kopia lustrzana https://gitlab.com/sane-project/backends
402 wiersze
12 KiB
Plaintext
402 wiersze
12 KiB
Plaintext
dnl AC_NEED_BYTEORDER_H ( HEADER-TO-GENERATE )
|
|
dnl Copyright 2001-2002 by Dan Fandrich <dan@coneharvesters.com>
|
|
dnl This file may be copied and used freely without restrictions. No warranty
|
|
dnl is expressed or implied.
|
|
dnl
|
|
dnl Create a header file that guarantees that byte swapping macros of the
|
|
dnl ntohl variety as well as the extended types included in OpenBSD and
|
|
dnl NetBSD such as le32toh are defined. If possible, the standard ntohl
|
|
dnl are overloaded as they are optimized for the given platform, but when
|
|
dnl this is not possible (e.g. on a big-endian machine) they are defined
|
|
dnl in this file.
|
|
|
|
dnl Look for a symbol in a header file
|
|
dnl AC_HAVE_SYMBOL ( IDENTIFIER, HEADER-FILE, ACTION-IF-FOUND, ACTION-IF-NOT-FOUND )
|
|
AC_DEFUN([AC_HAVE_SYMBOL],
|
|
[
|
|
AC_MSG_CHECKING(for $1 in $2)
|
|
AC_EGREP_CPP([symbol is present|\<$1\>],[
|
|
#include <$2>
|
|
#ifdef $1
|
|
symbol is present
|
|
#endif
|
|
],
|
|
[AC_MSG_RESULT(yes)
|
|
$3
|
|
],
|
|
[AC_MSG_RESULT(no)
|
|
$4
|
|
])])
|
|
|
|
|
|
dnl Create a header file that defines extended byte swapping macros
|
|
AC_DEFUN([AC_NEED_BYTEORDER_H],
|
|
[
|
|
ac_byteorder_h=`echo ifelse($1, , _byteorder.h, $1)`
|
|
changequote(, )dnl
|
|
ac_dir=`echo $ac_byteorder_h|sed 's%/[^/][^/]*$%%'`
|
|
changequote([, ])dnl
|
|
if test "$ac_dir" != "$ac_byteorder" && test "$ac_dir" != .; then
|
|
# The file is in a subdirectory.
|
|
test ! -d "$ac_dir" && mkdir "$ac_dir"
|
|
fi
|
|
|
|
# We're only interested in the target CPU, but it's not always set
|
|
effective_target="$target"
|
|
if test "x$effective_target" = xNONE -o "x$effective_target" = x ; then
|
|
effective_target="$host"
|
|
fi
|
|
AC_SUBST(effective_target)
|
|
|
|
ac_byteorder=_byteorder.tmp
|
|
cat > "$ac_byteorder" << EOF
|
|
/* This file is generated automatically by configure */
|
|
/* It is valid only for the system type ${effective_target} */
|
|
|
|
#ifndef __BYTEORDER_H
|
|
#define __BYTEORDER_H
|
|
|
|
EOF
|
|
|
|
dnl First, do an endian check
|
|
AC_C_BIGENDIAN
|
|
|
|
dnl Look for NetBSD-style extended byte swapping macros
|
|
AC_HAVE_SYMBOL(le32toh,machine/endian.h,
|
|
[HAVE_LE32TOH=1
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* extended byte swapping macros are already available */
|
|
#include <machine/endian.h>
|
|
|
|
EOF],
|
|
|
|
[
|
|
|
|
dnl Look for standard byte swapping macros
|
|
AC_HAVE_SYMBOL(ntohl,arpa/inet.h,
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* ntohl and relatives live here */
|
|
#include <arpa/inet.h>
|
|
|
|
EOF],
|
|
|
|
[AC_HAVE_SYMBOL(ntohl,netinet/in.h,
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* ntohl and relatives live here */
|
|
#include <netinet/in.h>
|
|
|
|
EOF],true)])
|
|
])
|
|
|
|
dnl Look for generic byte swapping macros
|
|
|
|
dnl OpenBSD
|
|
AC_HAVE_SYMBOL(swap32,machine/endian.h,
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* swap32 and swap16 are defined in machine/endian.h */
|
|
|
|
EOF],
|
|
|
|
[
|
|
dnl Linux GLIBC
|
|
AC_HAVE_SYMBOL(bswap_32,byteswap.h,
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* Define generic byte swapping functions */
|
|
#include <byteswap.h>
|
|
#define swap16(x) bswap_16(x)
|
|
#define swap32(x) bswap_32(x)
|
|
