sane-project-backends/backend/mustek_usb2_transparent.c

1338 wiersze
35 KiB
C

/* sane - Scanner Access Now Easy.
Copyright (C) 2005 Mustek.
Originally maintained by Mustek
Author:Jack Roy 2005.5.24
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
As a special exception, the authors of SANE give permission for
additional uses of the libraries contained in this release of SANE.
The exception is that, if you link a SANE library with other files
to produce an executable, this does not by itself cause the
resulting executable to be covered by the GNU General Public
License. Your use of that executable is in no way restricted on
account of linking the SANE library code into it.
This exception does not, however, invalidate any other reasons why
the executable file might be covered by the GNU General Public
License.
If you submit changes to SANE to the maintainers to be included in
a subsequent release, you agree by submitting the changes that
those changes may be distributed with this exception intact.
If you write modifications of your own for SANE, it is your choice
whether to permit this exception to apply to your modifications.
If you do not wish that, delete this exception notice.
This file implements a SANE backend for the Mustek BearPaw 2448 TA Pro
and similar USB2 scanners. */
static SANE_Bool Transparent_Reset (void);
static SANE_Bool Transparent_SetupScan (COLORMODE ColorMode, unsigned short XDpi, unsigned short YDpi,
unsigned short X, unsigned short Y, unsigned short Width,
unsigned short Height);
static SANE_Bool Transparent_AdjustAD (void);
static SANE_Bool Transparent_FindTopLeft (unsigned short * lpwStartX, unsigned short * lpwStartY);
static SANE_Bool Transparent_LineCalibration16Bits (unsigned short wTAShadingMinus);
/**********************************************************************
reset the scanner
Return value:
TRUE if operation is success, FALSE otherwise
***********************************************************************/
static SANE_Bool
Transparent_Reset (void)
{
DBG (DBG_FUNC, "Transparent_Reset: call in\n");
if (g_bOpened)
{
DBG (DBG_FUNC, "Transparent_Reset: scanner has been opened\n");
return FALSE;
}
if (STATUS_GOOD != Asic_Open (&g_chip))
{
DBG (DBG_FUNC, "Transparent_Reset: can not open scanner\n");
return FALSE;
}
Asic_ResetADParameters (&g_chip, LS_POSITIVE);
if (STATUS_GOOD != Asic_TurnLamp (&g_chip, FALSE))
{
DBG (DBG_FUNC, "Reflective_Reset: Asic_TurnLamp return error\n");
return FALSE;
}
if (STATUS_GOOD != Asic_TurnTA (&g_chip, TRUE))
{
DBG (DBG_FUNC, "Reflective_Reset: Asic_TurnTA return error\n");
return FALSE;
}
if (STATUS_GOOD != Asic_Close (&g_chip))
{
DBG (DBG_FUNC, "Reflective_Reset: Asic_Close return error\n");
return FALSE;
}
g_Y = 0;
g_wLineartThreshold = 128;
g_dwTotalTotalXferLines = 0;
g_bFirstReadImage = TRUE;
g_pGammaTable = NULL;
DBG (DBG_FUNC, "Transparent_Reset: leave Transparent_Reset\n");
return TRUE;
}
/**********************************************************************
setup scanning process
Parameters:
ColorMode: ScanMode of Scanning, CM_RGB48, CM_GRAY and so on
XDpi: X Resolution
YDpi: Y Resolution
isInvert: the RGB order
X: X start coordinate
Y: Y start coordinate
Width: Width of Scan Image
Height: Height of Scan Image
Return value:
TRUE if the operation is success, FALSE otherwise
***********************************************************************/
static SANE_Bool
Transparent_SetupScan (COLORMODE ColorMode,
unsigned short XDpi, unsigned short YDpi,
unsigned short X, unsigned short Y,
unsigned short Width, unsigned short Height)
{
SANE_Bool hasTA;
unsigned short wTAShadingMinus = 0;
DBG (DBG_FUNC, "Transparent_SetupScan: call in\n");
if (g_bOpened)
{
DBG (DBG_FUNC, "Transparent_SetupScan: scanner has been opened\n");
return FALSE;
