sane-project-backends/backend/genesys/gl843.cpp

1792 wiersze
62 KiB
C++

/* sane - Scanner Access Now Easy.
Copyright (C) 2010-2013 Stéphane Voltz <stef.dev@free.fr>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#define DEBUG_DECLARE_ONLY
#include "gl843_registers.h"
#include "gl843.h"
#include "test_settings.h"
#include <string>
#include <vector>
namespace genesys {
namespace gl843 {
/**
* compute the step multiplier used
*/
static int gl843_get_step_multiplier(Genesys_Register_Set* regs)
{
switch (regs->get8(REG_0x9D) & 0x0c) {
case 0x04: return 2;
case 0x08: return 4;
default: return 1;
}
}
/** @brief set all registers to default values .
* This function is called only once at the beginning and
* fills register startup values for registers reused across scans.
* Those that are rarely modified or not modified are written
* individually.
* @param dev device structure holding register set to initialize
*/
static void
gl843_init_registers (Genesys_Device * dev)
{
// Within this function SENSOR_DEF marker documents that a register is part
// of the sensors definition and the actual value is set in
// scanner_setup_sensor().
// 0x6c, 0x6d, 0x6e, 0x6f, 0xa6, 0xa7, 0xa8, 0xa9 are defined in the Gpo sensor struct
DBG_HELPER(dbg);
dev->reg.clear();
dev->reg.init_reg(0x01, 0x00);
dev->reg.init_reg(0x02, 0x78);
dev->reg.init_reg(0x03, 0x1f);
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x03, 0x1d);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x03, 0x1c);
}
dev->reg.init_reg(0x04, 0x10);
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x04, 0x22);
}
// fine tune upon device description
dev->reg.init_reg(0x05, 0x80);
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x05, 0x08);
}
auto initial_scan_method = dev->model->default_method;
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8600F)
{
initial_scan_method = ScanMethod::TRANSPARENCY;
}
const auto& sensor = sanei_genesys_find_sensor_any(dev);
const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, sensor.full_resolution,
3, initial_scan_method);
sanei_genesys_set_dpihw(dev->reg, dpihw_sensor.register_dpihw);
// TODO: on 8600F the windows driver turns off GAIN4 which is recommended
dev->reg.init_reg(0x06, 0xd8); /* SCANMOD=110, PWRBIT and GAIN4 */
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x06, 0xd8); /* SCANMOD=110, PWRBIT and GAIN4 */
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I) {
dev->reg.init_reg(0x06, 0xd0);
}
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x06, 0xf0); /* SCANMOD=111, PWRBIT and no GAIN4 */
}
dev->reg.init_reg(0x08, 0x00);
dev->reg.init_reg(0x09, 0x00);
dev->reg.init_reg(0x0a, 0x00);
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x0a, 0x18);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x0a, 0x10);
}
// This register controls clock and RAM settings and is further modified in
// gl843_boot
dev->reg.init_reg(0x0b, 0x6a);
if (dev->model->model_id == ModelId::CANON_4400F) {
dev->reg.init_reg(0x0b, 0x69); // 16M only
}
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x0b, 0x89);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I) {
dev->reg.init_reg(0x0b, 0x2a);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) {
dev->reg.init_reg(0x0b, 0x4a);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x0b, 0x69);
}
if (dev->model->model_id != ModelId::CANON_8400F &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300)
{
dev->reg.init_reg(0x0c, 0x00);
}
// EXPR[0:15], EXPG[0:15], EXPB[0:15]: Exposure time settings.
dev->reg.init_reg(0x10, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x11, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x12, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x13, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x14, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x15, 0x00); // SENSOR_DEF
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8600F)
{
dev->reg.set16(REG_EXPR, 0x9c40);
dev->reg.set16(REG_EXPG, 0x9c40);
dev->reg.set16(REG_EXPB, 0x9c40);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.set16(REG_EXPR, 0x2c09);
dev->reg.set16(REG_EXPG, 0x22b8);
dev->reg.set16(REG_EXPB, 0x10f0);
}
// CCD signal settings.
dev->reg.init_reg(0x16, 0x33); // SENSOR_DEF
dev->reg.init_reg(0x17, 0x1c); // SENSOR_DEF
dev->reg.init_reg(0x18, 0x10); // SENSOR_DEF
// EXPDMY[0:7]: Exposure time of dummy lines.
dev->reg.init_reg(0x19, 0x2a); // SENSOR_DEF
// Various CCD clock settings.
dev->reg.init_reg(0x1a, 0x04); // SENSOR_DEF
dev->reg.init_reg(0x1b, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x1c, 0x20); // SENSOR_DEF
dev->reg.init_reg(0x1d, 0x04); // SENSOR_DEF
dev->reg.init_reg(0x1e, 0x10);
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8600F)
{
dev->reg.init_reg(0x1e, 0x20);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x1e, 0xa0);
}
dev->reg.init_reg(0x1f, 0x01);
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x1f, 0xff);
}
dev->reg.init_reg(0x20, 0x10);
dev->reg.init_reg(0x21, 0x04);
dev->reg.init_reg(0x22, 0x10);
dev->reg.init_reg(0x23, 0x10);
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x22, 0xc8);
dev->reg.init_reg(0x23, 0xc8);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x22, 0x50);
dev->reg.init_reg(0x23, 0x50);
}
dev->reg.init_reg(0x24, 0x04);
dev->reg.init_reg(0x25, 0x00);
dev->reg.init_reg(0x26, 0x00);
dev->reg.init_reg(0x27, 0x00);
dev->reg.init_reg(0x2c, 0x02);
dev->reg.init_reg(0x2d, 0x58);
// BWHI[0:7]: high level of black and white threshold
dev->reg.init_reg(0x2e, 0x80);
// BWLOW[0:7]: low level of black and white threshold
dev->reg.init_reg(0x2f, 0x80);
dev->reg.init_reg(0x30, 0x00);
dev->reg.init_reg(0x31, 0x14);
dev->reg.init_reg(0x32, 0x27);
dev->reg.init_reg(0x33, 0xec);
// DUMMY: CCD dummy and optically black pixel count
dev->reg.init_reg(0x34, 0x24);
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x34, 0x14);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x34, 0x3c);
}
// MAXWD: If available buffer size is less than 2*MAXWD words, then
// "buffer full" state will be set.
dev->reg.init_reg(0x35, 0x00);
dev->reg.init_reg(0x36, 0xff);
dev->reg.init_reg(0x37, 0xff);
// LPERIOD: Line period or exposure time for CCD or CIS.
dev->reg.init_reg(0x38, 0x55); // SENSOR_DEF
dev->reg.init_reg(0x39, 0xf0); // SENSOR_DEF
// FEEDL[0:24]: The number of steps of motor movement.
dev->reg.init_reg(0x3d, 0x00);
dev->reg.init_reg(0x3e, 0x00);
dev->reg.init_reg(0x3f, 0x01);
// Latch points for high and low bytes of R, G and B channels of AFE. If
// multiple clocks per pixel are consumed, then the setting defines during
// which clock the corresponding value will be read.
// RHI[0:4]: The latch point for high byte of R channel.
