sane-project-backends/backend/genesys/gl842.cpp

1065 wiersze
38 KiB
C++

/* sane - Scanner Access Now Easy.
Copyright (C) 2010-2013 Stéphane Voltz <stef.dev@free.fr>
Copyright (C) 2020 Povilas Kanapickas <povilas@radix.lt>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
As a special exception, the authors of SANE give permission for
additional uses of the libraries contained in this release of SANE.
*/
#define DEBUG_DECLARE_ONLY
#include "gl842_registers.h"
#include "gl842.h"
#include "test_settings.h"
#include <string>
#include <vector>
namespace genesys {
namespace gl842 {
static void gl842_init_registers(Genesys_Device& dev)
{
// Within this function SENSOR_DEF marker documents that a register is part
// of the sensors definition and the actual value is set in
// gl842_setup_sensor().
DBG_HELPER(dbg);
dev.reg.clear();
if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev.reg.init_reg(0x01, 0x00);
dev.reg.init_reg(0x02, 0x78);
dev.reg.init_reg(0x03, 0xbf);
dev.reg.init_reg(0x04, 0x22);
dev.reg.init_reg(0x05, 0x48);
dev.reg.init_reg(0x06, 0xb8);
dev.reg.init_reg(0x07, 0x00);
dev.reg.init_reg(0x08, 0x00);
dev.reg.init_reg(0x09, 0x00);
dev.reg.init_reg(0x0a, 0x00);
dev.reg.init_reg(0x0d, 0x01);
} else if (dev.model->model_id == ModelId::CANON_LIDE_90) {
dev.reg.init_reg(0x01, 0x82);
dev.reg.init_reg(0x02, 0x10);
dev.reg.init_reg(0x03, 0x60);
dev.reg.init_reg(0x04, 0x10);
dev.reg.init_reg(0x05, 0x8c);
dev.reg.init_reg(0x06, 0x18);
//dev.reg.init_reg(0x07, 0x00);
dev.reg.init_reg(0x08, 0x00);
dev.reg.init_reg(0x09, 0x21);
dev.reg.init_reg(0x0a, 0x00);
dev.reg.init_reg(0x0d, 0x00);
}
dev.reg.init_reg(0x10, 0x00); // exposure, overwritten in scanner_setup_sensor() below
dev.reg.init_reg(0x11, 0x00); // exposure, overwritten in scanner_setup_sensor() below
dev.reg.init_reg(0x12, 0x00); // exposure, overwritten in scanner_setup_sensor() below
dev.reg.init_reg(0x13, 0x00); // exposure, overwritten in scanner_setup_sensor() below
dev.reg.init_reg(0x14, 0x00); // exposure, overwritten in scanner_setup_sensor() below
dev.reg.init_reg(0x15, 0x00); // exposure, overwritten in scanner_setup_sensor() below
// CCD signal settings.
dev.reg.init_reg(0x16, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x17, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x18, 0x00); // SENSOR_DEF
// EXPDMY[0:7]: Exposure time of dummy lines.
dev.reg.init_reg(0x19, 0x00); // SENSOR_DEF
// Various CCD clock settings.
dev.reg.init_reg(0x1a, 0x00); // SENSOR_DEF
if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev.reg.init_reg(0x1b, 0x00); // SENSOR_DEF
}
dev.reg.init_reg(0x1c, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x1d, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x1e, 0x10); // WDTIME, LINESEL: setup during sensor and motor setup
if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev.reg.init_reg(0x1f, 0x01);
dev.reg.init_reg(0x20, 0x27); // BUFSEL: buffer full condition
} else if (dev.model->model_id == ModelId::CANON_LIDE_90) {
dev.reg.init_reg(0x1f, 0x02);
dev.reg.init_reg(0x20, 0x02); // BUFSEL: buffer full condition
}
dev.reg.init_reg(0x21, 0x10); // STEPNO: set during motor setup
dev.reg.init_reg(0x22, 0x10); // FWDSTEP: set during motor setup
dev.reg.init_reg(0x23, 0x10); // BWDSTEP: set during motor setup
dev.reg.init_reg(0x24, 0x10); // FASTNO: set during motor setup
dev.reg.init_reg(0x25, 0x00); // LINCNT: set during motor setup
dev.reg.init_reg(0x26, 0x00); // LINCNT: set during motor setup
dev.reg.init_reg(0x27, 0x00); // LINCNT: set during motor setup
dev.reg.init_reg(0x29, 0xff); // LAMPPWM
dev.reg.init_reg(0x2c, 0x02); // DPISET: set during sensor setup
dev.reg.init_reg(0x2d, 0x58); // DPISET: set during sensor setup
dev.reg.init_reg(0x2e, 0x80); // BWHI: black/white low threshdold
