sane-project-backends/backend/genesys/sensor.h

433 wiersze
14 KiB
C++

/* sane - Scanner Access Now Easy.
Copyright (C) 2019 Povilas Kanapickas <povilas@radix.lt>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
As a special exception, the authors of SANE give permission for
additional uses of the libraries contained in this release of SANE.
The exception is that, if you link a SANE library with other files
to produce an executable, this does not by itself cause the
resulting executable to be covered by the GNU General Public
License. Your use of that executable is in no way restricted on
account of linking the SANE library code into it.
This exception does not, however, invalidate any other reasons why
the executable file might be covered by the GNU General Public
License.
If you submit changes to SANE to the maintainers to be included in
a subsequent release, you agree by submitting the changes that
those changes may be distributed with this exception intact.
If you write modifications of your own for SANE, it is your choice
whether to permit this exception to apply to your modifications.
If you do not wish that, delete this exception notice.
*/
#ifndef BACKEND_GENESYS_SENSOR_H
#define BACKEND_GENESYS_SENSOR_H
#include "enums.h"
#include "register.h"
#include "serialize.h"
#include "value_filter.h"
#include <array>
#include <functional>
namespace genesys {
template<class T, size_t Size>
struct AssignableArray : public std::array<T, Size> {
AssignableArray() = default;
AssignableArray(const AssignableArray&) = default;
AssignableArray& operator=(const AssignableArray&) = default;
AssignableArray& operator=(std::initializer_list<T> init)
{
if (init.size() != std::array<T, Size>::size())
throw std::runtime_error("An array of incorrect size assigned");
std::copy(init.begin(), init.end(), std::array<T, Size>::begin());
return *this;
}
};
class StaggerConfig
{
public:
StaggerConfig() = default;
StaggerConfig(unsigned min_resolution, unsigned lines_at_min) :
min_resolution_{min_resolution},
lines_at_min_{lines_at_min}
{
}
unsigned stagger_at_resolution(unsigned xresolution, unsigned yresolution) const
{
if (min_resolution_ == 0 || xresolution < min_resolution_)
return 0;
return yresolution / min_resolution_ * lines_at_min_;
}
unsigned min_resolution() const { return min_resolution_; }
unsigned lines_at_min() const { return lines_at_min_; }
bool operator==(const StaggerConfig& other) const
{
return min_resolution_ == other.min_resolution_ &&
lines_at_min_ == other.lines_at_min_;
}
private:
unsigned min_resolution_ = 0;
unsigned lines_at_min_ = 0;
template<class Stream>
friend void serialize(Stream& str, StaggerConfig& x);
};
template<class Stream>
void serialize(Stream& str, StaggerConfig& x)
{
serialize(str, x.min_resolution_);
serialize(str, x.lines_at_min_);
}
std::ostream& operator<<(std::ostream& out, const StaggerConfig& config);
enum class FrontendType : unsigned
{
UNKNOWN = 0,
WOLFSON,
ANALOG_DEVICES,
CANON_LIDE_80,
WOLFSON_GL841, // old code path, likely wrong calculation
WOLFSON_GL846, // old code path, likely wrong calculation
ANALOG_DEVICES_GL847, // old code path, likely wrong calculation
WOLFSON_GL124, // old code path, likely wrong calculation
};
inline void serialize(std::istream& str, FrontendType& x)
{
unsigned value;
serialize(str, value);
x = static_cast<FrontendType>(value);
}
inline void serialize(std::ostream& str, FrontendType& x)
{
unsigned value = static_cast<unsigned>(x);
serialize(str, value);
}
std::ostream& operator<<(std::ostream& out, const FrontendType& type);
struct GenesysFrontendLayout
{
FrontendType type = FrontendType::UNKNOWN;
std::array<std::uint16_t, 3> offset_addr = {};
std::array<std::uint16_t, 3> gain_addr = {};
bool operator==(const GenesysFrontendLayout& other) const
{
return type == other.type &&
offset_addr == other.offset_addr &&
gain_addr == other.gain_addr;
}
};
template<class Stream>
void serialize(Stream& str, GenesysFrontendLayout& x)
{
serialize(str, x.type);
serialize_newline(str);
serialize(str, x.offset_addr);
serialize_newline(str);
serialize(str, x.gain_addr);
}
std::ostream& operator<<(std::ostream& out, const GenesysFrontendLayout& layout);
/** @brief Data structure to set up analog frontend.
