kopia lustrzana https://gitlab.com/sane-project/backends
				
				
				
			
		
			
				
	
	
		
			402 wiersze
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			402 wiersze
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
| dnl AC_NEED_BYTEORDER_H ( HEADER-TO-GENERATE )
 | |
| dnl Copyright 2001-2002 by Dan Fandrich <dan@coneharvesters.com>
 | |
| dnl This file may be copied and used freely without restrictions.  No warranty
 | |
| dnl is expressed or implied.
 | |
| dnl
 | |
| dnl Create a header file that guarantees that byte swapping macros of the
 | |
| dnl ntohl variety as well as the extended types included in OpenBSD and
 | |
| dnl NetBSD such as le32toh are defined.  If possible, the standard ntohl
 | |
| dnl are overloaded as they are optimized for the given platform, but when
 | |
| dnl this is not possible (e.g. on a big-endian machine) they are defined
 | |
| dnl in this file.
 | |
| 
 | |
| dnl Look for a symbol in a header file
 | |
| dnl AC_HAVE_SYMBOL ( IDENTIFIER, HEADER-FILE, ACTION-IF-FOUND, ACTION-IF-NOT-FOUND )
 | |
| AC_DEFUN([AC_HAVE_SYMBOL],
 | |
| [
 | |
| AC_MSG_CHECKING(for $1 in $2)
 | |
| AC_EGREP_CPP([symbol is present|\<$1\>],[
 | |
| #include <$2>
 | |
| #ifdef $1
 | |
|  	symbol is present
 | |
| #endif
 | |
| 	],
 | |
| [AC_MSG_RESULT(yes)
 | |
| $3
 | |
| ],
 | |
| [AC_MSG_RESULT(no)
 | |
| $4
 | |
| ])])
 | |
| 
 | |
| 
 | |
| dnl Create a header file that defines extended byte swapping macros
 | |
| AC_DEFUN([AC_NEED_BYTEORDER_H],
 | |
| [
 | |
| ac_byteorder_h=`echo ifelse($1, , _byteorder.h, $1)`
 | |
| changequote(, )dnl
 | |
| ac_dir=`echo $ac_byteorder_h|sed 's%/[^/][^/]*$%%'`
 | |
| changequote([, ])dnl
 | |
| if test "$ac_dir" != "$ac_byteorder" && test "$ac_dir" != .; then
 | |
|   # The file is in a subdirectory.
 | |
|   test ! -d "$ac_dir" && mkdir "$ac_dir"
 | |
| fi
 | |
| 
 | |
| # We're only interested in the target CPU, but it's not always set
 | |
| effective_target="$target"
 | |
| if test "x$effective_target" = xNONE -o "x$effective_target" = x ; then
 | |
| 	effective_target="$host"
 | |
| fi
 | |
| AC_SUBST(effective_target)
 | |
| 
 | |
| ac_byteorder=_byteorder.tmp
 | |
| cat > "$ac_byteorder" << EOF
 | |
| /* This file is generated automatically by configure */
 | |
| /* It is valid only for the system type ${effective_target} */
 | |
| 
 | |
| #ifndef __BYTEORDER_H
 | |
| #define __BYTEORDER_H
 | |
| 
 | |
| EOF
 | |
| 
 | |
| dnl First, do an endian check
 | |
| AC_C_BIGENDIAN
 | |
| 
 | |
| dnl Look for NetBSD-style extended byte swapping macros
 | |
| AC_HAVE_SYMBOL(le32toh,machine/endian.h,
 | |
|  [HAVE_LE32TOH=1
 | |
|  cat >> "$ac_byteorder" << EOF
 | |
| /* extended byte swapping macros are already available */
 | |
| #include <machine/endian.h>
 | |
| 
 | |
| EOF],
 | |
| 
 | |
| [
 | |
| 
 | |
| dnl Look for standard byte swapping macros
 | |
| AC_HAVE_SYMBOL(ntohl,arpa/inet.h,
 | |
|  [cat >> "$ac_byteorder" << EOF
 | |
