sane-project-backends/backend/genesys/image_pipeline.cpp

935 wiersze
30 KiB
C++

/* sane - Scanner Access Now Easy.
Copyright (C) 2019 Povilas Kanapickas <povilas@radix.lt>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#define DEBUG_DECLARE_ONLY
#include "image_pipeline.h"
#include "image.h"
#include "low.h"
#include <cmath>
#include <numeric>
namespace genesys {
ImagePipelineNode::~ImagePipelineNode() {}
bool ImagePipelineNodeCallableSource::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = producer_(get_row_bytes(), out_data);
if (!got_data)
eof_ = true;
return got_data;
}
ImagePipelineNodeBufferedCallableSource::ImagePipelineNodeBufferedCallableSource(
std::size_t width, std::size_t height, PixelFormat format, std::size_t input_batch_size,
ProducerCallback producer) :
width_{width},
height_{height},
format_{format},
buffer_{input_batch_size, producer}
{
buffer_.set_remaining_size(height_ * get_row_bytes());
}
bool ImagePipelineNodeBufferedCallableSource::get_next_row_data(std::uint8_t* out_data)
{
if (curr_row_ >= get_height()) {
DBG(DBG_warn, "%s: reading out of bounds. Row %zu, height: %zu\n", __func__,
curr_row_, get_height());
eof_ = true;
return false;
}
bool got_data = true;
got_data &= buffer_.get_data(get_row_bytes(), out_data);
curr_row_++;
if (!got_data) {
eof_ = true;
}
return got_data;
}
ImagePipelineNodeArraySource::ImagePipelineNodeArraySource(std::size_t width, std::size_t height,
PixelFormat format,
std::vector<std::uint8_t> data) :
width_{width},
height_{height},
format_{format},
data_{std::move(data)},
next_row_{0}
{
auto size = get_row_bytes() * height_;
if (data_.size() < size) {
throw SaneException("The given array is too small (%zu bytes). Need at least %zu",
data_.size(), size);
}
}
bool ImagePipelineNodeArraySource::get_next_row_data(std::uint8_t* out_data)
{
if (next_row_ >= height_) {
eof_ = true;
return false;
}
auto row_bytes = get_row_bytes();
std::memcpy(out_data, data_.data() + row_bytes * next_row_, row_bytes);
next_row_++;
return true;
}
ImagePipelineNodeImageSource::ImagePipelineNodeImageSource(const Image& source) :
source_{source}
{}
bool ImagePipelineNodeImageSource::get_next_row_data(std::uint8_t* out_data)
{
if (next_row_ >= get_height()) {
return false;
}
std::memcpy(out_data, source_.get_row_ptr(next_row_), get_row_bytes());
next_row_++;
return true;
}
bool ImagePipelineNodeFormatConvert::get_next_row_data(std::uint8_t* out_data)
{
auto src_format = source_.get_format();
if (src_format == dst_format_) {
return source_.get_next_row_data(out_data);
}
buffer_.clear();
buffer_.resize(source_.get_row_bytes());
bool got_data = source_.get_next_row_data(buffer_.data());
convert_pixel_row_format(buffer_.data(), src_format, out_data, dst_format_, get_width());
return got_data;
}
ImagePipelineNodeDesegment::ImagePipelineNodeDesegment(ImagePipelineNode& source,
std::size_t output_width,
const std::vector<unsigned>& segment_order,
std::size_t segment_pixels,
std::size_t interleaved_lines,
std::size_t pixels_per_chunk) :
source_(source),
output_width_{output_width},
segment_order_{segment_order},
segment_pixels_{segment_pixels},
interleaved_lines_{interleaved_lines},
pixels_per_chunk_{pixels_per_chunk},
buffer_{source_.get_row_bytes()}
{
DBG_HELPER_ARGS(dbg, "segment_count=%zu, segment_size=%zu, interleaved_lines=%zu, "
"pixels_per_shunk=%zu", segment_order.size(), segment_pixels,
interleaved_lines, pixels_per_chunk);
if (source_.get_height() % interleaved_lines_ > 0) {