}
if (!g_bPrepared)
{
DBG (DBG_FUNC, "Transparent_SetupScan: scanner not prepared\n");
return FALSE;
}
g_ScanMode = ColorMode;
g_XDpi = XDpi;
g_YDpi = YDpi;
g_SWWidth = Width;
g_SWHeight = Height;
switch (g_YDpi)
{
case 1200:
g_wPixelDistance = 4; /* even & odd sensor problem */
g_wLineDistance = 24;
g_Height += g_wPixelDistance;
break;
case 600:
g_wPixelDistance = 0; /* no even & odd problem */
g_wLineDistance = 12;
break;
case 300:
g_wPixelDistance = 0;
g_wLineDistance = 6;
break;
case 150:
g_wPixelDistance = 0;
g_wLineDistance = 3;
break;
case 75:
case 50:
g_wPixelDistance = 0;
g_wLineDistance = 1;
break;
default:
g_wLineDistance = 0;
}
DBG (DBG_FUNC, "Transparent_SetupScan: g_YDpi=%d\n", g_YDpi);
DBG (DBG_FUNC, "Transparent_SetupScan: g_wLineDistance=%d\n",
g_wLineDistance);
DBG (DBG_FUNC, "Transparent_SetupScan: g_wPixelDistance=%d\n",
g_wPixelDistance);
switch (g_ScanMode)
{
case CM_RGB48:
g_BytesPerRow = 6 * g_Width; /* ASIC limit : width must be 8x */
g_SWBytesPerRow = 6 * g_SWWidth; /* ASIC limit : width must be 8x */
g_bScanBits = 48;
g_Height += g_wLineDistance * 2; /* add height to do line distance */
break;
case CM_RGB24ext:
g_BytesPerRow = 3 * g_Width; /* ASIC limit : width must be 8x */
g_SWBytesPerRow = 3 * g_SWWidth;
g_bScanBits = 24;
g_Height += g_wLineDistance * 2; /* add height to do line distance */
break;
case CM_GRAY16ext:
g_BytesPerRow = 2 * g_Width; /* ASIC limit : width must be 8x */
g_SWBytesPerRow = 2 * g_SWWidth;
g_bScanBits = 16;
break;
case CM_GRAY8ext:
case CM_TEXT:
g_BytesPerRow = g_Width; /* ASIC limit : width must be 8x */
g_SWBytesPerRow = g_SWWidth;
g_bScanBits = 8;
break;
default:
break;
}
if (Asic_Open (&g_chip) != STATUS_GOOD)
{
DBG (DBG_FUNC, "Transparent_SetupScan: Asic_Open return error\n");
return FALSE;
}
g_bOpened = TRUE;
if (STATUS_GOOD != Asic_TurnLamp (&g_chip, FALSE))
{
DBG (DBG_FUNC, "Transparent_SetupScan: Asic_TurnLamp return error\n");
return FALSE;
}
if (Asic_IsTAConnected (&g_chip, &hasTA) != STATUS_GOOD)
{
DBG (DBG_FUNC,
"Transparent_SetupScan: Asic_IsTAConnected return error\n");
return FALSE;
}
if (!hasTA)
{
DBG (DBG_FUNC, "Transparent_SetupScan: no TA device\n");
return FALSE;
}
if (Asic_TurnTA (&g_chip, TRUE) != STATUS_GOOD)
{
DBG (DBG_FUNC, "Transparent_SetupScan: Asic_TurnTA return error\n");
return FALSE;
}
/* Begin Find Left&Top Side */
Asic_MotorMove (&g_chip, TRUE, TRAN_START_POS);
if (1200 == g_XDpi)
{
wTAShadingMinus = 1680;
g_XDpi = 600;
Transparent_AdjustAD ();
Transparent_FindTopLeft (&g_X, &g_Y);
g_XDpi = 1200;
Transparent_AdjustAD ();
}
else
{
wTAShadingMinus = 840;
Transparent_AdjustAD ();
Transparent_FindTopLeft (&g_X, &g_Y);
}
DBG (DBG_FUNC,
"Transparent_SetupScan: after find top and left g_X=%d, g_Y=%d\n", g_X,
g_Y);
if (1200 == g_XDpi)
{
g_X =
g_X * 1200 / FIND_LEFT_TOP_CALIBRATE_RESOLUTION + X * 1200 / g_XDpi;
}
else
{
if (75 == g_XDpi)
{
g_X = g_X + X * 600 / g_XDpi - 23;
}
else
{
g_X = g_X + X * 600 / g_XDpi;
}
}
DBG (DBG_FUNC,
"Transparent_SetupScan: before line calibration,g_X=%d,g_Y=%d\n", g_X,
g_Y);
Transparent_LineCalibration16Bits (wTAShadingMinus);
DBG (DBG_FUNC,
"Transparent_SetupScan: after Reflective_LineCalibration16Bits,g_X=%d,g_Y=%d\n",
g_X, g_Y);
DBG (DBG_FUNC,
"Transparent_SetupScan: g_bScanBits=%d, g_XDpi=%d, g_YDpi=%d, g_X=%d, g_Y=%d, g_Width=%d, g_Height=%d\n",
g_bScanBits, g_XDpi, g_YDpi, g_X, g_Y, g_Width, g_Height);
g_Y = Y * 1200 / g_YDpi + (300 - 40) + 189;
Asic_MotorMove (&g_chip, TRUE, g_Y - 360);
g_Y = 360;
Asic_SetWindow (&g_chip, g_bScanBits, g_XDpi, g_YDpi, g_X, g_Y, g_Width,
g_Height);
DBG (DBG_FUNC, "Transparent_SetupScan: leave Transparent_SetupScan\n");
return MustScanner_PrepareScan ();
}
/**********************************************************************
To adjust the value of offset gain of R/G/B