dev.reg.init_reg(0x2f, 0x80); // BWLOW: black/white low threshold
dev.reg.init_reg(0x30, 0x00); // STRPIXEL: set during sensor setup
dev.reg.init_reg(0x31, 0x49); // STRPIXEL: set during sensor setup
dev.reg.init_reg(0x32, 0x53); // ENDPIXEL: set during sensor setup
dev.reg.init_reg(0x33, 0xb9); // ENDPIXEL: set during sensor setup
dev.reg.init_reg(0x34, 0x13); // DUMMY: SENSOR_DEF
dev.reg.init_reg(0x35, 0x00); // MAXWD: set during scan setup
dev.reg.init_reg(0x36, 0x40); // MAXWD: set during scan setup
dev.reg.init_reg(0x37, 0x00); // MAXWD: set during scan setup
dev.reg.init_reg(0x38, 0x2a); // LPERIOD: SENSOR_DEF
dev.reg.init_reg(0x39, 0xf8); // LPERIOD: SENSOR_DEF
dev.reg.init_reg(0x3d, 0x00); // FEEDL: set during motor setup
dev.reg.init_reg(0x3e, 0x00); // FEEDL: set during motor setup
dev.reg.init_reg(0x3f, 0x01); // FEEDL: set during motor setup
dev.reg.init_reg(0x52, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x53, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x54, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x55, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x56, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x57, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x58, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x59, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x5a, 0x00); // SENSOR_DEF
if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev.reg.init_reg(0x5e, 0x01); // DECSEL, STOPTIM
} else if (dev.model->model_id == ModelId::CANON_LIDE_90) {
dev.reg.init_reg(0x5e, 0x41); // DECSEL, STOPTIM
dev.reg.init_reg(0x5d, 0x20);
}
dev.reg.init_reg(0x5f, 0x10); // FMOVDEC: set during motor setup
dev.reg.init_reg(0x60, 0x00); // Z1MOD: overwritten during motor setup
dev.reg.init_reg(0x61, 0x00); // Z1MOD: overwritten during motor setup
dev.reg.init_reg(0x62, 0x00); // Z1MOD: overwritten during motor setup
dev.reg.init_reg(0x63, 0x00); // Z2MOD: overwritten during motor setup
dev.reg.init_reg(0x64, 0x00); // Z2MOD: overwritten during motor setup
dev.reg.init_reg(0x65, 0x00); // Z2MOD: overwritten during motor setup
if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev.reg.init_reg(0x67, 0x7f); // STEPSEL, MTRPWM: partially overwritten during motor setup
dev.reg.init_reg(0x68, 0x7f); // FSTPSEL, FASTPWM: partially overwritten during motor setup
} else if (dev.model->model_id == ModelId::CANON_LIDE_90) {
dev.reg.init_reg(0x66, 0x00); // PHFREQ
dev.reg.init_reg(0x67, 0x40); // STEPSEL, MTRPWM: partially overwritten during motor setup
dev.reg.init_reg(0x68, 0x40); // FSTPSEL, FASTPWM: partially overwritten during motor setup
}
dev.reg.init_reg(0x69, 0x10); // FSHDEC: overwritten during motor setup
dev.reg.init_reg(0x6a, 0x10); // FMOVNO: overwritten during motor setup
// 0x6b, 0x6c, 0x6d, 0x6e, 0x6f - set according to gpio tables. See gl842_init_gpio.
dev.reg.init_reg(0x70, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x71, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x72, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x73, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x74, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x75, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x76, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x77, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x78, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x79, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x7a, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x7b, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x7c, 0x00); // SENSOR_DEF
dev.reg.init_reg(0x7d, 0x00); // SENSOR_DEF
// 0x7e - set according to gpio tables. See gl842_init_gpio.
dev.reg.init_reg(0x7f, 0x00); // SENSOR_DEF
// VRHOME, VRMOVE, VRBACK, VRSCAN: Vref settings of the motor driver IC for
// moving in various situations.