throw SaneException("Height is not a multiple of the number of lines to interelave %zu/%zu",
source_.get_height(), interleaved_lines_);
}
}
ImagePipelineNodeDesegment::ImagePipelineNodeDesegment(ImagePipelineNode& source,
std::size_t output_width,
std::size_t segment_count,
std::size_t segment_pixels,
std::size_t interleaved_lines,
std::size_t pixels_per_chunk) :
source_(source),
output_width_{output_width},
segment_pixels_{segment_pixels},
interleaved_lines_{interleaved_lines},
pixels_per_chunk_{pixels_per_chunk},
buffer_{source_.get_row_bytes()}
{
DBG_HELPER_ARGS(dbg, "segment_count=%zu, segment_size=%zu, interleaved_lines=%zu, "
"pixels_per_shunk=%zu", segment_count, segment_pixels, interleaved_lines,
pixels_per_chunk);
segment_order_.resize(segment_count);
std::iota(segment_order_.begin(), segment_order_.end(), 0);
}
bool ImagePipelineNodeDesegment::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
buffer_.clear();
for (std::size_t i = 0; i < interleaved_lines_; ++i) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_row_ptr(i));
}
if (!buffer_.is_linear()) {
throw SaneException("Buffer is not linear");
}
auto format = get_format();
auto segment_count = segment_order_.size();
const std::uint8_t* in_data = buffer_.get_row_ptr(0);
std::size_t groups_count = output_width_ / (segment_order_.size() * pixels_per_chunk_);
for (std::size_t igroup = 0; igroup < groups_count; ++igroup) {
for (std::size_t isegment = 0; isegment < segment_count; ++isegment) {
auto input_offset = igroup * pixels_per_chunk_;
input_offset += segment_pixels_ * segment_order_[isegment];
auto output_offset = (igroup * segment_count + isegment) * pixels_per_chunk_;
for (std::size_t ipixel = 0; ipixel < pixels_per_chunk_; ++ipixel) {
auto pixel = get_raw_pixel_from_row(in_data, input_offset + ipixel, format);
set_raw_pixel_to_row(out_data, output_offset + ipixel, pixel, format);
}
}
}
return got_data;
}
ImagePipelineNodeDeinterleaveLines::ImagePipelineNodeDeinterleaveLines(
ImagePipelineNode& source, std::size_t interleaved_lines, std::size_t pixels_per_chunk) :
ImagePipelineNodeDesegment(source, source.get_width() * interleaved_lines,
interleaved_lines, source.get_width(),
interleaved_lines, pixels_per_chunk)
{}
ImagePipelineNodeSwap16BitEndian::ImagePipelineNodeSwap16BitEndian(ImagePipelineNode& source) :
source_(source),
needs_swapping_{false}
{
if (get_pixel_format_depth(source_.get_format()) == 16) {
needs_swapping_ = true;
} else {
DBG(DBG_info, "%s: this pipeline node does nothing for non 16-bit formats", __func__);
}
}
bool ImagePipelineNodeSwap16BitEndian::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = source_.get_next_row_data(out_data);
if (needs_swapping_) {
std::size_t pixels = get_row_bytes() / 2;
for (std::size_t i = 0; i < pixels; ++i) {
std::swap(*out_data, *(out_data + 1));
out_data += 2;
}
}
return got_data;
}
ImagePipelineNodeInvert::ImagePipelineNodeInvert(ImagePipelineNode& source) :
source_(source)
{
}
bool ImagePipelineNodeInvert::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = source_.get_next_row_data(out_data);
auto num_values = get_width() * get_pixel_channels(source_.get_format());
auto depth = get_pixel_format_depth(source_.get_format());
switch (depth) {
case 16: {
auto* data = reinterpret_cast<std::uint16_t*>(out_data);
for (std::size_t i = 0; i < num_values; ++i) {
*data = 0xffff - *data;
data++;
}
break;
}
case 8: {
auto* data = out_data;
for (std::size_t i = 0; i < num_values; ++i) {
*data = 0xff - *data;