#define swap64(x) bswap_64(x)
|
|
|
|
EOF],
|
|
|
|
[
|
|
dnl NetBSD
|
|
AC_HAVE_SYMBOL(bswap32,machine/endian.h,
|
|
dnl We're already including machine/endian.h if this test succeeds
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* Define generic byte swapping functions */
|
|
EOF
|
|
if test "$HAVE_LE32TOH" != "1"; then
|
|
echo '#include <machine/endian.h>'>> "$ac_byteorder"
|
|
fi
|
|
cat >> "$ac_byteorder" << EOF
|
|
#define swap16(x) bswap16(x)
|
|
#define swap32(x) bswap32(x)
|
|
#define swap64(x) bswap64(x)
|
|
|
|
EOF],
|
|
|
|
[
|
|
dnl FreeBSD
|
|
AC_HAVE_SYMBOL(__byte_swap_long,sys/types.h,
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* Define generic byte swapping functions */
|
|
#include <sys/types.h>
|
|
#define swap16(x) __byte_swap_word(x)
|
|
#define swap32(x) __byte_swap_long(x)
|
|
/* No optimized 64 bit byte swapping macro is available */
|
|
#define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
|
|
((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
|
|
((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
|
|
((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\
|
|
((x) >> 8) & 0x00000000ff000000ULL | \\
|
|
((x) >> 24) & 0x0000000000ff0000ULL | \\
|
|
((x) >> 40) & 0x000000000000ff00ULL | \\
|
|
((x) >> 56) & 0x00000000000000ffULL))
|
|
|
|
EOF],
|
|
|
|
[
|
|
dnl OS X
|
|
AC_HAVE_SYMBOL(NXSwapLong,machine/byte_order.h,
|
|
[cat >> "$ac_byteorder" << EOF
|
|
/* Define generic byte swapping functions */
|
|
#include <machine/byte_order.h>
|
|
#define swap16(x) NXSwapShort(x)
|
|
#define swap32(x) NXSwapLong(x)
|
|
#define swap64(x) NXSwapLongLong(x)
|
|
|
|
EOF],
|
|
[
|
|
if test $ac_cv_c_bigendian = yes; then
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* No other byte swapping functions are available on this big-endian system */
|
|
#define swap16(x) ((uint16_t)(((x) << 8) | ((uint16_t)(x) >> 8)))
|
|
#define swap32(x) ((uint32_t)(((uint32_t)(x) << 24) & 0xff000000UL | \\
|
|
((uint32_t)(x) << 8) & 0x00ff0000UL | \\
|
|
((x) >> 8) & 0x0000ff00UL | \\
|
|
((x) >> 24) & 0x000000ffUL))
|
|
#define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
|
|
((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
|
|
((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
|
|
((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\
|
|
((x) >> 8) & 0x00000000ff000000ULL | \\
|
|
((x) >> 24) & 0x0000000000ff0000ULL | \\
|
|
((x) >> 40) & 0x000000000000ff00ULL | \\
|
|
((x) >> 56) & 0x00000000000000ffULL))
|
|
|
|
EOF
|
|
else
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* Use these as generic byteswapping macros on this little endian system */
|
|
#define swap16(x) ntohs(x)
|
|
#define swap32(x) ntohl(x)
|
|
/* No optimized 64 bit byte swapping macro is available */
|
|
#define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
|
|
((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
|
|
((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
|
|
((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\
|
|
((x) >> 8) & 0x00000000ff000000ULL | \\
|
|
((x) >> 24) & 0x0000000000ff0000ULL | \\
|
|
((x) >> 40) & 0x000000000000ff00ULL | \\
|
|
((x) >> 56) & 0x00000000000000ffULL))
|
|
|
|
EOF
|
|
fi
|
|
])
|
|
])
|
|
])
|
|
])
|
|
])
|
|
|
|
|
|
[
|
|
if test "$HAVE_LE32TOH" != "1"; then
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* The byte swapping macros have the form: */