dev.reg.init_reg(0x80, 0x00); // MOTOR_PROFILE
if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev.reg.init_reg(0x81, 0x00);
dev.reg.init_reg(0x82, 0x00);
dev.reg.init_reg(0x83, 0x00);
dev.reg.init_reg(0x84, 0x00);
dev.reg.init_reg(0x85, 0x00);
dev.reg.init_reg(0x86, 0x00);
dev.reg.init_reg(0x87, 0x00);
} else if (dev.model->model_id == ModelId::CANON_LIDE_90) {
dev.reg.init_reg(0x7e, 0x00);
dev.reg.init_reg(0x81, 0x00);
dev.reg.init_reg(0x82, 0x0f);
dev.reg.init_reg(0x83, 0x00);
dev.reg.init_reg(0x84, 0x0e);
dev.reg.init_reg(0x85, 0x00);
dev.reg.init_reg(0x86, 0x0d);
dev.reg.init_reg(0x87, 0x00);
dev.reg.init_reg(0x88, 0x00);
dev.reg.init_reg(0x89, 0x00);
}
const auto& sensor = sanei_genesys_find_sensor_any(&dev);
sanei_genesys_set_dpihw(dev.reg, sensor.register_dpihw);
scanner_setup_sensor(dev, sensor, dev.reg);
}
// Set values of analog frontend
void CommandSetGl842::set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor, uint8_t set) const
{
DBG_HELPER_ARGS(dbg, "%s", set == AFE_INIT ? "init" :
set == AFE_SET ? "set" :
set == AFE_POWER_SAVE ? "powersave" : "huh?");
(void) sensor;
if (set == AFE_INIT) {
dev->frontend = dev->frontend_initial;
}
// check analog frontend type
// FIXME: looks like we write to that register with initial data
uint8_t fe_type = dev->interface->read_register(REG_0x04) & REG_0x04_FESET;
if (fe_type == 2 || dev->model->model_id == ModelId::CANON_LIDE_90) {
for (const auto& reg : dev->frontend.regs) {
dev->interface->write_fe_register(reg.address, reg.value);
}
return;
}
if (fe_type != 0) {
throw SaneException(SANE_STATUS_UNSUPPORTED, "unsupported frontend type %d", fe_type);
}
for (unsigned i = 1; i <= 3; i++) {
dev->interface->write_fe_register(i, dev->frontend.regs.get_value(0x00 + i));
}
for (const auto& reg : sensor.custom_fe_regs) {
dev->interface->write_fe_register(reg.address, reg.value);
}
for (unsigned i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x20 + i, dev->frontend.get_offset(i));
}
for (unsigned i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x28 + i, dev->frontend.get_gain(i));
}
}
static void gl842_init_motor_regs_scan(Genesys_Device* dev,
const Genesys_Sensor& sensor,
const ScanSession& session,
Genesys_Register_Set* reg,
const MotorProfile& motor_profile,
unsigned int exposure,
unsigned scan_yres,
unsigned int scan_lines,
unsigned int scan_dummy,
unsigned int feed_steps,
ScanFlag flags)
{
DBG_HELPER_ARGS(dbg, "exposure=%d, scan_yres=%d, step_type=%d, scan_lines=%d, scan_dummy=%d, "
"feed_steps=%d, flags=%x",
exposure, scan_yres, static_cast<unsigned>(motor_profile.step_type),
scan_lines, scan_dummy, feed_steps, static_cast<unsigned>(flags));
unsigned step_multiplier = 2;
bool use_fast_fed = false;
if ((scan_yres >= 300 && feed_steps > 900) || (has_flag(flags, ScanFlag::FEEDING))) {
use_fast_fed = true;
}
if (has_flag(dev->model->flags, ModelFlag::DISABLE_FAST_FEEDING)) {
use_fast_fed = false;
}
reg->set24(REG_LINCNT, scan_lines);
reg->set8(REG_0x02, 0);
sanei_genesys_set_motor_power(*reg, true);
std::uint8_t reg02 = reg->get8(REG_0x02);
if (use_fast_fed) {
reg02 |= REG_0x02_FASTFED;
} else {
reg02 &= ~REG_0x02_FASTFED;
}
// in case of automatic go home, move until home sensor
if (has_flag(flags, ScanFlag::AUTO_GO_HOME)) {
reg02 |= REG_0x02_AGOHOME | REG_0x02_NOTHOME;
}
// disable backtracking if needed
if (has_flag(flags, ScanFlag::DISABLE_BUFFER_FULL_MOVE) ||
(scan_yres >= 2400) ||
(scan_yres >= sensor.full_resolution))
{
reg02 |= REG_0x02_ACDCDIS;
}
if (has_flag(flags, ScanFlag::REVERSE)) {
reg02 |= REG_0x02_MTRREV;
} else {
reg02 &= ~REG_0x02_MTRREV;
}
reg->set8(REG_0x02, reg02);
// scan and backtracking slope table