// RLOW[0:4]: The latch point for low byte of R channel.
// GHI[0:4]: The latch point for high byte of G channel.
// GLOW[0:4]: The latch point for low byte of G channel.
// BHI[0:4]: The latch point for high byte of B channel.
// BLOW[0:4]: The latch point for low byte of B channel.
dev->reg.init_reg(0x52, 0x01); // SENSOR_DEF
dev->reg.init_reg(0x53, 0x04); // SENSOR_DEF
dev->reg.init_reg(0x54, 0x07); // SENSOR_DEF
dev->reg.init_reg(0x55, 0x0a); // SENSOR_DEF
dev->reg.init_reg(0x56, 0x0d); // SENSOR_DEF
dev->reg.init_reg(0x57, 0x10); // SENSOR_DEF
// VSMP[0:4]: The position of the image sampling pulse for AFE in cycles.
// VSMPW[0:2]: The length of the image sampling pulse for AFE in cycles.
dev->reg.init_reg(0x58, 0x1b); // SENSOR_DEF
dev->reg.init_reg(0x59, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x5a, 0x40); // SENSOR_DEF
// 0x5b-0x5c: GMMADDR[0:15] address for gamma or motor tables download
// SENSOR_DEF
// DECSEL[0:2]: The number of deceleration steps after touching home sensor
// STOPTIM[0:4]: The stop duration between change of directions in
// backtracking
dev->reg.init_reg(0x5e, 0x23);
if (dev->model->model_id == ModelId::CANON_4400F) {
dev->reg.init_reg(0x5e, 0x3f);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x5e, 0x85);
}
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x5e, 0x1f);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x5e, 0x01);
}
//FMOVDEC: The number of deceleration steps in table 5 for auto-go-home
dev->reg.init_reg(0x5f, 0x01);
if (dev->model->model_id == ModelId::CANON_4400F) {
dev->reg.init_reg(0x5f, 0xf0);
}
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x5f, 0xf0);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x5f, 0x01);
}
// Z1MOD[0:20]
dev->reg.init_reg(0x60, 0x00);
dev->reg.init_reg(0x61, 0x00);
dev->reg.init_reg(0x62, 0x00);
// Z2MOD[0:20]
dev->reg.init_reg(0x63, 0x00);
dev->reg.init_reg(0x64, 0x00);
dev->reg.init_reg(0x65, 0x00);
// STEPSEL[0:1]. Motor movement step mode selection for tables 1-3 in
// scanning mode.
// MTRPWM[0:5]. Motor phase PWM duty cycle setting for tables 1-3
dev->reg.init_reg(0x67, 0x7f); // MOTOR_PROFILE
// FSTPSEL[0:1]: Motor movement step mode selection for tables 4-5 in
// command mode.
// FASTPWM[5:0]: Motor phase PWM duty cycle setting for tables 4-5
dev->reg.init_reg(0x68, 0x7f); // MOTOR_PROFILE
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300) {
dev->reg.init_reg(0x67, 0x80);
dev->reg.init_reg(0x68, 0x80);
}
// FSHDEC[0:7]: The number of deceleration steps after scanning is finished
// (table 3)
dev->reg.init_reg(0x69, 0x01); // MOTOR_PROFILE
// FMOVNO[0:7] The number of acceleration or deceleration steps for fast
// moving (table 4)
dev->reg.init_reg(0x6a, 0x04); // MOTOR_PROFILE
// GPIO-related register bits
dev->reg.init_reg(0x6b, 0x30);
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8600F)
{
dev->reg.init_reg(0x6b, 0x72);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x6b, 0xb1);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x6b, 0xf4);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x6b, 0x31);
}
// 0x6c, 0x6d, 0x6e, 0x6f are set according to gpio tables. See
// gl843_init_gpio.
// RSH[0:4]: The position of rising edge of CCD RS signal in cycles
// RSL[0:4]: The position of falling edge of CCD RS signal in cycles
// CPH[0:4]: The position of rising edge of CCD CP signal in cycles.
// CPL[0:4]: The position of falling edge of CCD CP signal in cycles
dev->reg.init_reg(0x70, 0x01); // SENSOR_DEF
dev->reg.init_reg(0x71, 0x03); // SENSOR_DEF
dev->reg.init_reg(0x72, 0x04); // SENSOR_DEF
dev->reg.init_reg(0x73, 0x05); // SENSOR_DEF
if (dev->model->model_id == ModelId::CANON_4400F) {
dev->reg.init_reg(0x70, 0x01);
dev->reg.init_reg(0x71, 0x03);
dev->reg.init_reg(0x72, 0x01);
dev->reg.init_reg(0x73, 0x03);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x70, 0x01);
dev->reg.init_reg(0x71, 0x03);
dev->reg.init_reg(0x72, 0x03);
dev->reg.init_reg(0x73, 0x04);
}
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x70, 0x00);
dev->reg.init_reg(0x71, 0x02);
dev->reg.init_reg(0x72, 0x02);
dev->reg.init_reg(0x73, 0x04);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x70, 0x00);
dev->reg.init_reg(0x71, 0x02);
dev->reg.init_reg(0x72, 0x00);
dev->reg.init_reg(0x73, 0x00);
}
// CK1MAP[0:17], CK3MAP[0:17], CK4MAP[0:17]: CCD clock bit mapping setting.
dev->reg.init_reg(0x74, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x75, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x76, 0x3c); // SENSOR_DEF
dev->reg.init_reg(0x77, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x78, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x79, 0x9f); // SENSOR_DEF
dev->reg.init_reg(0x7a, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x7b, 0x00); // SENSOR_DEF
dev->reg.init_reg(0x7c, 0x55); // SENSOR_DEF
// various AFE settings
dev->reg.init_reg(0x7d, 0x00);
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x7d, 0x20);
}
// GPOLED[x]: LED vs GPIO settings
dev->reg.init_reg(0x7e, 0x00);
// BSMPDLY, VSMPDLY
// LEDCNT[0:1]: Controls led blinking and its period
dev->reg.init_reg(0x7f, 0x00);
// VRHOME, VRMOVE, VRBACK, VRSCAN: Vref settings of the motor driver IC for
// moving in various situations.
dev->reg.init_reg(0x80, 0x00); // MOTOR_PROFILE
if (dev->model->model_id == ModelId::CANON_4400F) {
dev->reg.init_reg(0x80, 0x0c);
}
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->reg.init_reg(0x80, 0x28);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x80, 0x50);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x80, 0x0f);
}
if (dev->model->model_id != ModelId::CANON_4400F) {
dev->reg.init_reg(0x81, 0x00);
dev->reg.init_reg(0x82, 0x00);
dev->reg.init_reg(0x83, 0x00);
dev->reg.init_reg(0x84, 0x00);
dev->reg.init_reg(0x85, 0x00);
dev->reg.init_reg(0x86, 0x00);
}
dev->reg.init_reg(0x87, 0x00);
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8400F ||
dev->model->model_id == ModelId::CANON_8600F)
{
dev->reg.init_reg(0x87, 0x02);
}
// MTRPLS[0:7]: The width of the ADF motor trigger signal pulse.
if (dev->model->model_id != ModelId::CANON_8400F &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300)
{
dev->reg.init_reg(0x94, 0xff);
}
// 0x95-0x97: SCANLEN[0:19]: Controls when paper jam bit is set in sheetfed
// scanners.