Return value:
TRUE if operation is success, FALSE otherwise
***********************************************************************/
static SANE_Bool
Transparent_AdjustAD (void)
{
SANE_Byte * lpCalData;
unsigned short wCalWidth;
int nTimesOfCal;
unsigned short wMaxValueR, wMinValueR, wMaxValueG, wMinValueG, wMaxValueB, wMinValueB;
#if 0
float fRFactor = 1.0;
float fGFactor = 1.0;
float fBFactor = 1.0;
SANE_Byte bDarkMaxLevel;
SANE_Byte bDarkMinLevel;
SANE_Byte bLastMinR, bLastROffset, bROffsetUpperBound = 255, bROffsetLowerBound =
0;
SANE_Byte bLastMinG, bLastGOffset, bGOffsetUpperBound = 255, bGOffsetLowerBound =
0;
SANE_Byte bLastMinB, bLastBOffset, bBOffsetUpperBound = 255, bBOffsetLowerBound =
0;
#endif
unsigned short wAdjustADResolution;
DBG (DBG_FUNC, "Transparent_AdjustAD: call in\n");
if (!g_bOpened)
{
return FALSE;
}
if (!g_bPrepared)
{
return FALSE;
}
g_chip.AD.DirectionR = R_DIRECTION;
g_chip.AD.DirectionG = G_DIRECTION;
g_chip.AD.DirectionB = B_DIRECTION;
g_chip.AD.GainR = R_GAIN;
g_chip.AD.GainG = G_GAIN;
g_chip.AD.GainB = B_GAIN;
g_chip.AD.OffsetR = 159;
g_chip.AD.OffsetG = 50;
g_chip.AD.OffsetB = 45;
if (g_XDpi <= 600)
{
wAdjustADResolution = 600;
}
else
{
wAdjustADResolution = 1200;
}
wCalWidth = 10240;
lpCalData = malloc (wCalWidth * 3);
if (lpCalData == NULL)
{
return FALSE;
}
Asic_SetMotorType (&g_chip, FALSE);
Asic_SetCalibrate (&g_chip, 24, wAdjustADResolution, wAdjustADResolution, 0,
0, wCalWidth, 1);
MustScanner_PrepareCalculateMaxMin (wAdjustADResolution);
nTimesOfCal = 0;
#ifdef DEBUG_SAVE_IMAGE
SetAFEGainOffset (&g_chip);
Asic_ScanStart (&g_chip);
Asic_ReadCalibrationData (&g_chip, lpCalData, wCalWidth * 3, 24);
Asic_ScanStop (&g_chip);
FILE *stream = NULL;
SANE_Byte * lpBuf = malloc (50);
if (NULL == lpBuf)
{
DBG (DBG_FUNC,
"Transparent_AdjustAD: Leave Transparent_AdjustAD for malloc fail!\n");
return FALSE;
}
memset (lpBuf, 0, 50);
stream = fopen ("/root/AD(Tra).pnm", "wb+\n");
sprintf (lpBuf, "P6\n%d %d\n255\n", wCalWidth, 3);
fwrite (lpBuf, 1, strlen (lpBuf), stream);
fwrite (lpCalData, 1, wCalWidth * 3, stream);
fclose (stream);
free (lpBuf);
#endif
do
{
DBG (DBG_FUNC,
"Transparent_AdjustAD: run in first adjust offset do-while\n");
SetAFEGainOffset (&g_chip);
Asic_ScanStart (&g_chip);
Asic_ReadCalibrationData (&g_chip, lpCalData, wCalWidth * 3, 24);
Asic_ScanStop (&g_chip);
MustScanner_CalculateMaxMin (lpCalData, &wMaxValueR, &wMinValueR);
MustScanner_CalculateMaxMin (lpCalData + wCalWidth, &wMaxValueG,
&wMinValueG);
MustScanner_CalculateMaxMin (lpCalData + wCalWidth * 2, &wMaxValueB,
&wMinValueB);
if (g_chip.AD.DirectionR == DIR_POSITIVE)
{
if (wMinValueR > 15)
{
if (g_chip.AD.OffsetR < 8)
g_chip.AD.DirectionR = DIR_NEGATIVE;
else
g_chip.AD.OffsetR -= 8;
}
else if (wMinValueR < 5)
g_chip.AD.OffsetR += 8;
}
else
{
if (wMinValueR > 15)
g_chip.AD.OffsetR += 8;
else if (wMinValueR < 5)
g_chip.AD.OffsetR -= 8;
}
if (g_chip.AD.DirectionG == DIR_POSITIVE)
{
if (wMinValueG > 15)
{
if (g_chip.AD.OffsetG < 8)
g_chip.AD.DirectionG = DIR_NEGATIVE;
else
g_chip.AD.OffsetG -= 8;
}
else if (wMinValueG < 5)
g_chip.AD.OffsetG += 8;
}
else
{
if (wMinValueG > 15)
g_chip.AD.OffsetG += 8;
else if (wMinValueG < 5)
g_chip.AD.OffsetG -= 8;
}
if (g_chip.AD.DirectionB == DIR_POSITIVE)
{
if (wMinValueB > 15)
{
if (g_chip.AD.OffsetB < 8)
g_chip.AD.DirectionB = DIR_NEGATIVE;
else
g_chip.AD.OffsetB -= 8;
}
else if (wMinValueB < 5)
g_chip.AD.OffsetB += 8;
}
else
{
if (wMinValueB > 15)
g_chip.AD.OffsetB += 8;
else if (wMinValueB < 5)
g_chip.AD.OffsetB -= 8;
}
nTimesOfCal++;
if (nTimesOfCal > 10)
break;
}
while (wMinValueR > 15 || wMinValueR < 5
|| wMinValueG > 15 || wMinValueG < 5
|| wMinValueB > 15 || wMinValueB < 5);
g_chip.AD.GainR = 1 - (double) (wMaxValueR - wMinValueR) / 210 > 0 ?