| /* ntohl and relatives live here */
 | |
| #include <arpa/inet.h>
 | |
| 
 | |
| EOF],
 | |
| 
 | |
|  [AC_HAVE_SYMBOL(ntohl,netinet/in.h,
 | |
|   [cat >> "$ac_byteorder" << EOF
 | |
| /* ntohl and relatives live here */
 | |
| #include <netinet/in.h>
 | |
| 
 | |
| EOF],true)])
 | |
| ])
 | |
| 
 | |
| dnl Look for generic byte swapping macros
 | |
| 
 | |
| dnl OpenBSD
 | |
| AC_HAVE_SYMBOL(swap32,machine/endian.h,
 | |
|  [cat >> "$ac_byteorder" << EOF
 | |
| /* swap32 and swap16 are defined in machine/endian.h */
 | |
| 
 | |
| EOF],
 | |
| 
 | |
|  [
 | |
| dnl Linux GLIBC
 | |
|   AC_HAVE_SYMBOL(bswap_32,byteswap.h,
 | |
|    [cat >> "$ac_byteorder" << EOF
 | |
| /* Define generic byte swapping functions */
 | |
| #include <byteswap.h>
 | |
| #define swap16(x) bswap_16(x)
 | |
| #define swap32(x) bswap_32(x)
 | |
| #define swap64(x) bswap_64(x)
 | |
| 
 | |
| EOF],
 | |
| 
 | |
|    [
 | |
| dnl NetBSD
 | |
|   	AC_HAVE_SYMBOL(bswap32,machine/endian.h,
 | |
|     dnl We're already including machine/endian.h if this test succeeds
 | |
|   	 [cat >> "$ac_byteorder" << EOF
 | |
| /* Define generic byte swapping functions */
 | |
| EOF
 | |
| 	if test "$HAVE_LE32TOH" != "1"; then
 | |
| 		echo '#include <machine/endian.h>'>> "$ac_byteorder"
 | |
| 	fi
 | |
| cat >> "$ac_byteorder" << EOF
 | |
| #define swap16(x) bswap16(x)
 | |
| #define swap32(x) bswap32(x)
 | |
| #define swap64(x) bswap64(x)
 | |
| 
 | |
| EOF],
 | |
| 
 | |
|    [
 | |
| dnl FreeBSD
 | |
|   	AC_HAVE_SYMBOL(__byte_swap_long,sys/types.h,
 | |
|   	 [cat >> "$ac_byteorder" << EOF
 | |
| /* Define generic byte swapping functions */
 | |
| #include <sys/types.h>
 | |
| #define swap16(x) __byte_swap_word(x)
 | |
| #define swap32(x) __byte_swap_long(x)
 | |
| /* No optimized 64 bit byte swapping macro is available */
 | |
| #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 8)  & 0x000000ff00000000ULL | \\
 | |
| 			      ((x) >> 8)  & 0x00000000ff000000ULL | \\
 | |
| 			      ((x) >> 24) & 0x0000000000ff0000ULL | \\
 | |
| 			      ((x) >> 40) & 0x000000000000ff00ULL | \\
 | |
| 			      ((x) >> 56) & 0x00000000000000ffULL))
 | |
| 
 | |
| EOF],
 | |
| 
 | |
|   	 [
 | |
| dnl OS X
 | |
|   	AC_HAVE_SYMBOL(NXSwapLong,machine/byte_order.h,
 | |
|   	 [cat >> "$ac_byteorder" << EOF
 | |
| /* Define generic byte swapping functions */
 | |
| #include <machine/byte_order.h>
 | |
| #define swap16(x) NXSwapShort(x)
 | |
| #define swap32(x) NXSwapLong(x)
 | |
| #define swap64(x) NXSwapLongLong(x)
 | |
| 
 | |
| EOF],
 | |
|          [
 | |
| 	if test $ac_cv_c_bigendian = yes; then
 | |
| 		cat >> "$ac_byteorder" << EOF
 | |
| /* No other byte swapping functions are available on this big-endian system */
 | |
| #define swap16(x)	((uint16_t)(((x) << 8) | ((uint16_t)(x) >> 8)))
 | |
| #define swap32(x)	((uint32_t)(((uint32_t)(x) << 24) & 0xff000000UL | \\
 | |
| 				    ((uint32_t)(x) << 8)  & 0x00ff0000UL | \\
 | |
| 				    ((x) >> 8)  & 0x0000ff00UL | \\
 | |