auto scan_table = create_slope_table(dev->model->asic_type, dev->motor, scan_yres, exposure,
step_multiplier, motor_profile);
scanner_send_slope_table(dev, sensor, SCAN_TABLE, scan_table.table);
scanner_send_slope_table(dev, sensor, BACKTRACK_TABLE, scan_table.table);
scanner_send_slope_table(dev, sensor, STOP_TABLE, scan_table.table);
reg->set8(REG_STEPNO, scan_table.table.size() / step_multiplier);
reg->set8(REG_FASTNO, scan_table.table.size() / step_multiplier);
reg->set8(REG_FSHDEC, scan_table.table.size() / step_multiplier);
// fast table
const auto* fast_profile = get_motor_profile_ptr(dev->motor.fast_profiles, 0, session);
if (fast_profile == nullptr) {
fast_profile = &motor_profile;
}
auto fast_table = create_slope_table_fastest(dev->model->asic_type, step_multiplier,
*fast_profile);
scanner_send_slope_table(dev, sensor, FAST_TABLE, fast_table.table);
scanner_send_slope_table(dev, sensor, HOME_TABLE, fast_table.table);
reg->set8(REG_FMOVNO, fast_table.table.size() / step_multiplier);
if (motor_profile.motor_vref != -1 && fast_profile->motor_vref != 1) {
std::uint8_t vref = 0;
vref |= (motor_profile.motor_vref << REG_0x80S_TABLE1_NORMAL) & REG_0x80_TABLE1_NORMAL;
vref |= (motor_profile.motor_vref << REG_0x80S_TABLE2_BACK) & REG_0x80_TABLE2_BACK;
vref |= (fast_profile->motor_vref << REG_0x80S_TABLE4_FAST) & REG_0x80_TABLE4_FAST;
vref |= (fast_profile->motor_vref << REG_0x80S_TABLE5_GO_HOME) & REG_0x80_TABLE5_GO_HOME;
reg->set8(REG_0x80, vref);
}
// subtract acceleration distance from feedl
unsigned feedl = feed_steps;
feedl <<= static_cast<unsigned>(motor_profile.step_type);
unsigned dist = scan_table.table.size() / step_multiplier;
if (use_fast_fed) {
dist += (fast_table.table.size() / step_multiplier) * 2;
}
// make sure when don't insane value : XXX STEF XXX in this case we should
// fall back to single table move
if (dist < feedl) {
feedl -= dist;
} else {
feedl = 1;
}
reg->set24(REG_FEEDL, feedl);
// doesn't seem to matter that much
std::uint32_t z1, z2;
sanei_genesys_calculate_zmod(use_fast_fed,
exposure,
scan_table.table,
scan_table.table.size() / step_multiplier,
feedl,
scan_table.table.size() / step_multiplier,
&z1,
&z2);
if (scan_yres > 600) {
z1 = 0;
z2 = 0;
}
reg->set24(REG_Z1MOD, z1);
reg->set24(REG_Z2MOD, z2);
reg->set8_mask(REG_0x1E, scan_dummy, 0x0f);
reg->set8_mask(REG_0x67, static_cast<unsigned>(motor_profile.step_type) << REG_0x67S_STEPSEL,
REG_0x67_STEPSEL);
reg->set8_mask(REG_0x68, static_cast<unsigned>(fast_profile->step_type) << REG_0x68S_FSTPSEL,
REG_0x68_FSTPSEL);
// steps for STOP table
reg->set8(REG_FMOVDEC, fast_table.table.size() / step_multiplier);
}
static void gl842_init_optical_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg, unsigned int exposure,
const ScanSession& session)
{
DBG_HELPER(dbg);
scanner_setup_sensor(*dev, sensor, *reg);
dev->cmd_set->set_fe(dev, sensor, AFE_SET);
// enable shading
regs_set_optical_off(dev->model->asic_type, *reg);
if (has_flag(session.params.flags, ScanFlag::DISABLE_SHADING) ||
has_flag(dev->model->flags, ModelFlag::DISABLE_SHADING_CALIBRATION) ||
session.use_host_side_calib)
{
reg->find_reg(REG_0x01).value &= ~REG_0x01_DVDSET;
} else {
reg->find_reg(REG_0x01).value |= REG_0x01_DVDSET;
}
bool use_shdarea = true;
if (use_shdarea) {
reg->find_reg(REG_0x01).value |= REG_0x01_SHDAREA;
} else {
reg->find_reg(REG_0x01).value &= ~REG_0x01_SHDAREA;
}
if (dev->model->model_id == ModelId::CANON_8600F) {
reg->find_reg(REG_0x03).value |= REG_0x03_AVEENB;
} else {
reg->find_reg(REG_0x03).value &= ~REG_0x03_AVEENB;
}
// FIXME: we probably don't need to set exposure to registers at this point. It was this way
// before a refactor.