The analog frontend converts analog value from image sensor to digital value. It has its own
control registers which are set up with this structure. The values are written using
fe_write_data.
*/
struct Genesys_Frontend
{
Genesys_Frontend() = default;
// id of the frontend description
AdcId id = AdcId::UNKNOWN;
// all registers of the frontend. Note that the registers can hold 9-bit values
RegisterSettingSet<std::uint16_t> regs;
// extra control registers
std::array<std::uint16_t, 3> reg2 = {};
GenesysFrontendLayout layout;
void set_offset(unsigned which, std::uint16_t value)
{
regs.set_value(layout.offset_addr[which], value);
}
void set_gain(unsigned which, std::uint16_t value)
{
regs.set_value(layout.gain_addr[which], value);
}
std::uint16_t get_offset(unsigned which) const
{
return regs.get_value(layout.offset_addr[which]);
}
std::uint16_t get_gain(unsigned which) const
{
return regs.get_value(layout.gain_addr[which]);
}
bool operator==(const Genesys_Frontend& other) const
{
return id == other.id &&
regs == other.regs &&
reg2 == other.reg2 &&
layout == other.layout;
}
};
std::ostream& operator<<(std::ostream& out, const Genesys_Frontend& frontend);
template<class Stream>
void serialize(Stream& str, Genesys_Frontend& x)
{
serialize(str, x.id);
serialize_newline(str);
serialize(str, x.regs);
serialize_newline(str);
serialize(str, x.reg2);
serialize_newline(str);
serialize(str, x.layout);
}
struct SensorExposure {
std::uint16_t red = 0;
std::uint16_t green = 0;
std::uint16_t blue = 0;
SensorExposure() = default;
SensorExposure(std::uint16_t r, std::uint16_t g, std::uint16_t b) :
red{r}, green{g}, blue{b}
{}
bool operator==(const SensorExposure& other) const
{
return red == other.red && green == other.green && blue == other.blue;
}
};
std::ostream& operator<<(std::ostream& out, const SensorExposure& exposure);
struct Genesys_Sensor {
Genesys_Sensor() = default;
~Genesys_Sensor() = default;
// id of the sensor description
SensorId sensor_id = SensorId::UNKNOWN;
// sensor resolution in CCD pixels. Note that we may read more than one CCD pixel per logical
// pixel, see ccd_pixels_per_system_pixel()
unsigned full_resolution = 0;
// the resolution list that the sensor is usable at.
ValueFilterAny<unsigned> resolutions = VALUE_FILTER_ANY;
// the channel list that the sensor is usable at
std::vector<unsigned> channels = { 1, 3 };
// the scan method used with the sensor
ScanMethod method = ScanMethod::FLATBED;
// The scanner may be setup to use a custom dpihw that does not correspond to any actual
// resolution. The value zero does not set the override.
unsigned register_dpihw = 0;
// The scanner may be setup to use a custom dpiset value that does not correspond to any actual
// resolution. The value zero does not set the override.
unsigned register_dpiset = 0;
// CCD may present itself as half or quarter-size CCD on certain resolutions
int ccd_size_divisor = 1;
// The resolution to use for shading calibration
unsigned shading_resolution = 0;
// How many real pixels correspond to one shading pixel that is sent to the scanner
unsigned shading_factor = 1;
// How many pixels the shading data is offset from the acquired data
int shading_pixel_offset = 0;
// This defines the ratio between logical pixel coordinates and the pixel coordinates sent to
// the scanner.
Ratio pixel_count_ratio = Ratio{1, 1};
// The offset in pixels in terms of scan resolution that needs to be applied to scan position.
int output_pixel_offset = 0;
int black_pixels = 0;
// value of the dummy register
int dummy_pixel = 0;
// TA CCD target code (reference gain)
int fau_gain_white_ref = 0;
// CCD target code (reference gain)
int gain_white_ref = 0;
// red, green and blue initial exposure values
SensorExposure exposure;
int exposure_lperiod = -1;
// the number of pixels in a single segment.
