0x02_AGOHOME;
}
// write scan registers
dev->interface->write_registers(dev->reg);
// starts scan
dev->cmd_set->begin_scan(dev, sensor, &dev->reg, move);
if (is_testing_mode()) {
dev->interface->test_checkpoint(scan_identifier);
return;
}
wait_until_buffer_non_empty(dev, true);
// now we're on target, we can read data
sanei_genesys_read_data_from_scanner(dev, data.data(), size);
/* in case of CIS scanner, we must reorder data */
if (dev->model->is_cis && session.params.scan_mode == ScanColorMode::COLOR_SINGLE_PASS) {
auto pixels_count = session.params.pixels;
std::vector<std::uint8_t> buffer(pixels_count * 3 * bpp);
if (bpp == 1) {
for (unsigned y = 0; y < lines; y++) {
// reorder line
for (unsigned x = 0; x < pixels_count; x++) {
buffer[x * 3] = data[y * pixels_count * 3 + x];
buffer[x * 3 + 1] = data[y * pixels_count * 3 + pixels_count + x];
buffer[x * 3 + 2] = data[y * pixels_count * 3 + 2 * pixels_count + x];
}
// copy line back
std::memcpy(data.data() + pixels_count * 3 * y, buffer.data(), pixels_count * 3);
}
} else {
for (unsigned y = 0; y < lines; y++) {
// reorder line
auto pixels_count = session.params.pixels;
for (unsigned x = 0; x < pixels_count; x++) {
buffer[x * 6] = data[y * pixels_count * 6 + x * 2];
buffer[x * 6 + 1] = data[y * pixels_count * 6 + x * 2 + 1];
buffer[x * 6 + 2] = data[y * pixels_count * 6 + 2 * pixels_count + x * 2];
buffer[x * 6 + 3] = data[y * pixels_count * 6 + 2 * pixels_count + x * 2 + 1];
buffer[x * 6 + 4] = data[y * pixels_count * 6 + 4 * pixels_count + x * 2];
buffer[x * 6 + 5] = data[y * pixels_count * 6 + 4 * pixels_count + x * 2 + 1];
}
// copy line back
std::memcpy(data.data() + pixels_count * 6 * y, buffer.data(),pixels_count * 6);
}
}
}
// end scan , waiting the motor to stop if needed (if moving), but without ejecting doc
end_scan_impl(dev, &dev->reg, true, false);
}
/**
* update the status of the required sensor in the scanner session
* the button fields are used to make events 'sticky'
*/
void CommandSetGl646::update_hardware_sensors(Genesys_Scanner* session) const
{
DBG_HELPER(dbg);
Genesys_Device *dev = session->dev;
std::uint8_t value;
// do what is needed to get a new set of events, but try to not loose any of them.
gl646_gpio_read(dev->interface->get_usb_device(), &value);
DBG(DBG_io, "%s: GPIO=0x%02x\n", __func__, value);
// scan button
if (dev->model->buttons & GENESYS_HAS_SCAN_SW) {
switch (dev->model->gpio_id) {
case GpioId::XP200:
session->buttons[BUTTON_SCAN_SW].write((value & 0x02) != 0);
break;
case GpioId::MD_5345:
session->buttons[BUTTON_SCAN_SW].write(value == 0x16);
break;
case GpioId::HP2300:
session->buttons[BUTTON_SCAN_SW].write(value == 0x6c);
break;
case GpioId::HP3670:
case GpioId::HP2400:
session->buttons[BUTTON_SCAN_SW].write((value & 0x20) == 0);
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
// email button
if (dev->model->buttons & GENESYS_HAS_EMAIL_SW) {
switch (dev->model->gpio_id) {
case GpioId::MD_5345:
session->buttons[BUTTON_EMAIL_SW].write(value == 0x12);
break;
case GpioId::HP3670:
case GpioId::HP2400:
session->buttons[BUTTON_EMAIL_SW].write((value & 0x08) == 0);
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
// copy button
if (dev->model->buttons & GENESYS_HAS_COPY_SW) {
switch (dev->model->gpio_id) {
case GpioId::MD_5345:
session->buttons[BUTTON_COPY_SW].write(value == 0x11);
break;
case GpioId::HP2300:
session->buttons[BUTTON_COPY_SW].write(value == 0x5c);
break;
case GpioId::HP3670:
case GpioId::HP2400:
session->buttons[BUTTON_COPY_SW].write((value & 0x10) == 0);
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
// power button
if (dev->model->buttons & GENESYS_HAS_POWER_SW) {
switch (dev->model->gpio_id) {
case GpioId::MD_5345:
session->buttons[BUTTON_POWER_SW].write(value == 0x14);
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
// ocr button
if (dev->model->buttons & GENESYS_HAS_OCR_SW) {
switch (dev->model->gpio_id) {
case GpioId::MD_5345:
session->buttons[BUTTON_OCR_SW].write(value == 0x13);
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