sanei_genesys_set_lamp_power(dev, sensor, *reg,
!has_flag(session.params.flags, ScanFlag::DISABLE_LAMP));
// select XPA
reg->find_reg(REG_0x03).value &= ~REG_0x03_XPASEL;
if (has_flag(session.params.flags, ScanFlag::USE_XPA)) {
reg->find_reg(REG_0x03).value |= REG_0x03_XPASEL;
}
reg->state.is_xpa_on = has_flag(session.params.flags, ScanFlag::USE_XPA);
// BW threshold
reg->set8(REG_0x2E, 0x7f);
reg->set8(REG_0x2F, 0x7f);
// monochrome / color scan parameters
std::uint8_t reg04 = reg->get8(REG_0x04);
reg04 = reg04 & REG_0x04_FESET;
switch (session.params.depth) {
case 8:
break;
case 16:
reg04 |= REG_0x04_BITSET;
break;
}
if (session.params.channels == 1) {
switch (session.params.color_filter) {
case ColorFilter::RED: reg04 |= 0x14; break;
case ColorFilter::BLUE: reg04 |= 0x1c; break;
case ColorFilter::GREEN: reg04 |= 0x18; break;
default:
break; // should not happen
}
} else {
switch (dev->frontend.layout.type) {
case FrontendType::WOLFSON:
// pixel by pixel
reg04 |= 0x10;
break;
case FrontendType::ANALOG_DEVICES:
// slow color pixel by pixel
reg04 |= 0x20;
break;
default:
throw SaneException("Invalid frontend type %d",
static_cast<unsigned>(dev->frontend.layout.type));
}
}
reg->set8(REG_0x04, reg04);
const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, session.output_resolution,
session.params.channels,
session.params.scan_method);
sanei_genesys_set_dpihw(*reg, dpihw_sensor.register_dpihw);
if (should_enable_gamma(session, sensor)) {
reg->find_reg(REG_0x05).value |= REG_0x05_GMMENB;
} else {
reg->find_reg(REG_0x05).value &= ~REG_0x05_GMMENB;
}
reg->set16(REG_DPISET, sensor.register_dpiset);
reg->set16(REG_STRPIXEL, session.pixel_startx);
reg->set16(REG_ENDPIXEL, session.pixel_endx);
if (dev->model->is_cis) {
reg->set24(REG_MAXWD, session.output_line_bytes_raw * session.params.channels);
} else {
reg->set24(REG_MAXWD, session.output_line_bytes_raw);
}
unsigned tgtime = exposure / 65536 + 1;
reg->set16(REG_LPERIOD, exposure / tgtime);
reg->set8(REG_DUMMY, sensor.dummy_pixel);
}
void CommandSetGl842::init_regs_for_scan_session(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg,
const ScanSession& session) const
{
DBG_HELPER(dbg);
session.assert_computed();
// we enable true gray for cis scanners only, and just when doing scan since color calibration
// is OK for this mode
int dummy = 0;
/* slope_dpi */
/* cis color scan is effectively a gray scan with 3 gray lines per color line and a FILTER of 0 */
int slope_dpi = 0;
if (dev->model->is_cis) {
slope_dpi = session.params.yres * session.params.channels;
} else {
slope_dpi = session.params.yres;
}
slope_dpi = slope_dpi * (1 + dummy);
int exposure = sensor.exposure_lperiod;
if (exposure < 0) {
throw std::runtime_error("Exposure not defined in sensor definition");
}
if (dev->model->model_id == ModelId::CANON_LIDE_90) {
exposure *= 2;
}
const auto& motor_profile = get_motor_profile(dev->motor.profiles, exposure, session);
// now _LOGICAL_ optical values used are known, setup registers
gl842_init_optical_regs_scan(dev, sensor, reg, exposure, session);
gl842_init_motor_regs_scan(dev, sensor, session, reg, motor_profile, exposure, slope_dpi,
session.optical_line_count, dummy, session.params.starty,
session.params.flags);
setup_image_pipeline(*dev, session);
dev->read_active = true;
dev->session = session;
dev->total_bytes_read = 0;
dev->total_bytes_to_read = session.output_line_bytes_requested * session.params.lines;
}
ScanSession CommandSetGl842::calculate_scan_session(const Genesys_Device* dev,
const Genesys_Sensor& sensor,
const Genesys_Settings& settings) const
{
DBG_HELPER(dbg);
debug_dump(DBG_info, settings);
ScanFlag flags = ScanFlag::NONE;
float move = 0.0f;
if (settings.scan_method == ScanMethod::TRANSPARENCY ||
settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
// note: scanner_move_to_ta() function has already been called and the sensor is at the
// transparency adapter
if (!dev->ignore_offsets) {
move = dev->model->y_offset_ta - dev->model->y_offset_sensor_to_ta;
}
flags |= ScanFlag::USE_XPA;
} else {
if (!dev->ignore_offsets) {