(SANE_Byte) (((1 -
(double) (wMaxValueR - wMinValueR) / 210)) * 63 * 6 / 5) : 0;
g_chip.AD.GainG =
1 - (double) (wMaxValueG - wMinValueG) / 210 >
0 ? (SANE_Byte) (((1 - (double) (wMaxValueG - wMinValueG) / 210)) * 63 * 6 /
5) : 0;
g_chip.AD.GainB =
1 - (double) (wMaxValueB - wMinValueB) / 210 >
0 ? (SANE_Byte) (((1 - (double) (wMaxValueB - wMinValueB) / 210)) * 63 * 6 /
5) : 0;
if (g_chip.AD.GainR > 63)
g_chip.AD.GainR = 63;
if (g_chip.AD.GainG > 63)
g_chip.AD.GainG = 63;
if (g_chip.AD.GainB > 63)
g_chip.AD.GainB = 63;
nTimesOfCal = 0;
do
{
SetAFEGainOffset (&g_chip);
Asic_ScanStart (&g_chip);
Asic_ReadCalibrationData (&g_chip, lpCalData, wCalWidth * 3, 24);
Asic_ScanStop (&g_chip);
MustScanner_CalculateMaxMin (lpCalData, &wMaxValueR, &wMinValueR);
MustScanner_CalculateMaxMin (lpCalData + wCalWidth, &wMaxValueG,
&wMinValueG);
MustScanner_CalculateMaxMin (lpCalData + wCalWidth * 2, &wMaxValueB,
&wMinValueB);
DBG (DBG_FUNC, "Transparent_AdjustAD: "
"RGain=%d, ROffset=%d, RDir=%d GGain=%d, GOffset=%d, GDir=%d BGain=%d, BOffset=%d, BDir=%d\n",
g_chip.AD.GainR, g_chip.AD.OffsetR, g_chip.AD.DirectionR,
g_chip.AD.GainG, g_chip.AD.OffsetG, g_chip.AD.DirectionG,
g_chip.AD.GainB, g_chip.AD.OffsetB, g_chip.AD.DirectionB);
DBG (DBG_FUNC, "Transparent_AdjustAD: "
"MaxR=%d, MinR=%d MaxG=%d, MinG=%d MaxB=%d, MinB=%d\n",
wMaxValueR, wMinValueR, wMaxValueG, wMinValueG, wMaxValueB,
wMinValueB);
/*R Channel */
if ((wMaxValueR - wMinValueR) > TRAN_MAX_LEVEL_RANGE)
{
if (g_chip.AD.GainR > 0)
g_chip.AD.GainR--;
}
else
{
if ((wMaxValueR - wMinValueR) < TRAN_MIN_LEVEL_RANGE)
{
if (wMaxValueR < TRAN_WHITE_MIN_LEVEL)
{
g_chip.AD.GainR++;
if (g_chip.AD.GainR > 63)
g_chip.AD.GainR = 63;
}
else
{
if (wMaxValueR > TRAN_WHITE_MAX_LEVEL)
{
if (g_chip.AD.GainR < 1)
g_chip.AD.GainR = 0;
else
g_chip.AD.GainR--;
}
else
{
if (g_chip.AD.GainR > 63)
g_chip.AD.GainR = 63;
else
g_chip.AD.GainR++;
}
}
}
else
{
if (wMaxValueR > TRAN_WHITE_MAX_LEVEL)
{
if (g_chip.AD.GainR < 1)
g_chip.AD.GainR = 0;
else
g_chip.AD.GainR--;
}
if (wMaxValueR < TRAN_WHITE_MIN_LEVEL)
{
if (g_chip.AD.GainR > 63)
g_chip.AD.GainR = 63;
else
g_chip.AD.GainR++;
}
}
}
/*G Channel */
if ((wMaxValueG - wMinValueG) > TRAN_MAX_LEVEL_RANGE)
{
if (g_chip.AD.GainG > 0)
g_chip.AD.GainG--;
}
else
{
if ((wMaxValueG - wMinValueG) < TRAN_MIN_LEVEL_RANGE)
{
if (wMaxValueG < TRAN_WHITE_MIN_LEVEL)
{
g_chip.AD.GainG++;
if (g_chip.AD.GainG > 63)
g_chip.AD.GainG = 63;
}
else
{
if (wMaxValueG > TRAN_WHITE_MAX_LEVEL)
{
if (g_chip.AD.GainG < 1)
g_chip.AD.GainG = 0;
else
g_chip.AD.GainG--;
}
else
{
if (g_chip.AD.GainG > 63)
g_chip.AD.GainG = 63;
else
g_chip.AD.GainG++;
}
}
}
else
{
if (wMaxValueG > TRAN_WHITE_MAX_LEVEL)
{
if (g_chip.AD.GainG < 1)
g_chip.AD.GainG = 0;
else
g_chip.AD.GainG--;
}
if (wMaxValueG < TRAN_WHITE_MIN_LEVEL)
{
if (g_chip.AD.GainG > 63)
g_chip.AD.GainG = 63;
else
g_chip.AD.GainG++;
}
}
}
/* B Channel */
if ((wMaxValueB - wMinValueB) > TRAN_MAX_LEVEL_RANGE)
{
if (g_chip.AD.GainB > 0)
g_chip.AD.GainB--;
}
else
{
if ((wMaxValueB - wMinValueB) < TRAN_MIN_LEVEL_RANGE)
{
if (wMaxValueB < TRAN_WHITE_MIN_LEVEL)
{
g_chip.AD.GainB++;
if (g_chip.AD.GainB > 63)
g_chip.AD.GainB = 63;
}
else
{
if (wMaxValueB > TRAN_WHITE_MAX_LEVEL)
{
if (g_chip.AD.GainB < 1)
g_chip.AD.GainB = 0;
else
g_chip.AD.GainB--;
}
else
{
if (g_chip.AD.GainB > 63)
g_chip.AD.GainB = 63;
else
g_chip.AD.GainB++;
}
}
}
else
{
if (wMaxValueB > TRAN_WHITE_MAX_LEVEL)
{
if (g_chip.AD.GainB < 1)
g_chip.AD.GainB = 0;
else
g_chip.AD.GainB--;
}
if (wMaxValueB < TRAN_WHITE_MIN_LEVEL)
{
if (g_chip.AD.GainB > 63)
g_chip.AD.GainB = 63;
else
g_chip.AD.GainB++;
}
}
}
nTimesOfCal++;
if (nTimesOfCal > 10)
break;
}
while ((wMaxValueR - wMinValueR) > TRAN_MAX_LEVEL_RANGE
|| (wMaxValueR - wMinValueR) < TRAN_MIN_LEVEL_RANGE
|| (wMaxValueG - wMinValueG) > TRAN_MAX_LEVEL_RANGE
|| (wMaxValueG - wMinValueG) < TRAN_MIN_LEVEL_RANGE
|| (wMaxValueB - wMinValueB) > TRAN_MAX_LEVEL_RANGE
|| (wMaxValueB - wMinValueB) < TRAN_MIN_LEVEL_RANGE);