// document detection
if (dev->model->buttons & GENESYS_HAS_PAGE_LOADED_SW) {
switch (dev->model->gpio_id) {
case GpioId::XP200:
session->buttons[BUTTON_PAGE_LOADED_SW].write((value & 0x04) != 0);
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
/* XPA detection */
if (dev->model->has_method(ScanMethod::TRANSPARENCY)) {
switch (dev->model->gpio_id) {
case GpioId::HP3670:
case GpioId::HP2400:
/* test if XPA is plugged-in */
if ((value & 0x40) == 0) {
session->opt[OPT_SOURCE].cap &= ~SANE_CAP_INACTIVE;
} else {
session->opt[OPT_SOURCE].cap |= SANE_CAP_INACTIVE;
}
break;
default:
throw SaneException(SANE_STATUS_UNSUPPORTED, "unknown gpo type");
}
}
}
void CommandSetGl646::update_home_sensor_gpio(Genesys_Device& dev) const
{
DBG_HELPER(dbg);
(void) dev;
}
static void write_control(Genesys_Device* dev, const Genesys_Sensor& sensor, int resolution)
{
DBG_HELPER(dbg);
std::uint8_t control[4];
std::uint32_t addr = 0xdead;
/* 2300 does not write to 'control' */
if (dev->model->motor_id == MotorId::HP2300) {
return;
}
/* MD6471/G2410/HP2300 and XP200 read/write data from an undocumented memory area which
* is after the second slope table */
switch (sensor.full_resolution)
{
case 600:
addr = 0x08200;
break;
case 1200:
addr = 0x10200;
break;
case 2400:
addr = 0x1fa00;
break;
default:
throw SaneException("failed to compute control address");
}
/* XP200 sets dpi, what other scanner put is unknown yet */
switch (dev->model->motor_id)
{
case MotorId::XP200:
/* we put scan's dpi, not motor one */
control[0] = resolution & 0xff;
control[1] = (resolution >> 8) & 0xff;
control[2] = dev->control[4];
control[3] = dev->control[5];
break;
case MotorId::HP3670:
case MotorId::HP2400:
case MotorId::MD_5345:
default:
control[0] = dev->control[2];
control[1] = dev->control[3];
control[2] = dev->control[4];
control[3] = dev->control[5];
break;
}
dev->interface->write_buffer(0x3c, addr, control, 4);
}
void CommandSetGl646::wait_for_motor_stop(Genesys_Device* dev) const
{
(void) dev;
}
void CommandSetGl646::send_shading_data(Genesys_Device* dev, const Genesys_Sensor& sensor,
std::uint8_t* data, int size) const
{
(void) dev;
(void) sensor;
(void) data;
(void) size;
throw SaneException("not implemented");
}
ScanSession CommandSetGl646::calculate_scan_session(const Genesys_Device* dev,
const Genesys_Sensor& sensor,
const Genesys_Settings& settings) const
{
// compute distance to move
float move = 0;
if (!dev->model->is_sheetfed) {
move = dev->model->y_offset;
// add tl_y to base movement
}
move += settings.tl_y;
if (move < 0) {
DBG(DBG_error, "%s: overriding negative move value %f\n", __func__, move);
move = 0;
}
move = static_cast<float>((move * dev->motor.base_ydpi) / MM_PER_INCH);
float start = settings.tl_x;
if (settings.scan_method == ScanMethod::FLATBED) {
start += dev->model->x_offset;
} else {
start += dev->model->x_offset_ta;
}
start = static_cast<float>((start * settings.xres) / MM_PER_INCH);
ScanSession session;
session.params.xres = settings.xres;
session.params.yres = settings.yres;
session.params.startx = static_cast<unsigned>(start);
session.params.starty = static_cast<unsigned>(move);
session.params.pixels = settings.pixels;
session.params.requested_pixels = settings.requested_pixels;
session.params.lines = settings.lines;
session.params.depth = settings.depth;
session.params.channels = settings.get_channels();
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = settings.scan_mode;
session.params.color_filter = settings.color_filter;
session.params.contrast_adjustment = settings.contrast;
session.params.brightness_adjustment = settings.brightness;
session.params.flags = ScanFlag::AUTO_GO_HOME;
if (settings.scan_method == ScanMethod::TRANSPARENCY) {
session.params.flags |= ScanFlag::USE_XPA;
}
compute_session(dev, session, sensor);
return session;
}
void CommandSetGl646::asic_boot(Genesys_Device *dev, bool cold) const
{
(void) dev;
(void) cold;
throw SaneException("not implemented");
}
} // namespace gl646
} // namespace genesys