move = dev->model->y_offset;
}
}
move += settings.tl_y;
int move_dpi = dev->motor.base_ydpi;
move = static_cast<float>((move * move_dpi) / MM_PER_INCH);
float start = 0.0f;
if (settings.scan_method==ScanMethod::TRANSPARENCY ||
settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
start = dev->model->x_offset_ta;
} else {
start = dev->model->x_offset;
}
start = start + settings.tl_x;
start = static_cast<float>((start * settings.xres) / MM_PER_INCH);
ScanSession session;
session.params.xres = settings.xres;
session.params.yres = settings.yres;
session.params.startx = static_cast<unsigned>(start);
session.params.starty = static_cast<unsigned>(move);
session.params.pixels = settings.pixels;
session.params.requested_pixels = settings.requested_pixels;
session.params.lines = settings.lines;
session.params.depth = settings.depth;
session.params.channels = settings.get_channels();
session.params.scan_method = settings.scan_method;
session.params.scan_mode = settings.scan_mode;
session.params.color_filter = settings.color_filter;
session.params.flags = flags;
compute_session(dev, session, sensor);
return session;
}
void CommandSetGl842::save_power(Genesys_Device* dev, bool enable) const
{
(void) dev;
DBG_HELPER_ARGS(dbg, "enable = %d", enable);
}
void CommandSetGl842::set_powersaving(Genesys_Device* dev, int delay /* in minutes */) const
{
(void) dev;
DBG_HELPER_ARGS(dbg, "delay = %d", delay);
}
void CommandSetGl842::eject_document(Genesys_Device* dev) const
{
(void) dev;
DBG_HELPER(dbg);
}
void CommandSetGl842::load_document(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
(void) dev;
}
void CommandSetGl842::detect_document_end(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
(void) dev;
throw SaneException(SANE_STATUS_UNSUPPORTED);
}
// Send the low-level scan command
void CommandSetGl842::begin_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg, bool start_motor) const
{
DBG_HELPER(dbg);
(void) sensor;
if (reg->state.is_xpa_on && reg->state.is_lamp_on &&
!has_flag(dev->model->flags, ModelFlag::TA_NO_SECONDARY_LAMP))
{
dev->cmd_set->set_xpa_lamp_power(*dev, true);
}
if (reg->state.is_xpa_on && !has_flag(dev->model->flags, ModelFlag::UTA_NO_SECONDARY_MOTOR)) {
dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY);
}
if (dev->model->model_id == ModelId::CANON_LIDE_90) {
if (has_flag(dev->session.params.flags, ScanFlag::REVERSE)) {
dev->interface->write_register(REG_0x6B, 0x01);
dev->interface->write_register(REG_0x6C, 0x02);
} else {
dev->interface->write_register(REG_0x6B, 0x03);
switch (dev->session.params.xres) {
case 150: dev->interface->write_register(REG_0x6C, 0x74); break;
case 300: dev->interface->write_register(REG_0x6C, 0x38); break;
case 600: dev->interface->write_register(REG_0x6C, 0x1c); break;
case 1200: dev->interface->write_register(REG_0x6C, 0x2c); break;
case 2400: dev->interface->write_register(REG_0x6C, 0x0c); break;
default:
break;
}
}
dev->interface->sleep_ms(100);
}
scanner_clear_scan_and_feed_counts(*dev);
// enable scan and motor
std::uint8_t val = dev->interface->read_register(REG_0x01);
val |= REG_0x01_SCAN;
dev->interface->write_register(REG_0x01, val);
scanner_start_action(*dev, start_motor);
switch (reg->state.motor_mode) {
case MotorMode::PRIMARY: {
if (reg->state.is_motor_on) {
dev->advance_head_pos_by_session(ScanHeadId::PRIMARY);
}
break;
}
case MotorMode::PRIMARY_AND_SECONDARY: {
if (reg->state.is_motor_on) {
dev->advance_head_pos_by_session(ScanHeadId::PRIMARY);
dev->advance_head_pos_by_session(ScanHeadId::SECONDARY);
}
break;
}
case MotorMode::SECONDARY: {
if (reg->state.is_motor_on) {
dev->advance_head_pos_by_session(ScanHeadId::SECONDARY);
}
break;
}
}
}
void CommandSetGl842::end_scan(Genesys_Device* dev, Genesys_Register_Set* reg,
bool check_stop) const
{
DBG_HELPER_ARGS(dbg, "check_stop = %d", check_stop);
if (reg->state.is_xpa_on) {
dev->cmd_set->set_xpa_lamp_power(*dev, false);
}
if (!dev->model->is_sheetfed) {
scanner_stop_action(*dev);
}
}
void CommandSetGl842::move_back_home(Genesys_Device* dev, bool wait_until_home) const
{