// ONDUR[0:15]: The duration of PWM ON phase for LAMP control
// OFFDUR[0:15]: The duration of PWM OFF phase for LAMP control
// both of the above are in system clocks
if (dev->model->model_id == ModelId::CANON_8600F) {
dev->reg.init_reg(0x98, 0x00);
dev->reg.init_reg(0x99, 0x00);
dev->reg.init_reg(0x9a, 0x00);
dev->reg.init_reg(0x9b, 0x00);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
// TODO: move to set for scan
dev->reg.init_reg(0x98, 0x03);
dev->reg.init_reg(0x99, 0x30);
dev->reg.init_reg(0x9a, 0x01);
dev->reg.init_reg(0x9b, 0x80);
}
// RMADLY[0:1], MOTLAG, CMODE, STEPTIM, MULDMYLN, IFRS
dev->reg.init_reg(0x9d, 0x04);
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->reg.init_reg(0x9d, 0x00);
}
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8400F ||
dev->model->model_id == ModelId::CANON_8600F ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I ||
dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0x9d, 0x08); // sets the multiplier for slope tables
}
// SEL3INV, TGSTIME[0:2], TGWTIME[0:2]
if (dev->model->model_id != ModelId::CANON_8400F &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300)
{
dev->reg.init_reg(0x9e, 0x00); // SENSOR_DEF
}
if (dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) {
dev->reg.init_reg(0xa2, 0x0f);
}
// RFHSET[0:4]: Refresh time of SDRAM in units of 2us
if (dev->model->model_id == ModelId::CANON_4400F ||
dev->model->model_id == ModelId::CANON_8600F)
{
dev->reg.init_reg(0xa2, 0x1f);
}
// 0xa6-0xa9: controls gpio, see gl843_gpio_init
// not documented
if (dev->model->model_id != ModelId::CANON_4400F &&
dev->model->model_id != ModelId::CANON_8400F &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300)
{
dev->reg.init_reg(0xaa, 0x00);
}
// GPOM9, MULSTOP[0-2], NODECEL, TB3TB1, TB5TB2, FIX16CLK.
if (dev->model->model_id != ModelId::CANON_8400F &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I &&
dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) {
dev->reg.init_reg(0xab, 0x50);
}
if (dev->model->model_id == ModelId::CANON_4400F) {
dev->reg.init_reg(0xab, 0x00);
}
if (dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::CANON_8600F ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0xab, 0x40);
}
// VRHOME[3:2], VRMOVE[3:2], VRBACK[3:2]: Vref setting of the motor driver IC
// for various situations.
if (dev->model->model_id == ModelId::CANON_8600F ||
dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C)
{
dev->reg.init_reg(0xac, 0x00);
}
if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I) {
std::uint8_t data[32] = {
0x8c, 0x8f, 0xc9, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x6a, 0x73, 0x63, 0x68, 0x69, 0x65, 0x6e, 0x00,
};
dev->interface->write_buffer(0x3c, 0x3ff000, data, 32);
}
}
static void gl843_set_ad_fe(Genesys_Device* dev)
{
for (const auto& reg : dev->frontend.regs) {
dev->interface->write_fe_register(reg.address, reg.value);
}
}
// Set values of analog frontend
void CommandSetGl843::set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor,
std::uint8_t set) const
{
DBG_HELPER_ARGS(dbg, "%s", set == AFE_INIT ? "init" :
set == AFE_SET ? "set" :
set == AFE_POWER_SAVE ? "powersave" : "huh?");
(void) sensor;
if (set == AFE_INIT) {
dev->frontend = dev->frontend_initial;
}
// check analog frontend type
// FIXME: looks like we write to that register with initial data
std::uint8_t fe_type = dev->interface->read_register(REG_0x04) & REG_0x04_FESET;
if (fe_type == 2) {
gl843_set_ad_fe(dev);
return;
}
if (fe_type != 0) {
throw SaneException(SANE_STATUS_UNSUPPORTED, "unsupported frontend type %d", fe_type);
}
for (unsigned i = 1; i <= 3; i++) {
dev->interface->write_fe_register(i, dev->frontend.regs.get_value(0x00 + i));
}
for (const auto& reg : sensor.custom_fe_regs) {
dev->interface->write_fe_register(reg.address, reg.value);
}
for (unsigned i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x20 + i, dev->frontend.get_offset(i));
}
if (dev->model->sensor_id == SensorId::CCD_KVSS080) {
for (unsigned i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x24 + i, dev->frontend.regs.get_value(0x24 + i));
}
}
for (unsigned i = 0; i < 3; i++) {
dev->interface->write_fe_register(0x28 + i, dev->frontend.get_gain(i));
}
}
static void gl843_init_motor_regs_scan(Genesys_Device* dev,
const Genesys_Sensor& sensor,
const ScanSession& session,
Genesys_Register_Set* reg,
const MotorProfile& motor_profile,
unsigned int exposure,
unsigned scan_yres,
unsigned int scan_lines,
unsigned int scan_dummy,
unsigned int feed_steps,
ScanFlag flags)
{
DBG_HELPER_ARGS(dbg, "exposure=%d, scan_yres=%d, step_type=%d, scan_lines=%d, scan_dummy=%d, "
"feed_steps=%d, flags=%x",
exposure, scan_yres, static_cast<unsigned>(motor_profile.step_type),
scan_lines, scan_dummy, feed_steps, static_cast<unsigned>(flags));
unsigned feedl, dist;
/* get step multiplier */
unsigned step_multiplier = gl843_get_step_multiplier (reg);
bool use_fast_fed = false;
if ((scan_yres >= 300 && feed_steps > 900) || (has_flag(flags, ScanFlag::FEEDING))) {
use_fast_fed = true;
}
if (has_flag(dev->model->flags, ModelFlag::DISABLE_FAST_FEEDING)) {
use_fast_fed = false;
}
reg->set24(REG_LINCNT, scan_lines);
reg->set8(REG_0x02, 0);
sanei_genesys_set_motor_power(*reg, true);
std::uint8_t reg02 = reg->get8(REG_0x02);
if (use_fast_fed) {
reg02 |= REG_0x02_FASTFED;
} else {
reg02 &= ~REG_0x02_FASTFED;
}
// in case of automatic go home, move until home sensor
if (has_flag(flags, ScanFlag::AUTO_GO_HOME)) {
reg02 |= REG_0x02_AGOHOME | REG_0x02_NOTHOME;
}
/* disable backtracking */
if (has_flag(flags, ScanFlag::DISABLE_BUFFER_FULL_MOVE) ||
(scan_yres>=2400 && dev->model->model_id != ModelId::CANON_4400F) ||
(scan_yres>=sensor.full_resolution))
{
reg02 |= REG_0x02_ACDCDIS;