// only on gl843
unsigned segment_size = 0;
// the order of the segments, if any, for the sensor. If the sensor is not segmented or uses
// only single segment, this array can be empty
// only on gl843
std::vector<unsigned> segment_order;
// some CCDs use two arrays of pixels for double resolution. On such CCDs when scanning at
// high-enough resolution, every other pixel column is shifted
StaggerConfig stagger_config;
// True if calibration should be performed on host-side
bool use_host_side_calib = false;
GenesysRegisterSettingSet custom_regs;
GenesysRegisterSettingSet custom_fe_regs;
// red, green and blue gamma coefficient for default gamma tables
AssignableArray<float, 3> gamma;
std::function<unsigned(const Genesys_Sensor&, unsigned)> get_ccd_size_divisor_fun;
unsigned get_ccd_size_divisor_for_dpi(unsigned xres) const
{
return get_ccd_size_divisor_fun(*this, xres);
}
// how many CCD pixels are processed per system pixel time. This corresponds to CKSEL + 1
unsigned ccd_pixels_per_system_pixel() const
{
// same on GL646, GL841, GL843, GL846, GL847, GL124
constexpr unsigned REG_CKSEL = 0x03;
return (custom_regs.get_value(0x18) & REG_CKSEL) + 1;
}
bool matches_channel_count(unsigned count) const
{
return std::find(channels.begin(), channels.end(), count) != channels.end();
}
unsigned get_segment_count() const
{
if (segment_order.size() < 2)
return 1;
return segment_order.size();
}
bool operator==(const Genesys_Sensor& other) const
{
return sensor_id == other.sensor_id &&
full_resolution == other.full_resolution &&
resolutions == other.resolutions &&
method == other.method &&
shading_resolution == other.shading_resolution &&
ccd_size_divisor == other.ccd_size_divisor &&
shading_factor == other.shading_factor &&
shading_pixel_offset == other.shading_pixel_offset &&
pixel_count_ratio == other.pixel_count_ratio &&
output_pixel_offset == other.output_pixel_offset &&
black_pixels == other.black_pixels &&
dummy_pixel == other.dummy_pixel &&
fau_gain_white_ref == other.fau_gain_white_ref &&
gain_white_ref == other.gain_white_ref &&
exposure == other.exposure &&
exposure_lperiod == other.exposure_lperiod &&
segment_size == other.segment_size &&
segment_order == other.segment_order &&
stagger_config == other.stagger_config &&
use_host_side_calib == other.use_host_side_calib &&
custom_regs == other.custom_regs &&
custom_fe_regs == other.custom_fe_regs &&
gamma == other.gamma;
}
};
template<class Stream>
void serialize(Stream& str, Genesys_Sensor& x)
{
serialize(str, x.sensor_id);
serialize(str, x.full_resolution);
serialize(str, x.resolutions);
serialize(str, x.method);
serialize(str, x.shading_resolution);
serialize(str, x.ccd_size_divisor);
serialize(str, x.shading_factor);
serialize(str, x.shading_pixel_offset);
serialize(str, x.output_pixel_offset);
serialize(str, x.pixel_count_ratio);
serialize(str, x.black_pixels);
serialize(str, x.dummy_pixel);
serialize(str, x.fau_gain_white_ref);
serialize(str, x.gain_white_ref);
serialize_newline(str);
serialize(str, x.exposure.blue);
serialize(str, x.exposure.green);
serialize(str, x.exposure.red);
serialize(str, x.exposure_lperiod);
serialize_newline(str);
serialize(str, x.segment_size);
serialize_newline(str);
serialize(str, x.segment_order);
serialize_newline(str);
serialize(str, x.stagger_config);
serialize_newline(str);
serialize(str, x.use_host_side_calib);
serialize_newline(str);
serialize(str, x.custom_regs);
serialize_newline(str);
serialize(str, x.custom_fe_regs);
serialize_newline(str);
serialize(str, x.gamma);
serialize_newline(str);
}
std::ostream& operator<<(std::ostream& out, const Genesys_Sensor& sensor);
} // namespace genesys
#endif // BACKEND_GENESYS_SENSOR_H