scanner_move_back_home(*dev, wait_until_home);
}
void CommandSetGl842::init_regs_for_shading(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
DBG_HELPER(dbg);
int move;
float calib_size_mm = 0;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY ||
dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
calib_size_mm = dev->model->y_size_calib_ta_mm;
} else {
calib_size_mm = dev->model->y_size_calib_mm;
}
unsigned resolution = sensor.shading_resolution;
unsigned channels = 3;
const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels,
dev->settings.scan_method);
unsigned calib_pixels = 0;
unsigned calib_pixels_offset = 0;
if (should_calibrate_only_active_area(*dev, dev->settings)) {
float offset = dev->model->x_offset_ta;
// FIXME: we should use resolution here
offset = static_cast<float>((offset * dev->settings.xres) / MM_PER_INCH);
float size = dev->model->x_size_ta;
size = static_cast<float>((size * dev->settings.xres) / MM_PER_INCH);
calib_pixels_offset = static_cast<std::size_t>(offset);
calib_pixels = static_cast<std::size_t>(size);
} else {
calib_pixels_offset = 0;
calib_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH;
}
ScanFlag flags = ScanFlag::DISABLE_SHADING |
ScanFlag::DISABLE_GAMMA |
ScanFlag::DISABLE_BUFFER_FULL_MOVE;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY ||
dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
// note: scanner_move_to_ta() function has already been called and the sensor is at the
// transparency adapter
move = static_cast<int>(dev->model->y_offset_calib_white_ta -
dev->model->y_offset_sensor_to_ta);
flags |= ScanFlag::USE_XPA;
} else {
move = static_cast<int>(dev->model->y_offset_calib_white);
}
move = static_cast<int>((move * resolution) / MM_PER_INCH);
unsigned calib_lines = static_cast<unsigned>(calib_size_mm * resolution / MM_PER_INCH);
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = calib_pixels_offset;
session.params.starty = move;
session.params.pixels = calib_pixels;
session.params.lines = calib_lines;
session.params.depth = 16;
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = dev->settings.scan_mode;
session.params.color_filter = dev->settings.color_filter;
session.params.flags = flags;
compute_session(dev, session, calib_sensor);
init_regs_for_scan_session(dev, calib_sensor, &regs, session);
dev->calib_session = session;
}
void CommandSetGl842::send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) const
{
DBG_HELPER(dbg);
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200)
return; // No gamma on this model
unsigned size = 256;
std::vector<uint8_t> gamma(size * 2 * 3);
std::vector<uint16_t> rgamma = get_gamma_table(dev, sensor, GENESYS_RED);
std::vector<uint16_t> ggamma = get_gamma_table(dev, sensor, GENESYS_GREEN);
std::vector<uint16_t> bgamma = get_gamma_table(dev, sensor, GENESYS_BLUE);
// copy sensor specific's gamma tables
for (unsigned i = 0; i < size; i++) {
gamma[i * 2 + size * 0 + 0] = rgamma[i] & 0xff;
gamma[i * 2 + size * 0 + 1] = (rgamma[i] >> 8) & 0xff;
gamma[i * 2 + size * 2 + 0] = ggamma[i] & 0xff;
gamma[i * 2 + size * 2 + 1] = (ggamma[i] >> 8) & 0xff;
gamma[i * 2 + size * 4 + 0] = bgamma[i] & 0xff;
gamma[i * 2 + size * 4 + 1] = (bgamma[i] >> 8) & 0xff;
}
dev->interface->write_gamma(0x28, 0x0000, gamma.data(), size * 2 * 3);
}
SensorExposure CommandSetGl842::led_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
return scanner_led_calibration(*dev, sensor, regs);
}
void CommandSetGl842::offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
scanner_offset_calibration(*dev, sensor, regs);
}
void CommandSetGl842::coarse_gain_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs, int dpi) const
{
scanner_coarse_gain_calibration(*dev, sensor, regs, dpi);
}
void CommandSetGl842::init_regs_for_warmup(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg) const
{
DBG_HELPER(dbg);
(void) sensor;
unsigned channels = 3;
unsigned resolution = dev->model->get_resolution_settings(dev->settings.scan_method)
.get_nearest_resolution_x(600);
const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels,
dev->settings.scan_method);