}
if (has_flag(flags, ScanFlag::REVERSE)) {
reg02 |= REG_0x02_MTRREV;
} else {
reg02 &= ~REG_0x02_MTRREV;
}
reg->set8(REG_0x02, reg02);
// scan and backtracking slope table
auto scan_table = create_slope_table(dev->model->asic_type, dev->motor, scan_yres, exposure,
step_multiplier, motor_profile);
scanner_send_slope_table(dev, sensor, SCAN_TABLE, scan_table.table);
scanner_send_slope_table(dev, sensor, BACKTRACK_TABLE, scan_table.table);
scanner_send_slope_table(dev, sensor, STOP_TABLE, scan_table.table);
reg->set8(REG_STEPNO, scan_table.table.size() / step_multiplier);
reg->set8(REG_FASTNO, scan_table.table.size() / step_multiplier);
reg->set8(REG_FSHDEC, scan_table.table.size() / step_multiplier);
// fast table
const auto* fast_profile = get_motor_profile_ptr(dev->motor.fast_profiles, 0, session);
if (fast_profile == nullptr) {
fast_profile = &motor_profile;
}
auto fast_table = create_slope_table_fastest(dev->model->asic_type, step_multiplier,
*fast_profile);
scanner_send_slope_table(dev, sensor, FAST_TABLE, fast_table.table);
scanner_send_slope_table(dev, sensor, HOME_TABLE, fast_table.table);
reg->set8(REG_FMOVNO, fast_table.table.size() / step_multiplier);
if (motor_profile.motor_vref != -1 && fast_profile->motor_vref != 1) {
std::uint8_t vref = 0;
vref |= (motor_profile.motor_vref << REG_0x80S_TABLE1_NORMAL) & REG_0x80_TABLE1_NORMAL;
vref |= (motor_profile.motor_vref << REG_0x80S_TABLE2_BACK) & REG_0x80_TABLE2_BACK;
vref |= (fast_profile->motor_vref << REG_0x80S_TABLE4_FAST) & REG_0x80_TABLE4_FAST;
vref |= (fast_profile->motor_vref << REG_0x80S_TABLE5_GO_HOME) & REG_0x80_TABLE5_GO_HOME;
reg->set8(REG_0x80, vref);
}
/* subtract acceleration distance from feedl */
feedl=feed_steps;
feedl <<= static_cast<unsigned>(motor_profile.step_type);
dist = scan_table.table.size() / step_multiplier;
if (use_fast_fed) {
dist += (fast_table.table.size() / step_multiplier) * 2;
}
/* get sure when don't insane value : XXX STEF XXX in this case we should
* fall back to single table move */
if (dist < feedl) {
feedl -= dist;
} else {
feedl = 1;
}
reg->set24(REG_FEEDL, feedl);
// doesn't seem to matter that much
std::uint32_t z1, z2;
sanei_genesys_calculate_zmod(use_fast_fed,
exposure,
scan_table.table,
scan_table.table.size() / step_multiplier,
feedl,
scan_table.table.size() / step_multiplier,
&z1,
&z2);
if(scan_yres>600)
{
z1=0;
z2=0;
}
reg->set24(REG_Z1MOD, z1);
reg->set24(REG_Z2MOD, z2);
reg->set8_mask(REG_0x1E, scan_dummy, 0x0f);
reg->set8_mask(REG_0x67, static_cast<unsigned>(motor_profile.step_type) << REG_0x67S_STEPSEL, 0xc0);
reg->set8_mask(REG_0x68, static_cast<unsigned>(fast_profile->step_type) << REG_0x68S_FSTPSEL, 0xc0);
// steps for STOP table
reg->set8(REG_FMOVDEC, fast_table.table.size() / step_multiplier);
if (dev->model->model_id == ModelId::PANASONIC_KV_SS080 ||
dev->model->model_id == ModelId::HP_SCANJET_4850C ||
dev->model->model_id == ModelId::HP_SCANJET_G4010 ||
dev->model->model_id == ModelId::HP_SCANJET_G4050 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
// FIXME: take this information from motor struct
std::uint8_t reg_vref = reg->get8(0x80);
reg_vref = 0x50;
unsigned coeff = sensor.full_resolution / scan_yres;
if (dev->model->motor_id == MotorId::KVSS080) {
if (coeff >= 1) {
reg_vref |= 0x05;
}
} else {
switch (coeff) {
case 4:
reg_vref |= 0x0a;
break;
case 2:
reg_vref |= 0x0f;
break;
case 1:
reg_vref |= 0x0f;
break;
}
}
reg->set8(REG_0x80, reg_vref);
}
}
/** @brief setup optical related registers
* start and pixels are expressed in optical sensor resolution coordinate
* space.
* @param dev device to use
* @param reg registers to set up
* @param exposure exposure time to use
* @param used_res scanning resolution used, may differ from
* scan's one
* @param start logical start pixel coordinate
* @param pixels logical number of pixels to use
* @param channels number of color channels used (1 or 3)
* @param depth bit depth of the scan (1, 8 or 16 bits)
* @param color_filter to choose the color channel used in gray scans
* @param flags to drive specific settings such no calibration, XPA use ...
*/
static void gl843_init_optical_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg, unsigned int exposure,
const ScanSession& session)
{
DBG_HELPER_ARGS(dbg, "exposure=%d", exposure);
unsigned int tgtime; /**> exposure time multiplier */
/* tgtime */
tgtime = exposure / 65536 + 1;
DBG(DBG_io2, "%s: tgtime=%d\n", __func__, tgtime);
// sensor parameters
scanner_setup_sensor(*dev, sensor, *reg);
dev->cmd_set->set_fe(dev, sensor, AFE_SET);
/* enable shading */
regs_set_optical_off(dev->model->asic_type, *reg);
if (has_flag(session.params.flags, ScanFlag::DISABLE_SHADING) ||
has_flag(dev->model->flags, ModelFlag::DISABLE_SHADING_CALIBRATION) ||
session.use_host_side_calib)
{
reg->find_reg(REG_0x01).value &= ~REG_0x01_DVDSET;
} else {
reg->find_reg(REG_0x01).value |= REG_0x01_DVDSET;
}
bool use_shdarea = false;
if (dev->model->model_id == ModelId::CANON_4400F) {
use_shdarea = session.params.xres <= 600;
} else if (dev->model->model_id == ModelId::CANON_8400F) {
use_shdarea = session.params.xres <= 400;
} else if (dev->model->model_id == ModelId::CANON_8600F ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
use_shdarea = true;
} else {
use_shdarea = session.params.xres > 600;
}
if (use_shdarea) {
reg->find_reg(REG_0x01).value |= REG_0x01_SHDAREA;
} else {
reg->find_reg(REG_0x01).value &= ~REG_0x01_SHDAREA;
}
if (dev->model->model_id == ModelId::CANON_8600F) {
reg->find_reg(REG_0x03).value |= REG_0x03_AVEENB;
} else {
reg->find_reg(REG_0x03).value &= ~REG_0x03_AVEENB;
}
// FIXME: we probably don't need to set exposure to registers at this point. It was this way
// before a refactor.