|
|
/* EENN[a]toh or htoEENN[a] where EE is be (big endian) or */
|
|
/* le (little-endian), NN is 16 or 32 (number of bits) and a, */
|
|
/* if present, indicates that the endian side is a pointer to an */
|
|
/* array of uint8_t bytes instead of an integer of the specified length. */
|
|
/* h refers to the host's ordering method. */
|
|
|
|
/* So, to convert a 32-bit integer stored in a buffer in little-endian */
|
|
/* format into a uint32_t usable on this machine, you could use: */
|
|
/* uint32_t value = le32atoh(&buf[3]); */
|
|
/* To put that value back into the buffer, you could use: */
|
|
/* htole32a(&buf[3], value); */
|
|
|
|
/* Define aliases for the standard byte swapping macros */
|
|
/* Arguments to these macros must be properly aligned on natural word */
|
|
/* boundaries in order to work properly on all architectures */
|
|
#ifndef htobe16
|
|
#define htobe16(x) htons(x)
|
|
#endif
|
|
#ifndef htobe32
|
|
#define htobe32(x) htonl(x)
|
|
#endif
|
|
#ifndef be16toh
|
|
#define be16toh(x) ntohs(x)
|
|
#endif
|
|
#ifndef be32toh
|
|
#define be32toh(x) ntohl(x)
|
|
#endif
|
|
|
|
#define HTOBE16(x) (x) = htobe16(x)
|
|
#define HTOBE32(x) (x) = htobe32(x)
|
|
#define BE32TOH(x) (x) = be32toh(x)
|
|
#define BE16TOH(x) (x) = be16toh(x)
|
|
|
|
EOF
|
|
|
|
if test $ac_cv_c_bigendian = yes; then
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* Define our own extended byte swapping macros for big-endian machines */
|
|
#ifndef htole16
|
|
#define htole16(x) swap16(x)
|
|
#endif
|
|
#ifndef htole32
|
|
#define htole32(x) swap32(x)
|
|
#endif
|
|
#ifndef le16toh
|
|
#define le16toh(x) swap16(x)
|
|
#endif
|
|
#ifndef le32toh
|
|
#define le32toh(x) swap32(x)
|
|
#endif
|
|
|
|
#ifndef htobe64
|
|
#define htobe64(x) (x)
|
|
#endif
|
|
#ifndef be64toh
|
|
#define be64toh(x) (x)
|
|
#endif
|
|
|
|
#define HTOLE16(x) (x) = htole16(x)
|
|
#define HTOLE32(x) (x) = htole32(x)
|
|
#define LE16TOH(x) (x) = le16toh(x)
|
|
#define LE32TOH(x) (x) = le32toh(x)
|
|
|
|
#define HTOBE64(x) (void) (x)
|
|
#define BE64TOH(x) (void) (x)
|
|
|
|
EOF
|
|
else
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* On little endian machines, these macros are null */
|
|
#ifndef htole16
|
|
#define htole16(x) (x)
|
|
#endif
|
|
#ifndef htole32
|
|
#define htole32(x) (x)
|
|
#endif
|
|
#ifndef htole64
|
|
#define htole64(x) (x)
|
|
#endif
|
|
#ifndef le16toh
|
|
#define le16toh(x) (x)
|
|
#endif
|
|
#ifndef le32toh
|
|
#define le32toh(x) (x)
|
|
#endif
|
|
#ifndef le64toh
|
|
#define le64toh(x) (x)
|
|
#endif
|
|
|
|
#define HTOLE16(x) (void) (x)
|
|
#define HTOLE32(x) (void) (x)
|
|
#define HTOLE64(x) (void) (x)
|
|
#define LE16TOH(x) (void) (x)
|
|
#define LE32TOH(x) (void) (x)
|
|
#define LE64TOH(x) (void) (x)
|
|
|
|
/* These don't have standard aliases */
|
|
#ifndef htobe64
|
|
#define htobe64(x) swap64(x)
|
|
#endif
|
|
#ifndef be64toh
|
|
#define be64toh(x) swap64(x)
|
|
#endif
|
|
|
|
#define HTOBE64(x) (x) = htobe64(x)
|
|
#define BE64TOH(x) (x) = be64toh(x)
|
|
|
|
EOF
|
|
fi
|
|
fi
|
|
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* Define the C99 standard length-specific integer types */
|
|
#include <_stdint.h>
|
|
|
|
EOF
|
|
|
|
case "${effective_target}" in
|
|
i[3456]86-*)
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* Here are some macros to create integers from a byte array */
|
|
