sane-project-backends/include/sane/sanei_ir.h

394 wiersze
14 KiB
C

/** @file sanei_ir.h
*
* This file provides an interface to the
* sanei_ir functions for utilizing the infrared plane
*
* Copyright (C) 2012 Michael Rickmann <mrickma@gwdg.de>
*
* This file is part of the SANE package.
*
* Essentially three things have to be done:
* - 1) reduce red spectral overlap from the infrared (ired) plane
* - 2) find the dirt
* - 3) replace the dirt
*
* - 1) is mainly addressed by sanei_ir_spectral_clean
* - 2) by sanei_ir_filter_madmean
* - 3) by sanei_ir_dilate_mean
*/
#ifndef SANEI_IR_H
#define SANEI_IR_H
#include <stdint.h>
#define SAMPLE_SIZE 40000 /**< maximal for random sampling */
#define HISTOGRAM_SHIFT 8 /**< standard histogram size */
#define HISTOGRAM_SIZE (1 << HISTOGRAM_SHIFT)
#define SAFE_LOG(x) ( ((x) > 0.0) ? log ((x)) : (0.0) ) /**< define log (0) = 0 */
#define MAD_WIN2_SIZE(x) ( (((x) * 4) / 3) | 1 ) /**< MAD filter: 2nd window size */
typedef uint16_t SANE_Uint;
/**
* @brief Pointer to access values of different bit depths
*/
typedef union
{
uint8_t *b8; /**< <= 8 bits */
uint16_t *b16; /**< > 8, <= 16 bits */
}
SANEI_IR_bufptr;
/** Initialize sanei_ir.
*
* Call this before any other sanei_ir function.
*/
extern void sanei_ir_init (void);
/**
* @brief Create the normalized histogram of a grayscale image
*
* @param[in] params describes image
* @param[in] img_data image pointer { grayscale }
* @param[out] histogram an array of double with histogram
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* @note
* histogram has to be freed by calling routine
*/
extern SANE_Status
sanei_ir_create_norm_histogram (const SANE_Parameters * params,
const SANE_Uint *img_data,
double ** histogram);
/**
* @brief Implements Yen's thresholding method
*
* @param[in] params describes image
* @param[in] norm_histo points to a normalized histogram
* @param[out] thresh found threshold
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* -# Yen J.C., Chang F.J., and Chang S. (1995) "A New Criterion
* for Automatic Multilevel Thresholding" IEEE Trans. on Image
* Processing, 4(3): 370-378
* -# Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding
* Techniques and Quantitative Performance Evaluation" Journal of
* Electronic Imaging, 13(1): 146-165
* -# M. Emre Celebi, 06.15.2007, fourier_0.8,
* http://sourceforge.net/projects/fourier-ipal/
* -# ImageJ Multithresholder plugin,
* http://rsbweb.nih.gov/ij/plugins/download/AutoThresholder.java
*/
extern SANE_Status
sanei_ir_threshold_yen (const SANE_Parameters * params,
double * norm_histo, int *thresh);
/**
* @brief Implements Otsu's thresholding method
*
* @param[in] params describes image
* @param[in] norm_histo points to a normalized histogram
* @param[out] thresh found threshold
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* -# Otsu N. (1979) "A Threshold Selection Method from Gray Level Histograms"
* IEEE Trans. on Systems, Man and Cybernetics, 9(1): 62-66
* -# M. Emre Celebi, 06.15.2007, fourier_0.8
* http://sourceforge.net/projects/fourier-ipal/
*/
extern SANE_Status
sanei_ir_threshold_otsu (const SANE_Parameters * params,
double * norm_histo, int *thresh);
/**
* @brief Implements a Maximum Entropy thresholding method
*
* @param[in] params describes image
* @param[in] norm_histo points to a normalized histogram
* @param[out] thresh found threshold
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* -# Kapur J.N., Sahoo P.K., and Wong A.K.C. (1985) "A New Method for
* Gray-Level Picture Thresholding Using the Entropy of the Histogram"
* Graphical Models and Image Processing, 29(3): 273-285
* -# M. Emre Celebi, 06.15.2007, fourier_0.8
* http://sourceforge.net/projects/fourier-ipal/
* -# ImageJ Multithresholder plugin,
* http://rsbweb.nih.gov/ij/plugins/download/AutoThresholder.java
*/
extern SANE_Status
sanei_ir_threshold_maxentropy (const SANE_Parameters * params,
double * norm_histo, int *thresh);
/**
* @brief Generate gray scale luminance image from separate R, G, B images
*
* @param params points to image description
* @param[in] in_img pointer to at least 3 planes of image data
* @param[out] out_img newly allocated image
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
* - SANE_STATUS_UNSUPPORTED - wrong input bit depth
*
* @note out_img has to be freed by the calling routine.