data++;
}
break;
}
case 1: {
auto* data = out_data;
auto num_bytes = (num_values + 7) / 8;
for (std::size_t i = 0; i < num_bytes; ++i) {
*data = ~*data;
data++;
}
break;
}
default:
throw SaneException("Unsupported pixel depth");
}
return got_data;
}
ImagePipelineNodeMergeMonoLinesToColor::ImagePipelineNodeMergeMonoLinesToColor(
ImagePipelineNode& source, ColorOrder color_order) :
source_(source),
buffer_(source_.get_row_bytes())
{
DBG_HELPER_ARGS(dbg, "color_order %d", static_cast<unsigned>(color_order));
output_format_ = get_output_format(source_.get_format(), color_order);
}
bool ImagePipelineNodeMergeMonoLinesToColor::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
buffer_.clear();
for (unsigned i = 0; i < 3; ++i) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_row_ptr(i));
}
const auto* row0 = buffer_.get_row_ptr(0);
const auto* row1 = buffer_.get_row_ptr(1);
const auto* row2 = buffer_.get_row_ptr(2);
auto format = source_.get_format();
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch0 = get_raw_channel_from_row(row0, x, 0, format);
std::uint16_t ch1 = get_raw_channel_from_row(row1, x, 0, format);
std::uint16_t ch2 = get_raw_channel_from_row(row2, x, 0, format);
set_raw_channel_to_row(out_data, x, 0, ch0, output_format_);
set_raw_channel_to_row(out_data, x, 1, ch1, output_format_);
set_raw_channel_to_row(out_data, x, 2, ch2, output_format_);
}
return got_data;
}
PixelFormat ImagePipelineNodeMergeMonoLinesToColor::get_output_format(PixelFormat input_format,
ColorOrder order)
{
switch (input_format) {
case PixelFormat::I1: {
if (order == ColorOrder::RGB) {
return PixelFormat::RGB111;
}
break;
}
case PixelFormat::I8: {
if (order == ColorOrder::RGB) {
return PixelFormat::RGB888;
}
if (order == ColorOrder::BGR) {
return PixelFormat::BGR888;
}
break;
}
case PixelFormat::I16: {
if (order == ColorOrder::RGB) {
return PixelFormat::RGB161616;
}
if (order == ColorOrder::BGR) {
return PixelFormat::BGR161616;
}
break;
}
default: break;
}
throw SaneException("Unsupported format combidation %d %d",
static_cast<unsigned>(input_format),
static_cast<unsigned>(order));
}
ImagePipelineNodeSplitMonoLines::ImagePipelineNodeSplitMonoLines(ImagePipelineNode& source) :
source_(source),
next_channel_{0}
{
output_format_ = get_output_format(source_.get_format());
}
bool ImagePipelineNodeSplitMonoLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
if (next_channel_ == 0) {
buffer_.resize(source_.get_row_bytes());
got_data &= source_.get_next_row_data(buffer_.data());
}
const auto* row = buffer_.data();
auto format = source_.get_format();
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch = get_raw_channel_from_row(row, x, next_channel_, format);
set_raw_channel_to_row(out_data, x, 0, ch, output_format_);
}
next_channel_ = (next_channel_ + 1) % 3;
return got_data;
}
PixelFormat ImagePipelineNodeSplitMonoLines::get_output_format(PixelFormat input_format)
{
switch (input_format) {
case PixelFormat::RGB111: return PixelFormat::I1;
case PixelFormat::RGB888:
case PixelFormat::BGR888: return PixelFormat::I8;
case PixelFormat::RGB161616:
case PixelFormat::BGR161616: return PixelFormat::I16;
default: break;
}
throw SaneException("Unsupported input format %d", static_cast<unsigned>(input_format));
}
ImagePipelineNodeMergeColorToGray::ImagePipelineNodeMergeColorToGray(ImagePipelineNode& source) :
source_(source)
{
output_format_ = get_output_format(source_.get_format());
float red_mult = 0.2125f;
float green_mult = 0.7154f;