| 				    ((x) >> 24) & 0x000000ffUL))
 | |
| #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 8)  & 0x000000ff00000000ULL | \\
 | |
| 			      ((x) >> 8)  & 0x00000000ff000000ULL | \\
 | |
| 			      ((x) >> 24) & 0x0000000000ff0000ULL | \\
 | |
| 			      ((x) >> 40) & 0x000000000000ff00ULL | \\
 | |
| 			      ((x) >> 56) & 0x00000000000000ffULL))
 | |
| 
 | |
| EOF
 | |
| 	else
 | |
|  cat >> "$ac_byteorder" << EOF
 | |
| /* Use these as generic byteswapping macros on this little endian system */
 | |
| #define swap16(x)		ntohs(x)
 | |
| #define swap32(x)		ntohl(x)
 | |
| /* No optimized 64 bit byte swapping macro is available */
 | |
| #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\
 | |
| 			      ((uint64_t)(x) << 8)  & 0x000000ff00000000ULL | \\
 | |
| 			      ((x) >> 8)  & 0x00000000ff000000ULL | \\
 | |
| 			      ((x) >> 24) & 0x0000000000ff0000ULL | \\
 | |
| 			      ((x) >> 40) & 0x000000000000ff00ULL | \\
 | |
| 			      ((x) >> 56) & 0x00000000000000ffULL))
 | |
| 
 | |
| EOF
 | |
| 	fi
 | |
| ])
 | |
|   	  ])
 | |
|     ])
 | |
|   ])
 | |
| ])
 | |
| 
 | |
| 
 | |
| [
 | |
| if test "$HAVE_LE32TOH" != "1"; then
 | |
|  cat >> "$ac_byteorder" << EOF
 | |
| /* The byte swapping macros have the form: */
 | |
| /*   EENN[a]toh or htoEENN[a] where EE is be (big endian) or */
 | |
| /* le (little-endian), NN is 16 or 32 (number of bits) and a, */
 | |
| /* if present, indicates that the endian side is a pointer to an */
 | |
| /* array of uint8_t bytes instead of an integer of the specified length. */
 | |
| /* h refers to the host's ordering method. */
 | |
| 
 | |
| /* So, to convert a 32-bit integer stored in a buffer in little-endian */
 | |
| /* format into a uint32_t usable on this machine, you could use: */
 | |
| /*   uint32_t value = le32atoh(&buf[3]); */
 | |
| /* To put that value back into the buffer, you could use: */
 | |
| /*   htole32a(&buf[3], value); */
 | |
| 
 | |
| /* Define aliases for the standard byte swapping macros */
 | |
| /* Arguments to these macros must be properly aligned on natural word */
 | |
| /* boundaries in order to work properly on all architectures */
 | |
| #ifndef htobe16
 | |
| #define htobe16(x) htons(x)
 | |
| #endif
 | |
| #ifndef htobe32
 | |
| #define htobe32(x) htonl(x)
 | |
| #endif
 | |
| #ifndef be16toh
 | |
| #define be16toh(x) ntohs(x)
 | |
| #endif
 | |
| #ifndef be32toh
 | |
| #define be32toh(x) ntohl(x)
 | |
| #endif
 | |
| 
 | |
| #define HTOBE16(x) (x) = htobe16(x)
 | |
| #define HTOBE32(x) (x) = htobe32(x)
 | |
| #define BE32TOH(x) (x) = be32toh(x)
 | |
| #define BE16TOH(x) (x) = be16toh(x)
 | |
| 
 | |
| EOF
 | |
| 
 | |
|  if test $ac_cv_c_bigendian = yes; then
 | |
|   cat >> "$ac_byteorder" << EOF
 | |
| /* Define our own extended byte swapping macros for big-endian machines */
 | |
| #ifndef htole16
 | |
| #define htole16(x)      swap16(x)
 | |
| #endif
 | |
| #ifndef htole32
 | |
| #define htole32(x)      swap32(x)
 | |