* @note on input params describe a single color plane,
* on output params are updated if image depth is scaled
*/
SANE_Status
sanei_ir_RGB_luminance (SANE_Parameters * params, const SANE_Uint **in_img,
SANE_Uint **out_img);
/**
* @brief Convert image from >8 bit depth to an 8 bit image.
*
* @param[in] params pimage description
* @param[in] in_img points to input image data
* @param[out] out_params if != NULL
* receives description of new image
* @param[out] out_img newly allocated 8-bit image
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
* - SANE_STATUS_UNSUPPORTED - wrong input bit depth
*
* @note
* out_img has to be freed by the calling routine,
*/
extern SANE_Status
sanei_ir_to_8bit (SANE_Parameters * params, const SANE_Uint *in_img,
SANE_Parameters * out_params, SANE_Uint **out_img);
/**
* @brief Allocate and initialize logarithmic lookup table
*
* @param[in] len length of table, usually 1 << depth
* @param[out] lut_ln address of pointer to allocated table
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* @note natural logarithms are provided
*/
SANE_Status sanei_ir_ln_table (int len, double **lut_ln);
/**
* @brief Reduces red spectral overlap from an infrared image plane
*
* @param[in] params pointer to image description
* @param[in] lut_ln pointer lookup table
* if NULL it is dynamically handled
* @param[in] red_data pointer to red image plane
* @param ir_data pointer to ir image plane
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* This routine is based on the observation that the relation between the infrared value
* ired and the red value red of an image point can be described by ired = b + a * ln (red).
* First points are randomly sampled to calculate the linear regression coefficient a.
* Then ired' = ired - a * ln (red) is calculated for each pixel. Finally, the ir' image
* is scaled between 0 and maximal value. For the logarithms a lookup table is used.
* Negative films show very little spectral overlap but positive film usually has to be
* cleaned. As we do a statistical measure of the film here dark margins and lumps of
* dirt have to be excluded.
*
* @note original ired data are replaced by the cleaned ones
*/
extern SANE_Status
sanei_ir_spectral_clean (const SANE_Parameters * params, double *lut_ln,
const SANE_Uint *red_data,
SANE_Uint *ir_data);
/**
* @brief Optimized mean filter
*
* @param[in] params pointer to image description
* @param[in] in_img Pointer to grey scale image data
* @param[out] out_img Pointer to grey scale image data
* @param[in] win_rows Height of filtering window, odd
* @param[in] win_cols Width of filtering window, odd
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
* - SANE_STATUS_INVAL - wrong window size
*
* @note At the image margins the size of the filtering window
* is adapted. So there is no need to pad the image.
* @note Memory for the output image has to be allocated before
*/
extern SANE_Status
sanei_ir_filter_mean (const SANE_Parameters * params,
const SANE_Uint *in_img, SANE_Uint *out_img,
int win_rows, int win_cols);
/**
* @brief Find noise by adaptive thresholding
*
* @param[in] params pointer to image description
* @param[in] in_img pointer to grey scale image
* @param[out] out_img address of pointer to newly allocated binary image
* @param[in] win_size Size of filtering window
* @param[in] a_val Parameter, below is definitely clean
* @param[in] b_val Parameter, above is definitely noisy
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* This routine follows the concept of Crnojevic's MAD (median of the absolute deviations
* from the median) filter. The first median filter step is replaced with a mean filter.
* The dirty pixels which we wish to remove are always darker than the real signal. But
* at high resolutions the scanner may generate some noise and the ired cleaning step can
* reverse things. So a maximum filter will not do.
* The second median is replaced by a mean filter to reduce computation time. In spite of
* these changes Crnojevic's recommendations for the choice of the parameters "a" and "b"
* are still valid when scaled to the color depth.