float blue_mult = 0.0721f;
switch (get_pixel_format_color_order(source_.get_format())) {
case ColorOrder::RGB: {
ch0_mult_ = red_mult;
ch1_mult_ = green_mult;
ch2_mult_ = blue_mult;
break;
}
case ColorOrder::BGR: {
ch0_mult_ = blue_mult;
ch1_mult_ = green_mult;
ch2_mult_ = red_mult;
break;
}
case ColorOrder::GBR: {
ch0_mult_ = green_mult;
ch1_mult_ = blue_mult;
ch2_mult_ = red_mult;
break;
}
default:
throw SaneException("Unknown color order");
}
temp_buffer_.resize(source_.get_row_bytes());
}
bool ImagePipelineNodeMergeColorToGray::get_next_row_data(std::uint8_t* out_data)
{
auto* src_data = temp_buffer_.data();
bool got_data = source_.get_next_row_data(src_data);
auto src_format = source_.get_format();
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch0 = get_raw_channel_from_row(src_data, x, 0, src_format);
std::uint16_t ch1 = get_raw_channel_from_row(src_data, x, 1, src_format);
std::uint16_t ch2 = get_raw_channel_from_row(src_data, x, 2, src_format);
float mono = ch0 * ch0_mult_ + ch1 * ch1_mult_ + ch2 * ch2_mult_;
set_raw_channel_to_row(out_data, x, 0, static_cast<std::uint16_t>(mono), output_format_);
}
return got_data;
}
PixelFormat ImagePipelineNodeMergeColorToGray::get_output_format(PixelFormat input_format)
{
switch (input_format) {
case PixelFormat::RGB111:
return PixelFormat::I1;
case PixelFormat::RGB888:
case PixelFormat::BGR888:
return PixelFormat::I8;
case PixelFormat::RGB161616:
case PixelFormat::BGR161616:
return PixelFormat::I16;
default: break;
}
throw SaneException("Unsupported format %d", static_cast<unsigned>(input_format));
}
ImagePipelineNodeComponentShiftLines::ImagePipelineNodeComponentShiftLines(
ImagePipelineNode& source, unsigned shift_r, unsigned shift_g, unsigned shift_b) :
source_(source),
buffer_{source.get_row_bytes()}
{
DBG_HELPER_ARGS(dbg, "shifts={%d, %d, %d}", shift_r, shift_g, shift_b);
switch (source.get_format()) {
case PixelFormat::RGB111:
case PixelFormat::RGB888:
case PixelFormat::RGB161616: {
channel_shifts_ = { shift_r, shift_g, shift_b };
break;
}
case PixelFormat::BGR888:
case PixelFormat::BGR161616: {
channel_shifts_ = { shift_b, shift_g, shift_r };
break;
}
default:
throw SaneException("Unsupported input format %d",
static_cast<unsigned>(source.get_format()));
}
extra_height_ = *std::max_element(channel_shifts_.begin(), channel_shifts_.end());
height_ = source_.get_height();
if (extra_height_ > height_) {
height_ = 0;
} else {
height_ -= extra_height_;
}
}
bool ImagePipelineNodeComponentShiftLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
if (!buffer_.empty()) {
buffer_.pop_front();
}
while (buffer_.height() < extra_height_ + 1) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_back_row_ptr());
}
auto format = get_format();
const auto* row0 = buffer_.get_row_ptr(channel_shifts_[0]);
const auto* row1 = buffer_.get_row_ptr(channel_shifts_[1]);
const auto* row2 = buffer_.get_row_ptr(channel_shifts_[2]);
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch0 = get_raw_channel_from_row(row0, x, 0, format);
std::uint16_t ch1 = get_raw_channel_from_row(row1, x, 1, format);
std::uint16_t ch2 = get_raw_channel_from_row(row2, x, 2, format);
set_raw_channel_to_row(out_data, x, 0, ch0, format);
set_raw_channel_to_row(out_data, x, 1, ch1, format);
set_raw_channel_to_row(out_data, x, 2, ch2, format);
}
return got_data;
}
ImagePipelineNodePixelShiftLines::ImagePipelineNodePixelShiftLines(
ImagePipelineNode& source, const std::vector<std::size_t>& shifts) :