| #endif
 | |
| #ifndef le16toh
 | |
| #define le16toh(x)      swap16(x)
 | |
| #endif
 | |
| #ifndef le32toh
 | |
| #define le32toh(x)      swap32(x)
 | |
| #endif
 | |
| 
 | |
| #ifndef htobe64
 | |
| #define htobe64(x)      (x)
 | |
| #endif
 | |
| #ifndef be64toh
 | |
| #define be64toh(x)      (x)
 | |
| #endif
 | |
| 
 | |
| #define HTOLE16(x)      (x) = htole16(x)
 | |
| #define HTOLE32(x)      (x) = htole32(x)
 | |
| #define LE16TOH(x)      (x) = le16toh(x)
 | |
| #define LE32TOH(x)      (x) = le32toh(x)
 | |
| 
 | |
| #define HTOBE64(x)      (void) (x)
 | |
| #define BE64TOH(x)      (void) (x)
 | |
| 
 | |
| EOF
 | |
|  else
 | |
|   cat >> "$ac_byteorder" << EOF
 | |
| /* On little endian machines, these macros are null */
 | |
| #ifndef htole16
 | |
| #define htole16(x)      (x)
 | |
| #endif
 | |
| #ifndef htole32
 | |
| #define htole32(x)      (x)
 | |
| #endif
 | |
| #ifndef htole64
 | |
| #define htole64(x)      (x)
 | |
| #endif
 | |
| #ifndef le16toh
 | |
| #define le16toh(x)      (x)
 | |
| #endif
 | |
| #ifndef le32toh
 | |
| #define le32toh(x)      (x)
 | |
| #endif
 | |
| #ifndef le64toh
 | |
| #define le64toh(x)      (x)
 | |
| #endif
 | |
| 
 | |
| #define HTOLE16(x)      (void) (x)
 | |
| #define HTOLE32(x)      (void) (x)
 | |
| #define HTOLE64(x)      (void) (x)
 | |
| #define LE16TOH(x)      (void) (x)
 | |
| #define LE32TOH(x)      (void) (x)
 | |
| #define LE64TOH(x)      (void) (x)
 | |
| 
 | |
| /* These don't have standard aliases */
 | |
| #ifndef htobe64
 | |
| #define htobe64(x)      swap64(x)
 | |
| #endif
 | |
| #ifndef be64toh
 | |
| #define be64toh(x)      swap64(x)
 | |
| #endif
 | |
| 
 | |
| #define HTOBE64(x)      (x) = htobe64(x)
 | |
| #define BE64TOH(x)      (x) = be64toh(x)
 | |
| 
 | |
| EOF
 | |
|  fi
 | |
| fi
 | |
| 
 | |
| cat >> "$ac_byteorder" << EOF
 | |
| /* Define the C99 standard length-specific integer types */
 | |
| #include <_stdint.h>
 | |
| 
 | |
| EOF
 | |
| 
 | |
| case "${effective_target}" in
 | |
|  i[3456]86-*)
 | |
|   cat >> "$ac_byteorder" << EOF
 | |
| /* Here are some macros to create integers from a byte array */
 | |
| /* These are used to get and put integers from/into a uint8_t array */
 | |
| /* with a specific endianness.  This is the most portable way to generate */
 | |
| /* and read messages to a network or serial device.  Each member of a */
 | |
| /* packet structure must be handled separately. */
 | |
| 
 | |
| /* The i386 and compatibles can handle unaligned memory access, */
 | |
| /* so use the optimized macros above to do this job */
 | |
| #define be16atoh(x)     be16toh(*(uint16_t*)(x))
 | |
| #define be32atoh(x)     be32toh(*(uint32_t*)(x))
 | |
| #define be64atoh(x)     be64toh(*(uint64_t*)(x))
 | |
| #define le16atoh(x)     le16toh(*(uint16_t*)(x))
 | |
| #define le32atoh(x)     le32toh(*(uint32_t*)(x))
 | |
| #define le64atoh(x)     le64toh(*(uint64_t*)(x))
 | |
| 
 | |
| #define htobe16a(a,x)   *(uint16_t*)(a) = htobe16(x)