/* Adjust Offset 2nd */
nTimesOfCal = 0;
do
{
SetAFEGainOffset (&g_chip);
Asic_ScanStart (&g_chip);
Asic_ReadCalibrationData (&g_chip, lpCalData, wCalWidth * 3, 24);
Asic_ScanStop (&g_chip);
MustScanner_CalculateMaxMin (lpCalData, &wMaxValueR, &wMinValueR);
MustScanner_CalculateMaxMin (lpCalData + wCalWidth, &wMaxValueG,
&wMinValueG);
MustScanner_CalculateMaxMin (lpCalData + wCalWidth * 2, &wMaxValueB,
&wMinValueB);
DBG (DBG_FUNC,
"Transparent_AdjustAD: "
"RGain=%d, ROffset=%d, RDir=%d GGain=%d, GOffset=%d, GDir=%d BGain=%d, BOffset=%d, BDir=%d\n",
g_chip.AD.GainR, g_chip.AD.OffsetR, g_chip.AD.DirectionR,
g_chip.AD.GainG, g_chip.AD.OffsetG, g_chip.AD.DirectionG,
g_chip.AD.GainB, g_chip.AD.OffsetB, g_chip.AD.DirectionB);
DBG (DBG_FUNC, "Transparent_AdjustAD: "
"MaxR=%d, MinR=%d MaxG=%d, MinG=%d MaxB=%d, MinB=%d\n",
wMaxValueR, wMinValueR, wMaxValueG, wMinValueG, wMaxValueB,
wMinValueB);
if (g_chip.AD.DirectionR == DIR_POSITIVE)
{
if (wMinValueR > 20)
{
if (g_chip.AD.OffsetR < 8)
g_chip.AD.DirectionR = DIR_NEGATIVE;
else
g_chip.AD.OffsetR -= 8;
}
else if (wMinValueR < 10)
g_chip.AD.OffsetR += 8;
}
else
{
if (wMinValueR > 20)
g_chip.AD.OffsetR += 8;
else if (wMinValueR < 10)
g_chip.AD.OffsetR -= 8;
}
if (g_chip.AD.DirectionG == DIR_POSITIVE)
{
if (wMinValueG > 20)
{
if (g_chip.AD.OffsetG < 8)
g_chip.AD.DirectionG = DIR_NEGATIVE;
else
g_chip.AD.OffsetG -= 8;
}
else if (wMinValueG < 10)
g_chip.AD.OffsetG += 8;
}
else
{
if (wMinValueG > 20)
g_chip.AD.OffsetG += 8;
else if (wMinValueG < 10)
g_chip.AD.OffsetG -= 8;
}
if (g_chip.AD.DirectionB == DIR_POSITIVE)
{
if (wMinValueB > 20)
{
if (g_chip.AD.OffsetB < 8)
g_chip.AD.DirectionB = DIR_NEGATIVE;
else
g_chip.AD.OffsetB -= 8;
}
else if (wMinValueB < 10)
g_chip.AD.OffsetB += 8;
}
else
{
if (wMinValueB > 20)
g_chip.AD.OffsetB += 8;
else if (wMinValueB < 10)
g_chip.AD.OffsetB -= 8;
}
nTimesOfCal++;
if (nTimesOfCal > 8)
break;
}
while (wMinValueR > 20 || wMinValueR < 10
|| wMinValueG > 20 || wMinValueG < 10
|| wMinValueB > 20 || wMinValueB < 10);
DBG (DBG_FUNC, "Transparent_AdjustAD: leave Transparent_AdjustAD\n");
free (lpCalData);
return TRUE;
}
/**********************************************************************
Find top and left side
Parameters:
lpwStartX: the left side
lpwStartY: the top side
Return value:
TRUE if operation is success, FALSE otherwise
***********************************************************************/
static SANE_Bool
Transparent_FindTopLeft (unsigned short * lpwStartX, unsigned short * lpwStartY)
{
unsigned short wCalWidth = TA_FIND_LEFT_TOP_WIDTH_IN_DIP;
unsigned short wCalHeight = TA_FIND_LEFT_TOP_HEIGHT_IN_DIP;
int i, j;
unsigned short wLeftSide;
unsigned short wTopSide;
int nScanBlock;
SANE_Byte * lpCalData;
unsigned int dwTotalSize;
unsigned short wXResolution, wYResolution;
DBG (DBG_FUNC, "Transparent_FindTopLeft: call in\n");
if (!g_bOpened)
{
DBG (DBG_FUNC, "Transparent_FindTopLeft: scanner not opened\n");
return FALSE;
}
if (!g_bPrepared)
{
DBG (DBG_FUNC, "Transparent_FindTopLeft: scanner not prepared\n");
return FALSE;
}
wXResolution = wYResolution = FIND_LEFT_TOP_CALIBRATE_RESOLUTION;
lpCalData = malloc (wCalWidth * wCalHeight);
if (lpCalData == NULL)
{
DBG (DBG_FUNC, "Transparent_FindTopLeft: lpCalData malloc fail\n");
return FALSE;
}
dwTotalSize = wCalWidth * wCalHeight;
nScanBlock = (int) (dwTotalSize / g_dwCalibrationSize);
Asic_SetMotorType (&g_chip, TRUE);
Asic_SetCalibrate (&g_chip, 8, wXResolution, wYResolution, 0, 0, wCalWidth,
wCalHeight);
SetAFEGainOffset (&g_chip);
Asic_ScanStart (&g_chip);
for (i = 0; i < nScanBlock; i++)
Asic_ReadCalibrationData (&g_chip, lpCalData + i * g_dwCalibrationSize,
g_dwCalibrationSize, 8);
Asic_ReadCalibrationData (&g_chip,
lpCalData + (nScanBlock) * g_dwCalibrationSize,
(dwTotalSize - g_dwCalibrationSize * nScanBlock),
8);
Asic_ScanStop (&g_chip);
#ifdef DEBUG_SAVE_IMAGE
FILE *stream = NULL;
SANE_Byte * lpBuf = malloc (50);