source_(source),
pixel_shifts_{shifts},
buffer_{get_row_bytes()}
{
extra_height_ = *std::max_element(pixel_shifts_.begin(), pixel_shifts_.end());
height_ = source_.get_height();
if (extra_height_ > height_) {
height_ = 0;
} else {
height_ -= extra_height_;
}
}
bool ImagePipelineNodePixelShiftLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
if (!buffer_.empty()) {
buffer_.pop_front();
}
while (buffer_.height() < extra_height_ + 1) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_back_row_ptr());
}
auto format = get_format();
auto shift_count = pixel_shifts_.size();
std::vector<std::uint8_t*> rows;
rows.resize(shift_count, nullptr);
for (std::size_t irow = 0; irow < shift_count; ++irow) {
rows[irow] = buffer_.get_row_ptr(pixel_shifts_[irow]);
}
for (std::size_t x = 0, width = get_width(); x < width;) {
for (std::size_t irow = 0; irow < shift_count && x < width; irow++, x++) {
RawPixel pixel = get_raw_pixel_from_row(rows[irow], x, format);
set_raw_pixel_to_row(out_data, x, pixel, format);
}
}
return got_data;
}
ImagePipelineNodePixelShiftColumns::ImagePipelineNodePixelShiftColumns(
ImagePipelineNode& source, const std::vector<std::size_t>& shifts) :
source_(source),
pixel_shifts_{shifts}
{
width_ = source_.get_width();
extra_width_ = compute_pixel_shift_extra_width(width_, pixel_shifts_);
if (extra_width_ > width_) {
width_ = 0;
} else {
width_ -= extra_width_;
}
temp_buffer_.resize(source_.get_row_bytes());
}
bool ImagePipelineNodePixelShiftColumns::get_next_row_data(std::uint8_t* out_data)
{
if (width_ == 0) {
throw SaneException("Attempt to read zero-width line");
}
bool got_data = source_.get_next_row_data(temp_buffer_.data());
auto format = get_format();
auto shift_count = pixel_shifts_.size();
for (std::size_t x = 0, width = get_width(); x < width; x += shift_count) {
for (std::size_t ishift = 0; ishift < shift_count && x + ishift < width; ishift++) {
RawPixel pixel = get_raw_pixel_from_row(temp_buffer_.data(), x + pixel_shifts_[ishift],
format);
set_raw_pixel_to_row(out_data, x + ishift, pixel, format);
}
}
return got_data;
}
std::size_t compute_pixel_shift_extra_width(std::size_t source_width,
const std::vector<std::size_t>& shifts)
{
// we iterate across pixel shifts and find the pixel that needs the maximum shift according to
// source_width.
int group_size = shifts.size();
int non_filled_group = source_width % shifts.size();
int extra_width = 0;
for (int i = 0; i < group_size; ++i) {
int shift_groups = shifts[i] / group_size;
int shift_rem = shifts[i] % group_size;
if (shift_rem < non_filled_group) {
shift_groups--;
}
extra_width = std::max(extra_width, shift_groups * group_size + non_filled_group - i);
}
return extra_width;
}
ImagePipelineNodeExtract::ImagePipelineNodeExtract(ImagePipelineNode& source,
std::size_t offset_x, std::size_t offset_y,
std::size_t width, std::size_t height) :
source_(source),
offset_x_{offset_x},
offset_y_{offset_y},
width_{width},
height_{height}
{
cached_line_.resize(source_.get_row_bytes());
}
ImagePipelineNodeExtract::~ImagePipelineNodeExtract() {}
ImagePipelineNodeScaleRows::ImagePipelineNodeScaleRows(ImagePipelineNode& source,
std::size_t width) :
source_(source),
width_{width}
{
cached_line_.resize(source_.get_row_bytes());
}
bool ImagePipelineNodeScaleRows::get_next_row_data(std::uint8_t* out_data)
{
auto src_width = source_.get_width();
auto dst_width = width_;
bool got_data = source_.get_next_row_data(cached_line_.data());
const auto* src_data = cached_line_.data();