sanei_genesys_set_lamp_power(dev, sensor, *reg,
!has_flag(session.params.flags, ScanFlag::DISABLE_LAMP));
/* select XPA */
reg->find_reg(REG_0x03).value &= ~REG_0x03_XPASEL;
if (has_flag(session.params.flags, ScanFlag::USE_XPA)) {
reg->find_reg(REG_0x03).value |= REG_0x03_XPASEL;
}
reg->state.is_xpa_on = has_flag(session.params.flags, ScanFlag::USE_XPA);
// BW threshold
reg->set8(REG_0x2E, 0x7f);
reg->set8(REG_0x2F, 0x7f);
/* monochrome / color scan */
switch (session.params.depth) {
case 8:
reg->find_reg(REG_0x04).value &= ~(REG_0x04_LINEART | REG_0x04_BITSET);
break;
case 16:
reg->find_reg(REG_0x04).value &= ~REG_0x04_LINEART;
reg->find_reg(REG_0x04).value |= REG_0x04_BITSET;
break;
}
reg->find_reg(REG_0x04).value &= ~(REG_0x04_FILTER | REG_0x04_AFEMOD);
if (session.params.channels == 1)
{
switch (session.params.color_filter)
{
case ColorFilter::RED:
reg->find_reg(REG_0x04).value |= 0x14;
break;
case ColorFilter::BLUE:
reg->find_reg(REG_0x04).value |= 0x1c;
break;
case ColorFilter::GREEN:
reg->find_reg(REG_0x04).value |= 0x18;
break;
default:
break; // should not happen
}
} else {
switch (dev->frontend.layout.type) {
case FrontendType::WOLFSON:
reg->find_reg(REG_0x04).value |= 0x10; // pixel by pixel
break;
case FrontendType::ANALOG_DEVICES:
reg->find_reg(REG_0x04).value |= 0x20; // slow color pixel by pixel
break;
default:
throw SaneException("Invalid frontend type %d",
static_cast<unsigned>(dev->frontend.layout.type));
}
}
const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, session.output_resolution,
session.params.channels,
session.params.scan_method);
sanei_genesys_set_dpihw(*reg, dpihw_sensor.register_dpihw);
if (should_enable_gamma(session, sensor)) {
reg->find_reg(REG_0x05).value |= REG_0x05_GMMENB;
} else {
reg->find_reg(REG_0x05).value &= ~REG_0x05_GMMENB;
}
reg->set16(REG_DPISET, sensor.register_dpiset);
reg->set16(REG_STRPIXEL, session.pixel_startx);
reg->set16(REG_ENDPIXEL, session.pixel_endx);
/* MAXWD is expressed in 2 words unit */
/* nousedspace = (mem_bank_range * 1024 / 256 -1 ) * 4; */
// BUG: the division by optical and full resolution factor likely does not make sense
reg->set24(REG_MAXWD, (session.output_line_bytes *
session.optical_resolution / session.full_resolution) >> 1);
reg->set16(REG_LPERIOD, exposure / tgtime);
reg->set8(REG_DUMMY, sensor.dummy_pixel);
}
void CommandSetGl843::init_regs_for_scan_session(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg,
const ScanSession& session) const
{
DBG_HELPER(dbg);
session.assert_computed();
int exposure;
int slope_dpi = 0;
int dummy = 0;
/* we enable true gray for cis scanners only, and just when doing
* scan since color calibration is OK for this mode
*/
dummy = 0;
if (dev->model->model_id == ModelId::CANON_4400F && session.params.yres == 1200) {
dummy = 1;
}
/* slope_dpi */
/* cis color scan is effectively a gray scan with 3 gray lines per color line and a FILTER of 0 */
if (dev->model->is_cis)
slope_dpi = session.params.yres * session.params.channels;
else
slope_dpi = session.params.yres;
slope_dpi = slope_dpi * (1 + dummy);
/* scan_step_type */
exposure = sensor.exposure_lperiod;
if (exposure < 0) {
throw std::runtime_error("Exposure not defined in sensor definition");
}
const auto& motor_profile = get_motor_profile(dev->motor.profiles, exposure, session);
// now _LOGICAL_ optical values used are known, setup registers
gl843_init_optical_regs_scan(dev, sensor, reg, exposure, session);
gl843_init_motor_regs_scan(dev, sensor, session, reg, motor_profile, exposure, slope_dpi,
session.optical_line_count, dummy, session.params.starty,
session.params.flags);
setup_image_pipeline(*dev, session);
dev->read_active = true;
dev->session = session;
dev->total_bytes_read = 0;
dev->total_bytes_to_read = (size_t)session.output_line_bytes_requested * (size_t)session.params.lines;
DBG(DBG_info, "%s: total bytes to send = %zu\n", __func__, dev->total_bytes_to_read);
}
ScanSession CommandSetGl843::calculate_scan_session(const Genesys_Device* dev,
const Genesys_Sensor& sensor,
const Genesys_Settings& settings) const
{
DBG_HELPER(dbg);
debug_dump(DBG_info, settings);
ScanFlag flags = ScanFlag::NONE;
float move = 0.0f;
if (settings.scan_method == ScanMethod::TRANSPARENCY ||
settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
// note: scanner_move_to_ta() function has already been called and the sensor is at the
// transparency adapter
if (!dev->ignore_offsets) {
move = dev->model->y_offset_ta - dev->model->y_offset_sensor_to_ta;
}
flags |= ScanFlag::USE_XPA;
} else {
if (!dev->ignore_offsets) {
move = dev->model->y_offset;
}
}
move += settings.tl_y;
int move_dpi = dev->motor.base_ydpi;
move = static_cast<float>((move * move_dpi) / MM_PER_INCH);
float start = 0.0f;
if (settings.scan_method==ScanMethod::TRANSPARENCY ||
settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
start = dev->model->x_offset_ta;
} else {
start = dev->model->x_offset;
}
start = start + settings.tl_x;
start = static_cast<float>((start * settings.xres) / MM_PER_INCH);
ScanSession session;
session.params.xres = settings.xres;
session.params.yres = settings.yres;
session.params.startx = static_cast<unsigned>(start);
session.params.starty = static_cast<unsigned>(move);
session.params.pixels = settings.pixels;
session.params.requested_pixels = settings.requested_pixels;
session.params.lines = settings.lines;
session.params.depth = settings.depth;
session.params.channels = settings.get_channels();
session.params.scan_method = settings.scan_method;
session.params.scan_mode = settings.scan_mode;
session.params.color_filter = settings.color_filter;
session.params.contrast_adjustment = settings.contrast;
session.params.brightness_adjustment = settings.brightness;
session.params.flags = flags;
compute_session(dev, session, sensor);
return session;
}
/**
* for fast power saving methods only, like disabling certain amplifiers
* @param dev device to use
* @param enable true to set inot powersaving
* */
void CommandSetGl843::save_power(Genesys_Device* dev, bool enable) const
{
DBG_HELPER_ARGS(dbg, "enable = %d", enable);