/* These are used to get and put integers from/into a uint8_t array */
|
|
/* with a specific endianness. This is the most portable way to generate */
|
|
/* and read messages to a network or serial device. Each member of a */
|
|
/* packet structure must be handled separately. */
|
|
|
|
/* The i386 and compatibles can handle unaligned memory access, */
|
|
/* so use the optimized macros above to do this job */
|
|
#define be16atoh(x) be16toh(*(uint16_t*)(x))
|
|
#define be32atoh(x) be32toh(*(uint32_t*)(x))
|
|
#define be64atoh(x) be64toh(*(uint64_t*)(x))
|
|
#define le16atoh(x) le16toh(*(uint16_t*)(x))
|
|
#define le32atoh(x) le32toh(*(uint32_t*)(x))
|
|
#define le64atoh(x) le64toh(*(uint64_t*)(x))
|
|
|
|
#define htobe16a(a,x) *(uint16_t*)(a) = htobe16(x)
|
|
#define htobe32a(a,x) *(uint32_t*)(a) = htobe32(x)
|
|
#define htobe64a(a,x) *(uint64_t*)(a) = htobe64(x)
|
|
#define htole16a(a,x) *(uint16_t*)(a) = htole16(x)
|
|
#define htole32a(a,x) *(uint32_t*)(a) = htole32(x)
|
|
#define htole64a(a,x) *(uint64_t*)(a) = htole64(x)
|
|
|
|
EOF
|
|
;;
|
|
|
|
*)
|
|
cat >> "$ac_byteorder" << EOF
|
|
/* Here are some macros to create integers from a byte array */
|
|
/* These are used to get and put integers from/into a uint8_t array */
|
|
/* with a specific endianness. This is the most portable way to generate */
|
|
/* and read messages to a network or serial device. Each member of a */
|
|
/* packet structure must be handled separately. */
|
|
|
|
/* Non-optimized but portable macros */
|
|
#define be16atoh(x) ((uint16_t)(((x)[0]<<8)|(x)[1]))
|
|
#define be32atoh(x) ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]))
|
|
#define be64atoh(x) ((uint64_t)(((x)[0]<<56)|((x)[1]<<48)|((x)[2]<<40)| \\
|
|
((x)[3]<<32)|((x)[4]<<24)|((x)[5]<<16)|((x)[6]<<8)|(x)[7]))
|
|
#define le16atoh(x) ((uint16_t)(((x)[1]<<8)|(x)[0]))
|
|
#define le32atoh(x) ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]))
|
|
#define le64atoh(x) ((uint64_t)(((x)[7]<<56)|((x)[6]<<48)|((x)[5]<<40)| \\
|
|
((x)[4]<<32)|((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]))
|
|
|
|
#define htobe16a(a,x) (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x)
|
|
#define htobe32a(a,x) (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \\
|
|
(a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x)
|
|
#define htobe64a(a,x) (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \\
|
|
(a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \\
|
|
(a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \\
|
|
(a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x)
|
|
#define htole16a(a,x) (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
|
|
#define htole32a(a,x) (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\
|
|
(a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
|
|
#define htole64a(a,x) (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \\
|
|
(a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \\
|
|
(a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\
|
|
(a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
|
|
|
|
EOF
|
|
;;
|
|
esac
|
|
]
|
|
|
|
cat >> "$ac_byteorder" << EOF
|
|
#endif /*__BYTEORDER_H*/
|
|
EOF
|
|
|
|
if cmp -s $ac_byteorder_h $ac_byteorder 2>/dev/null; then
|
|
AC_MSG_NOTICE([$ac_byteorder_h is unchanged])
|
|
rm $ac_byteorder
|
|
else
|
|
rm -f $ac_byteorder_h
|
|
mv $ac_byteorder $ac_byteorder_h
|
|
fi
|
|
])
|