unsigned num_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH / 2;
*reg = dev->reg;
auto flags = ScanFlag::DISABLE_SHADING |
ScanFlag::DISABLE_GAMMA |
ScanFlag::SINGLE_LINE |
ScanFlag::IGNORE_STAGGER_OFFSET |
ScanFlag::IGNORE_COLOR_OFFSET;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY ||
dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
flags |= ScanFlag::USE_XPA;
}
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = (num_pixels / 2) * resolution / calib_sensor.full_resolution;
session.params.starty = 0;
session.params.pixels = num_pixels;
session.params.lines = 1;
session.params.depth = dev->model->bpp_color_values.front();
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = dev->settings.color_filter;
session.params.flags = flags;
compute_session(dev, session, calib_sensor);
init_regs_for_scan_session(dev, calib_sensor, reg, session);
sanei_genesys_set_motor_power(*reg, false);
}
static void gl842_init_gpio(Genesys_Device* dev)
{
DBG_HELPER(dbg);
apply_registers_ordered(dev->gpo.regs, { 0x6e, 0x6f }, [&](const GenesysRegisterSetting& reg)
{
dev->interface->write_register(reg.address, reg.value);
});
}
void CommandSetGl842::asic_boot(Genesys_Device* dev, bool cold) const
{
DBG_HELPER(dbg);
if (cold) {
dev->interface->write_register(0x0e, 0x01);
dev->interface->write_register(0x0e, 0x00);
}
// setup initial register values
gl842_init_registers(*dev);
dev->interface->write_registers(dev->reg);
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
uint8_t data[32] = {
0xd0, 0x38, 0x07, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x6a, 0x73, 0x63, 0x68, 0x69, 0x65, 0x6e, 0x00,
};
dev->interface->write_buffer(0x3c, 0x010a00, data, 32);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) {
dev->interface->write_0x8c(0x10, 0x94);
}
if (dev->model->model_id == ModelId::CANON_LIDE_90) {
dev->interface->write_0x8c(0x10, 0xd4);
}
// set RAM read address
dev->interface->write_register(REG_0x2A, 0x00);
dev->interface->write_register(REG_0x2B, 0x00);
// setup gpio
gl842_init_gpio(dev);
dev->interface->sleep_ms(100);
}
void CommandSetGl842::init(Genesys_Device* dev) const
{
DBG_INIT();
DBG_HELPER(dbg);
sanei_genesys_asic_init(dev);
}
void CommandSetGl842::update_hardware_sensors(Genesys_Scanner* s) const
{
DBG_HELPER(dbg);
(void) s;
}
void CommandSetGl842::update_home_sensor_gpio(Genesys_Device& dev) const
{
DBG_HELPER(dbg);
if (dev.model->model_id == ModelId::CANON_LIDE_90) {
std::uint8_t val = dev.interface->read_register(REG_0x6C);
val |= 0x02;
dev.interface->write_register(REG_0x6C, val);
}
}
/**
* Send shading calibration data. The buffer is considered to always hold values
* for all the channels.
*/
void CommandSetGl842::send_shading_data(Genesys_Device* dev, const Genesys_Sensor& sensor,
uint8_t* data, int size) const
{
DBG_HELPER(dbg);
int offset = 0;
unsigned length = size;
if (dev->reg.get8(REG_0x01) & REG_0x01_SHDAREA) {
offset = dev->session.params.startx * sensor.shading_resolution /
dev->session.params.xres;
length = dev->session.output_pixels * sensor.shading_resolution /
dev->session.params.xres;
offset += sensor.shading_pixel_offset;
// 16 bit words, 2 words per color, 3 color channels
length *= 2 * 2 * 3;
offset *= 2 * 2 * 3;
} else {
offset += sensor.shading_pixel_offset * 2 * 2 * 3;
}
dev->interface->record_key_value("shading_offset", std::to_string(offset));
dev->interface->record_key_value("shading_length", std::to_string(length));
std::vector<uint8_t> final_data(length, 0);
unsigned count = 0;
if (offset < 0) {
count += (-offset);
length -= (-offset);
offset = 0;
}
if (static_cast<int>(length) + offset > static_cast<int>(size)) {
length = size - offset;
}
for (unsigned i = 0; i < length; i++) {
final_data[count++] = data[offset + i];
count++;
}
dev->interface->write_buffer(0x3c, 0, final_data.data(), count);
}
bool CommandSetGl842::needs_home_before_init_regs_for_scan(Genesys_Device* dev) const
{
(void) dev;
return true;
}
void CommandSetGl842::wait_for_motor_stop(Genesys_Device* dev) const
{
(void) dev;
}
} // namespace gl842
} // namespace genesys