// switch KV-SS080 lamp off
if (dev->model->gpio_id == GpioId::KVSS080) {
std::uint8_t val = dev->interface->read_register(REG_0x6C);
if (enable) {
val &= 0xef;
} else {
val |= 0x10;
}
dev->interface->write_register(REG_0x6C, val);
}
}
void CommandSetGl843::set_powersaving(Genesys_Device* dev, int delay /* in minutes */) const
{
(void) dev;
DBG_HELPER_ARGS(dbg, "delay = %d", delay);
}
static bool gl843_get_paper_sensor(Genesys_Device* dev)
{
DBG_HELPER(dbg);
std::uint8_t val = dev->interface->read_register(REG_0x6D);
return (val & 0x1) == 0;
}
void CommandSetGl843::eject_document(Genesys_Device* dev) const
{
(void) dev;
DBG_HELPER(dbg);
}
void CommandSetGl843::load_document(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
(void) dev;
}
/**
* detects end of document and adjust current scan
* to take it into account
* used by sheetfed scanners
*/
void CommandSetGl843::detect_document_end(Genesys_Device* dev) const
{
DBG_HELPER(dbg);
bool paper_loaded = gl843_get_paper_sensor(dev);
/* sheetfed scanner uses home sensor as paper present */
if (dev->document && !paper_loaded) {
DBG(DBG_info, "%s: no more document\n", __func__);
dev->document = false;
unsigned scanned_lines = 0;
catch_all_exceptions(__func__, [&](){ sanei_genesys_read_scancnt(dev, &scanned_lines); });
std::size_t output_lines = dev->session.output_line_count;
std::size_t offset_lines = static_cast<std::size_t>(
(dev->model->post_scan * dev->session.params.yres) / MM_PER_INCH);
std::size_t scan_end_lines = scanned_lines + offset_lines;
std::size_t remaining_lines = dev->get_pipeline_source().remaining_bytes() /
dev->session.output_line_bytes_raw;
DBG(DBG_io, "%s: scanned_lines=%u\n", __func__, scanned_lines);
DBG(DBG_io, "%s: scan_end_lines=%zu\n", __func__, scan_end_lines);
DBG(DBG_io, "%s: output_lines=%zu\n", __func__, output_lines);
DBG(DBG_io, "%s: remaining_lines=%zu\n", __func__, remaining_lines);
if (scan_end_lines > output_lines) {
auto skip_lines = scan_end_lines - output_lines;
if (remaining_lines > skip_lines) {
remaining_lines -= skip_lines;
dev->get_pipeline_source().set_remaining_bytes(remaining_lines *
dev->session.output_line_bytes_raw);
dev->total_bytes_to_read -= skip_lines * dev->session.output_line_bytes_requested;
}
}
}
}
// Send the low-level scan command
void CommandSetGl843::begin_scan(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg, bool start_motor) const
{
DBG_HELPER(dbg);
(void) sensor;
/* set up GPIO for scan */
switch(dev->model->gpio_id) {
/* KV case */
case GpioId::KVSS080:
dev->interface->write_register(REG_0xA9, 0x00);
dev->interface->write_register(REG_0xA6, 0xf6);
// blinking led
dev->interface->write_register(0x7e, 0x04);
break;
case GpioId::G4050:
case GpioId::G4010:
dev->interface->write_register(REG_0xA7, 0xfe);
dev->interface->write_register(REG_0xA8, 0x3e);
dev->interface->write_register(REG_0xA9, 0x06);
if ((reg->get8(0x05) & REG_0x05_DPIHW) == REG_0x05_DPIHW_600) {
dev->interface->write_register(REG_0x6C, 0x20);
dev->interface->write_register(REG_0xA6, 0x44);
} else {
dev->interface->write_register(REG_0x6C, 0x60);
dev->interface->write_register(REG_0xA6, 0x46);
}
if (reg->state.is_xpa_on && reg->state.is_lamp_on) {
dev->cmd_set->set_xpa_lamp_power(*dev, true);
}
if (reg->state.is_xpa_on) {
dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY);
}
// blinking led
dev->interface->write_register(REG_0x7E, 0x01);
break;
case GpioId::CANON_8400F:
if (dev->session.params.xres == 3200)
{
GenesysRegisterSettingSet reg_settings = {
{ 0x6c, 0x00, 0x02 },
};
apply_reg_settings_to_device(*dev, reg_settings);
}
if (reg->state.is_xpa_on && reg->state.is_lamp_on) {
dev->cmd_set->set_xpa_lamp_power(*dev, true);
}
if (reg->state.is_xpa_on) {
dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY);
}
break;
case GpioId::CANON_8600F:
if (reg->state.is_xpa_on && reg->state.is_lamp_on) {
dev->cmd_set->set_xpa_lamp_power(*dev, true);
}
if (reg->state.is_xpa_on) {
dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY);
}
break;
case GpioId::PLUSTEK_OPTICFILM_7200I:
case GpioId::PLUSTEK_OPTICFILM_7300:
case GpioId::PLUSTEK_OPTICFILM_7500I: {
if (reg->state.is_xpa_on && reg->state.is_lamp_on) {
dev->cmd_set->set_xpa_lamp_power(*dev, true);
}
break;
}
case GpioId::CANON_4400F:
default:
break;
}
scanner_clear_scan_and_feed_counts(*dev);
// enable scan and motor
std::uint8_t val = dev->interface->read_register(REG_0x01);
val |= REG_0x01_SCAN;
dev->interface->write_register(REG_0x01, val);
scanner_start_action(*dev, start_motor);
switch (reg->state.motor_mode) {
case MotorMode::PRIMARY: {
if (reg->state.is_motor_on) {
dev->advance_head_pos_by_session(ScanHeadId::PRIMARY);
}
break;
}
case MotorMode::PRIMARY_AND_SECONDARY: {
if (reg->state.is_motor_on) {
dev->advance_head_pos_by_session(ScanHeadId::PRIMARY);
dev->advance_head_pos_by_session(ScanHeadId::SECONDARY);
}
break;
}
case MotorMode::SECONDARY: {
if (reg->state.is_motor_on) {
dev->advance_head_pos_by_session(ScanHeadId::SECONDARY);
}
break;
}
}
}
// Send the stop scan command
void CommandSetGl843::end_scan(Genesys_Device* dev, Genesys_Register_Set* reg,
bool check_stop) const
{
DBG_HELPER_ARGS(dbg, "check_stop = %d", check_stop);
// post scan gpio
dev->interface->write_register(0x7e, 0x00);
if (reg->state.is_xpa_on) {
dev->cmd_set->set_xpa_lamp_power(*dev, false);
}
if (!dev->model->is_sheetfed) {
scanner_stop_action(*dev);
}
}
/** @brief Moves the slider to the home (top) position slowly
* */
void CommandSetGl843::move_back_home(Genesys_Device* dev, bool wait_until_home) const
{
scanner_move_back_home(*dev, wait_until_home);
}
// init registers for shading calibration shading calibration is done at dpihw
void CommandSetGl843::init_regs_for_shading(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
DBG_HELPER(dbg);
int move;
float calib_size_mm = 0;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY ||
dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
calib_size_mm = dev->model->y_size_calib_ta_mm;
} else {
calib_size_mm = dev->model->y_size_calib_mm;
}
unsigned resolution = sensor.shading_resolution;
unsigned channels = 3;