auto format = get_format();
auto channels = get_pixel_channels(format);
if (src_width > dst_width) {
// average
std::uint32_t counter = src_width / 2;
unsigned src_x = 0;
for (unsigned dst_x = 0; dst_x < dst_width; dst_x++) {
unsigned avg[3] = {0, 0, 0};
unsigned count = 0;
while (counter < src_width && src_x < src_width) {
counter += dst_width;
for (unsigned c = 0; c < channels; c++) {
avg[c] += get_raw_channel_from_row(src_data, src_x, c, format);
}
src_x++;
count++;
}
counter -= src_width;
for (unsigned c = 0; c < channels; c++) {
set_raw_channel_to_row(out_data, dst_x, c, avg[c] / count, format);
}
}
} else {
// interpolate and copy pixels
std::uint32_t counter = dst_width / 2;
unsigned dst_x = 0;
for (unsigned src_x = 0; src_x < src_width; src_x++) {
unsigned avg[3] = {0, 0, 0};
for (unsigned c = 0; c < channels; c++) {
avg[c] += get_raw_channel_from_row(src_data, src_x, c, format);
}
while ((counter < dst_width || src_x + 1 == src_width) && dst_x < dst_width) {
counter += src_width;
for (unsigned c = 0; c < channels; c++) {
set_raw_channel_to_row(out_data, dst_x, c, avg[c], format);
}
dst_x++;
}
counter -= dst_width;
}
}
return got_data;
}
bool ImagePipelineNodeExtract::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
while (current_line_ < offset_y_) {
got_data &= source_.get_next_row_data(cached_line_.data());
current_line_++;
}
if (current_line_ >= offset_y_ + source_.get_height()) {
std::fill(out_data, out_data + get_row_bytes(), 0);
current_line_++;
return got_data;
}
// now we're sure that the following holds:
// offset_y_ <= current_line_ < offset_y_ + source_.get_height())
got_data &= source_.get_next_row_data(cached_line_.data());
auto format = get_format();
auto x_src_width = source_.get_width() > offset_x_ ? source_.get_width() - offset_x_ : 0;
x_src_width = std::min(x_src_width, width_);
auto x_pad_after = width_ > x_src_width ? width_ - x_src_width : 0;
if (get_pixel_format_depth(format) < 8) {
// we need to copy pixels one-by-one as there's no per-bit addressing
for (std::size_t i = 0; i < x_src_width; ++i) {
auto pixel = get_raw_pixel_from_row(cached_line_.data(), i + offset_x_, format);
set_raw_pixel_to_row(out_data, i, pixel, format);
}
for (std::size_t i = 0; i < x_pad_after; ++i) {
set_raw_pixel_to_row(out_data, i + x_src_width, RawPixel{}, format);
}
} else {
std::size_t bpp = get_pixel_format_depth(format) / 8;
if (x_src_width > 0) {
std::memcpy(out_data, cached_line_.data() + offset_x_ * bpp,
x_src_width * bpp);
}
if (x_pad_after > 0) {
std::fill(out_data + x_src_width * bpp,
out_data + (x_src_width + x_pad_after) * bpp, 0);
}
}
current_line_++;
return got_data;
}
ImagePipelineNodeCalibrate::ImagePipelineNodeCalibrate(ImagePipelineNode& source,
const std::vector<std::uint16_t>& bottom,
const std::vector<std::uint16_t>& top,
std::size_t x_start) :
source_(source)
{
std::size_t size = 0;
if (bottom.size() >= x_start && top.size() >= x_start) {
size = std::min(bottom.size() - x_start, top.size() - x_start);
}
offset_.reserve(size);
multiplier_.reserve(size);
for (std::size_t i = 0; i < size; ++i) {
offset_.push_back(bottom[i + x_start] / 65535.0f);
multiplier_.push_back(65535.0f / (top[i + x_start] - bottom[i + x_start]));
}
}
bool ImagePipelineNodeCalibrate::get_next_row_data(std::uint8_t* out_data)
{
bool ret = source_.get_next_row_data(out_data);
auto format = get_format();
auto depth = get_pixel_format_depth(format);
std::size_t max_value = 1;
switch (depth) {