if (NULL == lpBuf)
{
return FALSE;
}
memset (lpBuf, 0, 50);
stream = fopen ("/root/bound(Tra).pnm", "wb+\n");
sprintf (lpBuf, "P5\n%d %d\n255\n", wCalWidth, wCalHeight);
fwrite (lpBuf, 1, strlen (lpBuf), stream);
fwrite (lpCalData, 1, wCalWidth * wCalHeight, stream);
fclose (stream);
free (lpBuf);
#endif
wLeftSide = 0;
wTopSide = 0;
/* Find Left Side */
for (i = (wCalWidth - 1); i > 0; i--)
{
wLeftSide = *(lpCalData + i);
wLeftSide += *(lpCalData + wCalWidth * 2 + i);
wLeftSide += *(lpCalData + wCalWidth * 4 + i);
wLeftSide += *(lpCalData + wCalWidth * 6 + i);
wLeftSide += *(lpCalData + wCalWidth * 8 + i);
wLeftSide /= 5;
if (wLeftSide < 60)
{
if (i == (wCalWidth - 1))
{
break;
}
*lpwStartX = i;
break;
}
}
/* Find Top Side i=left side */
for (j = 0; j < wCalHeight; j++)
{
wTopSide = *(lpCalData + wCalWidth * j + i + 2);
wTopSide += *(lpCalData + wCalWidth * j + i + 4);
wTopSide += *(lpCalData + wCalWidth * j + i + 6);
wTopSide += *(lpCalData + wCalWidth * j + i + 8);
wTopSide += *(lpCalData + wCalWidth * j + i + 10);
wTopSide /= 5;
if (wTopSide < 60)
{
if (j == 0)
{
break;
}
*lpwStartY = j;
break;
}
}
if ((*lpwStartX < 2200) || (*lpwStartX > 2300))
{
*lpwStartX = 2260;
}
if ((*lpwStartY < 100) || (*lpwStartY > 200))
{
*lpwStartY = 124;
}
Asic_MotorMove (&g_chip, FALSE,
(wCalHeight - *lpwStartY) * 1200 / wYResolution + 300);
free (lpCalData);
DBG (DBG_FUNC,
"Transparent_FindTopLeft: *lpwStartY = %d, *lpwStartX = %d\n",
*lpwStartY, *lpwStartX);
DBG (DBG_FUNC, "Transparent_FindTopLeft: leave Transparent_FindTopLeft\n");
return TRUE;
}
/**********************************************************************
Get the calibration data
Return value:
TRUE if the operation is success, FALSE otherwise
***********************************************************************/
static SANE_Bool
Transparent_LineCalibration16Bits (unsigned short wTAShadingMinus)
{
unsigned short *lpWhiteShading;
unsigned short *lpDarkShading;
double wRWhiteLevel = 0;
double wGWhiteLevel = 0;
double wBWhiteLevel = 0;
unsigned int dwRDarkLevel = 0;
unsigned int dwGDarkLevel = 0;
unsigned int dwBDarkLevel = 0;
unsigned int dwREvenDarkLevel = 0;
unsigned int dwGEvenDarkLevel = 0;
unsigned int dwBEvenDarkLevel = 0;
unsigned short * lpRWhiteSort;
unsigned short * lpGWhiteSort;
unsigned short * lpBWhiteSort;
unsigned short * lpRDarkSort;
unsigned short * lpGDarkSort;
unsigned short * lpBDarkSort;
int i, j;
SANE_Byte * lpWhiteData;
SANE_Byte * lpDarkData;
unsigned int dwWhiteTotalSize;
unsigned int dwDarkTotalSize;
unsigned short wCalHeight = LINE_CALIBRATION__16BITS_HEIGHT;
unsigned short wCalWidth = g_Width;
DBG (DBG_FUNC, "Transparent_LineCalibration16Bits: call in\n");
if (!g_bOpened)
{
DBG (DBG_FUNC,
"Transparent_LineCalibration16Bits: scanner not opened\n");
return FALSE;
}
if (!g_bPrepared)
{
DBG (DBG_FUNC,
"Transparent_LineCalibration16Bits: scanner not prepared\n");
return FALSE;
}
if (g_XDpi < 600)
{
wTAShadingMinus = wTAShadingMinus * g_XDpi / 600;
}
dwWhiteTotalSize = wCalWidth * wCalHeight * 3 * 2;
dwDarkTotalSize = wCalWidth * wCalHeight * 3 * 2;
lpWhiteData = malloc (dwWhiteTotalSize);
lpDarkData = malloc (dwDarkTotalSize);
if (lpWhiteData == NULL || lpDarkData == NULL)
{
DBG (DBG_FUNC,
"Transparent_LineCalibration16Bits: lpWhiteData or lpDarkData malloc fail\n");
return FALSE;
}
/*Read white level data */
Asic_SetMotorType (&g_chip, TRUE);
SetAFEGainOffset (&g_chip);
Asic_SetCalibrate (&g_chip, 48, g_XDpi, 600, g_X, 0, wCalWidth,
wCalHeight);
Asic_ScanStart (&g_chip);
/* Read Data */
Asic_ReadCalibrationData (&g_chip, lpWhiteData, dwWhiteTotalSize, 8);
Asic_ScanStop (&g_chip);
/* Read dark level data */
Asic_SetMotorType (&g_chip, FALSE);
SetAFEGainOffset (&g_chip);
Asic_SetCalibrate (&g_chip, 48, g_XDpi, 600, g_X, 0, wCalWidth,
wCalHeight);
Asic_TurnLamp (&g_chip, FALSE);
Asic_TurnTA (&g_chip, FALSE);
usleep (500000);
Asic_ScanStart (&g_chip);
Asic_ReadCalibrationData (&g_chip, lpDarkData, dwDarkTotalSize, 8);