*
* @reco Crnojevic recommends 10 < a_val < 30 and 50 < b_val < 100 for 8 bit color depth
*
* @note a_val, b_val are scaled by the routine according to bit depth
* @note "0" in the mask output is regarded "dirty", 255 "clean"
*
* -# Crnojevic V. (2005) "Impulse Noise Filter with Adaptive Mad-Based Threshold"
* Proc. of the IEEE Int. Conf. on Image Processing, 3: 337-340
*/
extern SANE_Status
sanei_ir_filter_madmean (const SANE_Parameters * params,
const SANE_Uint *in_img,
SANE_Uint ** out_img, int win_size,
int a_val, int b_val);
/**
* @brief Add dark pixels to mask from static threshold
*
* @param[in] params pointer to image description
* @param[in] in_img pointer to grey scale image
* @param mask_img pointer to binary image (0, 255)
* @param[in] threshold below which the pixel is set 0
*/
void
sanei_ir_add_threshold (const SANE_Parameters * params,
const SANE_Uint *in_img,
SANE_Uint * mask_img, int threshold);
/**
* @brief Calculates minimal Manhattan distances for an image mask
*
* @param[in] params pointer to image description
* @param[in] mask_img pointer to binary image (0, 255)
* @param[out] dist_map integer pointer to map of closest distances
* @param[out] idx_map integer pointer to indices of closest pixels
* @param[in] erode == 0: closest pixel has value 0, != 0: is 255
*
* manhattan_dist takes a mask image consisting of 0 or 255 values. Given that
* a 0 represents a dirty pixel and erode != 0, manhattan_dist will calculate the
* shortest distance to a clean (255) pixel and record which pixel that was so
* that the clean parts of the image can be dilated into the dirty ones. Thresholding
* can be done on the distance. Conversely, if erode == 0 the distance of a clean
* pixel to the closest dirty one is calculated which can be used to dilate the mask.
*
* @ref extended and C version of
* http://ostermiller.org/dilate_and_erode.html
*/
void
sanei_ir_manhattan_dist (const SANE_Parameters * params,
const SANE_Uint * mask_img, unsigned int *dist_map,
unsigned int *idx_map, unsigned int erode);
/**
* @brief Dilate or erode a mask image
*
* @param[in] params pointer to image description
* @param mask_img pointer to binary image (0, 255)
* @param dist_map integer pointer to map of closest distances
* @param idx_map integer pointer to indices of closest pixels
* @param[in] by number of pixels, > 0 dilate, < 0 erode
*
* @note by > 0 will enlarge the 0 valued area
*/
void
sanei_ir_dilate (const SANE_Parameters * params, SANE_Uint * mask_img,
unsigned int *dist_map, unsigned int *idx_map, int by);
/**
* @brief Suggest cropping for dark margins of positive film
*
* @param[in] params pointer to image description
* @param[in] dist_map integer pointer to map of closest distances
* @param[in] inner crop within (!=0) or outside (==0) the image's edges
* @param[out] edges pointer to array holding top, bottom, left
* and right edges
*
* The distance map as calculated by sanei_ir_manhattan_dist contains
* distances to the next clean pixel. Dark margins are detected as dirt.
* So the first/last rows/columns tell us how to crop. This is rather
* fast if the distance map has been calculated anyhow.
*/
void
sanei_ir_find_crop (const SANE_Parameters * params,
unsigned int * dist_map, int inner, int * edges);
/**
* @brief Dilate clean image parts into dirty ones and smooth int inner,
*
* @param[in] params pointer to image description
* @param in_img array of pointers to color planes of image
* @param[in] mask_img pointer to dirt mask image
* @param[in] dist_max threshold up to which dilation is done
* @param[in] expand the dirt mask before replacing the pixels
* @param[in] win_size size of adaptive mean filtering window
* @param[in] smooth triangular filter whole image for grain removal
* @param[in] inner find crop within or outside the image's edges
* @param[out] crop array of 4 integers, if non-NULL, top, bottom,
* left and right values for cropping are returned.
*
* @return
* - SANE_STATUS_GOOD - success
* - SANE_STATUS_NO_MEM - if out of memory
*
* The main purpose of this routine is to replace dirty pixels.
* As spin-off it obtains half of what is needed for film grain
* smoothening and most of how to crop positive film.
* To speed things up these functions are also implemented.
*/
SANE_Status
sanei_ir_dilate_mean (const SANE_Parameters * params,
SANE_Uint **in_img,
SANE_Uint *mask_img,
int dist_max, int expand, int win_size,
SANE_Bool smooth, int inner,
int *crop);
#endif /* not SANEI_IR_H */