case 8: max_value = 255; break;
case 16: max_value = 65535; break;
default:
throw SaneException("Unsupported depth for calibration %d", depth);
}
unsigned channels = get_pixel_channels(format);
std::size_t max_calib_i = offset_.size();
std::size_t curr_calib_i = 0;
for (std::size_t x = 0, width = get_width(); x < width && curr_calib_i < max_calib_i; ++x) {
for (unsigned ch = 0; ch < channels && curr_calib_i < max_calib_i; ++ch) {
std::int32_t value = get_raw_channel_from_row(out_data, x, ch, format);
float value_f = static_cast<float>(value) / max_value;
value_f = (value_f - offset_[curr_calib_i]) * multiplier_[curr_calib_i];
value_f = std::round(value_f * max_value);
value = clamp<std::int32_t>(static_cast<std::int32_t>(value_f), 0, max_value);
set_raw_channel_to_row(out_data, x, ch, value, format);
curr_calib_i++;
}
}
return ret;
}
ImagePipelineNodeDebug::ImagePipelineNodeDebug(ImagePipelineNode& source,
const std::string& path) :
source_(source),
path_{path},
buffer_{source_.get_row_bytes()}
{}
ImagePipelineNodeDebug::~ImagePipelineNodeDebug()
{
catch_all_exceptions(__func__, [&]()
{
if (buffer_.empty())
return;
auto format = get_format();
buffer_.linearize();
write_tiff_file(path_, buffer_.get_front_row_ptr(), get_pixel_format_depth(format),
get_pixel_channels(format), get_width(), buffer_.height());
});
}
bool ImagePipelineNodeDebug::get_next_row_data(std::uint8_t* out_data)
{
buffer_.push_back();
bool got_data = source_.get_next_row_data(out_data);
std::memcpy(buffer_.get_back_row_ptr(), out_data, get_row_bytes());
return got_data;
}
std::size_t ImagePipelineStack::get_input_width() const
{
ensure_node_exists();
return nodes_.front()->get_width();
}
std::size_t ImagePipelineStack::get_input_height() const
{
ensure_node_exists();
return nodes_.front()->get_height();
}
PixelFormat ImagePipelineStack::get_input_format() const
{
ensure_node_exists();
return nodes_.front()->get_format();
}
std::size_t ImagePipelineStack::get_input_row_bytes() const
{
ensure_node_exists();
return nodes_.front()->get_row_bytes();
}
std::size_t ImagePipelineStack::get_output_width() const
{
ensure_node_exists();
return nodes_.back()->get_width();
}
std::size_t ImagePipelineStack::get_output_height() const
{
ensure_node_exists();
return nodes_.back()->get_height();
}
PixelFormat ImagePipelineStack::get_output_format() const
{
ensure_node_exists();
return nodes_.back()->get_format();
}
std::size_t ImagePipelineStack::get_output_row_bytes() const
{
ensure_node_exists();
return nodes_.back()->get_row_bytes();
}
void ImagePipelineStack::ensure_node_exists() const
{
if (nodes_.empty()) {
throw SaneException("The pipeline does not contain any nodes");
}
}
void ImagePipelineStack::clear()
{
// we need to destroy the nodes back to front, so that the destructors still have valid
// references to sources
for (auto it = nodes_.rbegin(); it != nodes_.rend(); ++it) {
it->reset();
}
nodes_.clear();
}
std::vector<std::uint8_t> ImagePipelineStack::get_all_data()
{
auto row_bytes = get_output_row_bytes();
auto height = get_output_height();
std::vector<std::uint8_t> ret;
ret.resize(row_bytes * height);
for (std::size_t i = 0; i < height; ++i) {
get_next_row_data(ret.data() + row_bytes * i);
}
return ret;
}
Image ImagePipelineStack::get_image()
{
auto height = get_output_height();
Image ret;
ret.resize(get_output_width(), height, get_output_format());
for (std::size_t i = 0; i < height; ++i) {
get_next_row_data(ret.get_row_ptr(i));
}
return ret;
}
} // namespace genesys