Asic_ScanStop (&g_chip);
Asic_TurnTA (&g_chip, TRUE);
#ifdef DEBUG_SAVE_IMAGE
FILE *stream = NULL;
SANE_Byte * lpBuf = malloc (50);
if (NULL == lpBuf)
{
return FALSE;
}
memset (lpBuf, 0, 50);
stream = fopen ("/root/whiteshading(Tra).pnm", "wb+\n");
sprintf (lpBuf, "P6\n%d %d\n65535\n", wCalWidth, wCalHeight);
fwrite (lpBuf, 1, strlen (lpBuf), stream);
fwrite (lpWhiteData, 1, wCalWidth * wCalHeight * 3 * 2, stream);
fclose (stream);
memset (lpBuf, 0, 50);
stream = fopen ("/root/darkshading(Tra).pnm", "wb+\n");
sprintf (lpBuf, "P6\n%d %d\n65535\n", wCalWidth * wCalHeight);
fwrite (lpBuf, 1, strlen (lpBuf), stream);
fwrite (lpDarkData, 1, wCalWidth * wCalHeight * 3 * 2, stream);
fclose (stream);
free (lpBuf);
#endif
lpWhiteShading = malloc (sizeof (unsigned short) * wCalWidth * 3);
lpDarkShading = malloc (sizeof (unsigned short) * wCalWidth * 3);
lpRWhiteSort = malloc (sizeof (unsigned short) * wCalHeight);
lpGWhiteSort = malloc (sizeof (unsigned short) * wCalHeight);
lpBWhiteSort = malloc (sizeof (unsigned short) * wCalHeight);
lpRDarkSort = malloc (sizeof (unsigned short) * wCalHeight);
lpGDarkSort = malloc (sizeof (unsigned short) * wCalHeight);
lpBDarkSort = malloc (sizeof (unsigned short) * wCalHeight);
if (lpWhiteShading == NULL || lpDarkShading == NULL
|| lpRWhiteSort == NULL || lpGWhiteSort == NULL || lpBWhiteSort == NULL
|| lpRDarkSort == NULL || lpGDarkSort == NULL || lpBDarkSort == NULL)
{
DBG (DBG_FUNC, "Transparent_LineCalibration16Bits: malloc fail\n");
free (lpWhiteData);
free (lpDarkData);
return FALSE;
}
DBG (DBG_FUNC,
"Transparent_LineCalibration16Bits: wCalWidth = %d, wCalHeight = %d\n",
wCalWidth, wCalHeight);
/* create dark level shading */
dwRDarkLevel = 0;
dwGDarkLevel = 0;
dwBDarkLevel = 0;
dwREvenDarkLevel = 0;
dwGEvenDarkLevel = 0;
dwBEvenDarkLevel = 0;
for (i = 0; i < wCalWidth; i++)
{
for (j = 0; j < wCalHeight; j++)
{
lpRDarkSort[j] =
(unsigned short) (*(lpDarkData + j * wCalWidth * 6 + i * 6 + 0));
lpRDarkSort[j] +=
(unsigned short) (*(lpDarkData + j * wCalWidth * 6 + i * 6 + 1) << 8);
lpGDarkSort[j] =
(unsigned short) (*(lpDarkData + j * wCalWidth * 6 + i * 6 + 2));
lpGDarkSort[j] +=
(unsigned short) (*(lpDarkData + j * wCalWidth * 6 + i * 6 + 3) << 8);
lpBDarkSort[j] =
(unsigned short) (*(lpDarkData + j * wCalWidth * 6 + i * 6 + 4));
lpBDarkSort[j] +=
(unsigned short) (*(lpDarkData + j * wCalWidth * 6 + i * 6 + 5) << 8);
}
/* sum of dark level for all pixels */
if (g_XDpi == 1200)
{
/* do dark shading table with mean */
if (i % 2)
{
dwRDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpRDarkSort, wCalHeight, 20,
30);
dwGDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpGDarkSort, wCalHeight, 20,
30);
dwBDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpBDarkSort, wCalHeight, 20,
30);
}
else
{
dwREvenDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpRDarkSort, wCalHeight, 20,
30);
dwGEvenDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpGDarkSort, wCalHeight, 20,
30);
dwBEvenDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpBDarkSort, wCalHeight, 20,
30);
}
}
else
{
dwRDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpRDarkSort, wCalHeight, 20, 30);
dwGDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpGDarkSort, wCalHeight, 20, 30);
dwBDarkLevel +=
(unsigned int) MustScanner_FiltLower (lpBDarkSort, wCalHeight, 20, 30);
}
}
if (g_XDpi == 1200)
{
dwRDarkLevel = (unsigned int) (dwRDarkLevel / (wCalWidth / 2)) - 512;
dwGDarkLevel = (unsigned int) (dwGDarkLevel / (wCalWidth / 2)) - 512;
dwBDarkLevel = (unsigned int) (dwBDarkLevel / (wCalWidth / 2)) - 512;
dwREvenDarkLevel = (unsigned int) (dwREvenDarkLevel / (wCalWidth / 2)) - 512;
dwGEvenDarkLevel = (unsigned int) (dwGEvenDarkLevel / (wCalWidth / 2)) - 512;
dwBEvenDarkLevel = (unsigned int) (dwBEvenDarkLevel / (wCalWidth / 2)) - 512;
}
else
{
dwRDarkLevel = (unsigned int) (dwRDarkLevel / wCalWidth) - 512;
dwGDarkLevel = (unsigned int) (dwGDarkLevel / wCalWidth) - 512;