 | |
| #define htobe32a(a,x)   *(uint32_t*)(a) = htobe32(x)
 | |
| #define htobe64a(a,x)   *(uint64_t*)(a) = htobe64(x)
 | |
| #define htole16a(a,x)   *(uint16_t*)(a) = htole16(x)
 | |
| #define htole32a(a,x)   *(uint32_t*)(a) = htole32(x)
 | |
| #define htole64a(a,x)   *(uint64_t*)(a) = htole64(x)
 | |
| 
 | |
| EOF
 | |
|   ;;
 | |
| 
 | |
|  *)
 | |
|   cat >> "$ac_byteorder" << EOF
 | |
| /* Here are some macros to create integers from a byte array */
 | |
| /* These are used to get and put integers from/into a uint8_t array */
 | |
| /* with a specific endianness.  This is the most portable way to generate */
 | |
| /* and read messages to a network or serial device.  Each member of a */
 | |
| /* packet structure must be handled separately. */
 | |
| 
 | |
| /* Non-optimized but portable macros */
 | |
| #define be16atoh(x)     ((uint16_t)(((x)[0]<<8)|(x)[1]))
 | |
| #define be32atoh(x)     ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]))
 | |
| #define be64atoh(x)     ((uint64_t)(((x)[0]<<56)|((x)[1]<<48)|((x)[2]<<40)| \\
 | |
|         ((x)[3]<<32)|((x)[4]<<24)|((x)[5]<<16)|((x)[6]<<8)|(x)[7]))
 | |
| #define le16atoh(x)     ((uint16_t)(((x)[1]<<8)|(x)[0]))
 | |
| #define le32atoh(x)     ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]))
 | |
| #define le64atoh(x)     ((uint64_t)(((x)[7]<<56)|((x)[6]<<48)|((x)[5]<<40)| \\
 | |
|         ((x)[4]<<32)|((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]))
 | |
| 
 | |
| #define htobe16a(a,x)   (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x)
 | |
| #define htobe32a(a,x)   (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \\
 | |
|         (a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x)
 | |
| #define htobe64a(a,x)   (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \\
 | |
|         (a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \\
 | |
|         (a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \\
 | |
|         (a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x)
 | |
| #define htole16a(a,x)   (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
 | |
| #define htole32a(a,x)   (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\
 | |
|         (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
 | |
| #define htole64a(a,x)   (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \\
 | |
|         (a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \\
 | |
|         (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\
 | |
|         (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x)
 | |
| 
 | |
| EOF
 | |
|   ;;
 | |
| esac
 | |
| ]
 | |
| 
 | |
| cat >> "$ac_byteorder" << EOF
 | |
| #endif /*__BYTEORDER_H*/
 | |
| EOF
 | |
| 
 | |
| if cmp -s $ac_byteorder_h $ac_byteorder 2>/dev/null; then
 | |
|   AC_MSG_NOTICE([$ac_byteorder_h is unchanged])
 | |
|   rm $ac_byteorder
 | |
| else
 | |
|   rm -f $ac_byteorder_h
 | |
|   mv $ac_byteorder $ac_byteorder_h
 | |
| fi
 | |
| ])
 |