const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels,
dev->settings.scan_method);
unsigned calib_pixels = 0;
unsigned calib_pixels_offset = 0;
if (should_calibrate_only_active_area(*dev, dev->settings)) {
float offset = dev->model->x_offset_ta;
// FIXME: we should use resolution here
offset = static_cast<float>((offset * dev->settings.xres) / MM_PER_INCH);
float size = dev->model->x_size_ta;
size = static_cast<float>((size * dev->settings.xres) / MM_PER_INCH);
calib_pixels_offset = static_cast<std::size_t>(offset);
calib_pixels = static_cast<std::size_t>(size);
} else {
calib_pixels_offset = 0;
calib_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH;
}
ScanFlag flags = ScanFlag::DISABLE_SHADING |
ScanFlag::DISABLE_GAMMA |
ScanFlag::DISABLE_BUFFER_FULL_MOVE;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY ||
dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
// note: scanner_move_to_ta() function has already been called and the sensor is at the
// transparency adapter
move = static_cast<int>(dev->model->y_offset_calib_white_ta - dev->model->y_offset_sensor_to_ta);
if (dev->model->model_id == ModelId::CANON_8600F && resolution == 2400) {
move /= 2;
}
if (dev->model->model_id == ModelId::CANON_8600F && resolution == 4800) {
move /= 4;
}
flags |= ScanFlag::USE_XPA;
} else {
move = static_cast<int>(dev->model->y_offset_calib_white);
}
move = static_cast<int>((move * resolution) / MM_PER_INCH);
unsigned calib_lines = static_cast<unsigned>(calib_size_mm * resolution / MM_PER_INCH);
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = calib_pixels_offset;
session.params.starty = move;
session.params.pixels = calib_pixels;
session.params.lines = calib_lines;
session.params.depth = 16;
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = dev->settings.scan_mode;
session.params.color_filter = dev->settings.color_filter;
session.params.contrast_adjustment = dev->settings.contrast;
session.params.brightness_adjustment = dev->settings.brightness;
session.params.flags = flags;
compute_session(dev, session, calib_sensor);
init_regs_for_scan_session(dev, calib_sensor, &regs, session);
dev->calib_session = session;
}
/**
* This function sends gamma tables to ASIC
*/
void CommandSetGl843::send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) const
{
DBG_HELPER(dbg);
int size;
int i;
size = 256;
/* allocate temporary gamma tables: 16 bits words, 3 channels */
std::vector<std::uint8_t> gamma(size * 2 * 3);
std::vector<std::uint16_t> rgamma = get_gamma_table(dev, sensor, GENESYS_RED);
std::vector<std::uint16_t> ggamma = get_gamma_table(dev, sensor, GENESYS_GREEN);
std::vector<std::uint16_t> bgamma = get_gamma_table(dev, sensor, GENESYS_BLUE);
// copy sensor specific's gamma tables
for (i = 0; i < size; i++) {
gamma[i * 2 + size * 0 + 0] = rgamma[i] & 0xff;
gamma[i * 2 + size * 0 + 1] = (rgamma[i] >> 8) & 0xff;
gamma[i * 2 + size * 2 + 0] = ggamma[i] & 0xff;
gamma[i * 2 + size * 2 + 1] = (ggamma[i] >> 8) & 0xff;
gamma[i * 2 + size * 4 + 0] = bgamma[i] & 0xff;
gamma[i * 2 + size * 4 + 1] = (bgamma[i] >> 8) & 0xff;
}
dev->interface->write_gamma(0x28, 0x0000, gamma.data(), size * 2 * 3);
}
/* this function does the led calibration by scanning one line of the calibration
area below scanner's top on white strip.
-needs working coarse/gain
*/
SensorExposure CommandSetGl843::led_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
return scanner_led_calibration(*dev, sensor, regs);
}
void CommandSetGl843::offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs) const
{
scanner_offset_calibration(*dev, sensor, regs);
}
void CommandSetGl843::coarse_gain_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set& regs, int dpi) const
{
scanner_coarse_gain_calibration(*dev, sensor, regs, dpi);
}
// wait for lamp warmup by scanning the same line until difference
// between 2 scans is below a threshold
void CommandSetGl843::init_regs_for_warmup(Genesys_Device* dev, const Genesys_Sensor& sensor,
Genesys_Register_Set* reg) const
{
DBG_HELPER(dbg);
(void) sensor;
unsigned channels = 3;
unsigned resolution = dev->model->get_resolution_settings(dev->settings.scan_method)
.get_nearest_resolution_x(600);
const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels,
dev->settings.scan_method);
unsigned num_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH / 2;
*reg = dev->reg;
auto flags = ScanFlag::DISABLE_SHADING |
ScanFlag::DISABLE_GAMMA |
ScanFlag::SINGLE_LINE |
ScanFlag::IGNORE_STAGGER_OFFSET |
ScanFlag::IGNORE_COLOR_OFFSET;
if (dev->settings.scan_method == ScanMethod::TRANSPARENCY ||
dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED)
{
flags |= ScanFlag::USE_XPA;
}
ScanSession session;
session.params.xres = resolution;
session.params.yres = resolution;
session.params.startx = (num_pixels / 2) * resolution / calib_sensor.full_resolution;
session.params.starty = 0;
session.params.pixels = num_pixels;
session.params.lines = 1;
session.params.depth = dev->model->bpp_color_values.front();
session.params.channels = channels;
session.params.scan_method = dev->settings.scan_method;
session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS;
session.params.color_filter = dev->settings.color_filter;
session.params.contrast_adjustment = 0;
session.params.brightness_adjustment = 0;
session.params.flags = flags;
compute_session(dev, session, calib_sensor);
init_regs_for_scan_session(dev, calib_sensor, reg, session);
sanei_genesys_set_motor_power(*reg, false);
}
/**
* set up GPIO/GPOE for idle state
WRITE GPIO[17-21]= GPIO19
WRITE GPOE[17-21]= GPOE21 GPOE20 GPOE19 GPOE18
genesys_write_register(0xa8,0x3e)
GPIO(0xa8)=0x3e
*/
static void gl843_init_gpio(Genesys_Device* dev)
{
DBG_HELPER(dbg);
apply_registers_ordered(dev->gpo.regs, { 0x6e, 0x6f }, [&](const GenesysRegisterSetting& reg)
{
dev->interface->write_register(reg.address, reg.value);
});
}
/* *
* initialize ASIC from power on condition
*/
void CommandSetGl843::asic_boot(Genesys_Device* dev, bool cold) const
{
DBG_HELPER(dbg);
std::uint8_t val;
if (cold) {
dev->interface->write_register(0x0e, 0x01);