dwBDarkLevel = (unsigned int) (dwBDarkLevel / wCalWidth) - 512;
}
/* Create white shading */
for (i = 0; i < wCalWidth; i++)
{
wRWhiteLevel = 0;
wGWhiteLevel = 0;
wBWhiteLevel = 0;
for (j = 0; j < wCalHeight; j++)
{
lpRWhiteSort[j] =
(unsigned short) (*(lpWhiteData + j * wCalWidth * 2 * 3 + i * 6 + 0));
lpRWhiteSort[j] +=
(unsigned short) (*(lpWhiteData + j * wCalWidth * 2 * 3 + i * 6 + 1) << 8);
lpGWhiteSort[j] =
(unsigned short) (*(lpWhiteData + j * wCalWidth * 2 * 3 + i * 6 + 2));
lpGWhiteSort[j] +=
(unsigned short) (*(lpWhiteData + j * wCalWidth * 2 * 3 + i * 6 + 3) << 8);
lpBWhiteSort[j] =
(unsigned short) (*(lpWhiteData + j * wCalWidth * 2 * 3 + i * 6 + 4));
lpBWhiteSort[j] +=
(unsigned short) (*(lpWhiteData + j * wCalWidth * 2 * 3 + i * 6 + 5) << 8);
}
if (1200 == g_XDpi)
{
if (i % 2)
{
if (SS_Negative == g_ssScanSource)
{
*(lpDarkShading + i * 3 + 0) = (unsigned short) dwRDarkLevel;
*(lpDarkShading + i * 3 + 1) = (unsigned short) dwGDarkLevel;
*(lpDarkShading + i * 3 + 2) = (unsigned short) dwBDarkLevel;
}
else
{
*(lpDarkShading + i * 3 + 0) = (unsigned short) dwRDarkLevel;
*(lpDarkShading + i * 3 + 1) = (unsigned short) (dwGDarkLevel * 0.78);
*(lpDarkShading + i * 3 + 2) = (unsigned short) dwBDarkLevel;
}
}
else
{
if (SS_Negative == g_ssScanSource)
{
*(lpDarkShading + i * 3 + 0) = (unsigned short) dwREvenDarkLevel;
*(lpDarkShading + i * 3 + 1) = (unsigned short) dwGEvenDarkLevel;
*(lpDarkShading + i * 3 + 2) = (unsigned short) dwBEvenDarkLevel;
}
else
{
*(lpDarkShading + i * 3 + 0) = (unsigned short) dwREvenDarkLevel;
*(lpDarkShading + i * 3 + 1) =
(unsigned short) (dwGEvenDarkLevel * 0.78);
*(lpDarkShading + i * 3 + 2) = (unsigned short) dwBEvenDarkLevel;
}
}
}
else
{
if (SS_Negative == g_ssScanSource)
{
*(lpDarkShading + i * 3 + 0) = (unsigned short) dwRDarkLevel;
*(lpDarkShading + i * 3 + 1) = (unsigned short) dwRDarkLevel;
*(lpDarkShading + i * 3 + 2) = (unsigned short) dwRDarkLevel;
}
else
{
*(lpDarkShading + i * 3 + 0) = (unsigned short) dwRDarkLevel;
*(lpDarkShading + i * 3 + 1) = (unsigned short) (dwRDarkLevel * 0.78);
*(lpDarkShading + i * 3 + 2) = (unsigned short) dwRDarkLevel;
}
}
/* Create white shading */
wRWhiteLevel =
(double) (MustScanner_FiltLower (lpRWhiteSort, wCalHeight, 20, 30) -
*(lpDarkShading + i * 3 + 0));
wGWhiteLevel =
(double) (MustScanner_FiltLower (lpGWhiteSort, wCalHeight, 20, 30) -
*(lpDarkShading + i * 3 + 1));
wBWhiteLevel =
(double) (MustScanner_FiltLower (lpBWhiteSort, wCalHeight, 20, 30) -
*(lpDarkShading + i * 3 + 2));
if (g_ssScanSource == SS_Negative)
{
if (wRWhiteLevel > 0)
*(lpWhiteShading + i * 3 + 0) =
(unsigned short) ((float) 65536 / wRWhiteLevel * 0x1000);
else
*(lpWhiteShading + i * 3 + 0) = 0x1000;
if (wGWhiteLevel > 0)
*(lpWhiteShading + i * 3 + 1) =
(unsigned short) ((float) (65536 * 1.5) / wGWhiteLevel * 0x1000);
else
*(lpWhiteShading + i * 3 + 1) = 0x1000;
if (wBWhiteLevel > 0)
*(lpWhiteShading + i * 3 + 2) =
(unsigned short) ((float) (65536 * 2.0) / wBWhiteLevel * 0x1000);
else
*(lpWhiteShading + i * 3 + 2) = 0x1000;
}
else
{
if (wRWhiteLevel > 0)
*(lpWhiteShading + i * 3 + 0) =
(unsigned short) ((float) 65536 / wRWhiteLevel * 0x1000);
else
*(lpWhiteShading + i * 3 + 0) = 0x1000;
if (wGWhiteLevel > 0)
*(lpWhiteShading + i * 3 + 1) =
(unsigned short) ((float) (65536 * 1.04) / wGWhiteLevel * 0x1000);
else
*(lpWhiteShading + i * 3 + 1) = 0x1000;
if (wBWhiteLevel > 0)
*(lpWhiteShading + i * 3 + 2) =
(unsigned short) ((float) 65536 / wBWhiteLevel * 0x1000);
else
*(lpWhiteShading + i * 3 + 2) = 0x1000;
}
}
free (lpWhiteData);
free (lpDarkData);
free (lpRWhiteSort);
free (lpGWhiteSort);
free (lpBWhiteSort);
free (lpRDarkSort);
free (lpGDarkSort);
free (lpBDarkSort);
Asic_SetShadingTable (&g_chip, lpWhiteShading, lpDarkShading, g_XDpi,
wCalWidth);
free (lpWhiteShading);
free (lpDarkShading);
DBG (DBG_FUNC,
"Transparent_LineCalibration16Bits: leave Transparent_LineCalibration16Bits\n");
return TRUE;
}