dev->interface->write_register(0x0e, 0x00);
}
if(dev->usb_mode == 1)
{
val = 0x14;
}
else
{
val = 0x11;
}
dev->interface->write_0x8c(0x0f, val);
// test CHKVER
val = dev->interface->read_register(REG_0x40);
if (val & REG_0x40_CHKVER) {
val = dev->interface->read_register(0x00);
DBG(DBG_info, "%s: reported version for genesys chip is 0x%02x\n", __func__, val);
}
/* Set default values for registers */
gl843_init_registers (dev);
if (dev->model->model_id == ModelId::CANON_8600F) {
// turns on vref control for maximum current of the motor driver
dev->interface->write_register(REG_0x6B, 0x72);
} else {
dev->interface->write_register(REG_0x6B, 0x02);
}
// Write initial registers
dev->interface->write_registers(dev->reg);
// Enable DRAM by setting a rising edge on bit 3 of reg 0x0b
val = dev->reg.find_reg(0x0b).value & REG_0x0B_DRAMSEL;
val = (val | REG_0x0B_ENBDRAM);
dev->interface->write_register(REG_0x0B, val);
dev->reg.find_reg(0x0b).value = val;
if (dev->model->model_id == ModelId::CANON_8400F) {
dev->interface->write_0x8c(0x1e, 0x01);
dev->interface->write_0x8c(0x10, 0xb4);
dev->interface->write_0x8c(0x0f, 0x02);
}
else if (dev->model->model_id == ModelId::CANON_8600F) {
dev->interface->write_0x8c(0x10, 0xc8);
} else if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 ||
dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I)
{
dev->interface->write_0x8c(0x10, 0xd4);
} else {
dev->interface->write_0x8c(0x10, 0xb4);
}
/* CLKSET */
int clock_freq = REG_0x0B_48MHZ;
switch (dev->model->model_id) {
case ModelId::CANON_8600F:
clock_freq = REG_0x0B_60MHZ;
break;
case ModelId::PLUSTEK_OPTICFILM_7200I:
clock_freq = REG_0x0B_30MHZ;
break;
case ModelId::PLUSTEK_OPTICFILM_7300:
case ModelId::PLUSTEK_OPTICFILM_7500I:
clock_freq = REG_0x0B_40MHZ;
break;
default:
break;
}
val = (dev->reg.find_reg(0x0b).value & ~REG_0x0B_CLKSET) | clock_freq;
dev->interface->write_register(REG_0x0B, val);
dev->reg.find_reg(0x0b).value = val;
/* prevent further writings by bulk write register */
dev->reg.remove_reg(0x0b);
// set RAM read address
dev->interface->write_register(REG_0x29, 0x00);
dev->interface->write_register(REG_0x2A, 0x00);
dev->interface->write_register(REG_0x2B, 0x00);
// setup gpio
gl843_init_gpio(dev);
dev->interface->sleep_ms(100);
}
/* *
* initialize backend and ASIC : registers, motor tables, and gamma tables
* then ensure scanner's head is at home
*/
void CommandSetGl843::init(Genesys_Device* dev) const
{
DBG_INIT ();
DBG_HELPER(dbg);
sanei_genesys_asic_init(dev);
}
void CommandSetGl843::update_hardware_sensors(Genesys_Scanner* s) const
{
DBG_HELPER(dbg);
/* do what is needed to get a new set of events, but try to not lose
any of them.
*/
std::uint8_t val = s->dev->interface->read_register(REG_0x6D);
DBG(DBG_io, "%s: read buttons_gpio value=0x%x\n", __func__, (int)val);
switch (s->dev->model->gpio_id)
{
case GpioId::KVSS080:
s->buttons[BUTTON_SCAN_SW].write((val & 0x04) == 0);
break;
case GpioId::G4050:
s->buttons[BUTTON_SCAN_SW].write((val & 0x01) == 0);
s->buttons[BUTTON_FILE_SW].write((val & 0x02) == 0);
s->buttons[BUTTON_EMAIL_SW].write((val & 0x04) == 0);
s->buttons[BUTTON_COPY_SW].write((val & 0x08) == 0);
break;
case GpioId::G4010:
s->buttons[BUTTON_FILE_SW].write((val & 0x01) == 0);
s->buttons[BUTTON_COPY_SW].write((val & 0x04) == 0);
s->buttons[BUTTON_TRANSP_SW].write((val & 0x40) == 0);
s->buttons[BUTTON_SCAN_SW].write((val & 0x08) == 0);
break;
case GpioId::CANON_8400F:
s->buttons[BUTTON_COPY_SW].write((val & 0x01) == 0);
s->buttons[BUTTON_SCAN_SW].write((val & 0x02) == 0);
s->buttons[BUTTON_FILE_SW].write((val & 0x04) == 0);
s->buttons[BUTTON_EMAIL_SW].write((val & 0x08) == 0);
break;
case GpioId::CANON_4400F:
s->buttons[BUTTON_COPY_SW].write((val & 0x68) == 0x28);
s->buttons[BUTTON_TRANSP_SW].write((val & 0x68) == 0x20);
s->buttons[BUTTON_EMAIL_SW].write((val & 0x68) == 0x08);
s->buttons[BUTTON_PDF1_SW].write((val & 0x68) == 0x00);
s->buttons[BUTTON_PDF2_SW].write((val & 0x68) == 0x60);
s->buttons[BUTTON_PDF3_SW].write((val & 0x68) == 0x48);
s->buttons[BUTTON_PDF4_SW].write((val & 0x68) == 0x40);
break;
default:
break;
}
}
void CommandSetGl843::update_home_sensor_gpio(Genesys_Device& dev) const
{
DBG_HELPER(dbg);
(void) dev;
}
/**
* Send shading calibration data. The buffer is considered to always hold values
* for all the channels.
*/
void CommandSetGl843::send_shading_data(Genesys_Device* dev, const Genesys_Sensor& sensor,
std::uint8_t* data, int size) const
{
DBG_HELPER(dbg);
std::uint32_t final_size, i;
int count;
int offset = 0;
unsigned length = size;
if (dev->reg.get8(REG_0x01) & REG_0x01_SHDAREA) {
offset = dev->session.params.startx * sensor.shading_resolution /
dev->session.params.xres;
length = dev->session.output_pixels * sensor.shading_resolution /
dev->session.params.xres;
offset += sensor.shading_pixel_offset;
// 16 bit words, 2 words per color, 3 color channels
length *= 2 * 2 * 3;
offset *= 2 * 2 * 3;
} else {
offset += sensor.shading_pixel_offset * 2 * 2 * 3;
}
dev->interface->record_key_value("shading_offset", std::to_string(offset));
dev->interface->record_key_value("shading_length", std::to_string(length));
/* compute and allocate size for final data */
final_size = ((length+251) / 252) * 256;
DBG(DBG_io, "%s: final shading size=%04x (length=%d)\n", __func__, final_size, length);
std::vector<std::uint8_t> final_data(final_size, 0);
/* copy regular shading data to the expected layout */
std::uint8_t* buffer = final_data.data();
count = 0;
if (offset < 0) {
count += (-offset);
length -= (-offset);
offset = 0;
}
if (static_cast<int>(length) + offset > static_cast<int>(size)) {
length = size - offset;
}
/* loop over calibration data */
for (i = 0; i < length; i++)
{
buffer[count] = data[offset+i];
count++;
if ((count % (256*2)) == (252*2))
{
count += 4*2;
}
}
dev->interface->write_buffer(0x3c, 0, final_data.data(), count);
}
bool CommandSetGl843::needs_home_before_init_regs_for_scan(Genesys_Device* dev) const
{
(void) dev;
return true;
}
void CommandSetGl843::wait_for_motor_stop(Genesys_Device* dev) const
{
(void) dev;
}
} // namespace gl843
} // namespace genesys