sane-project-backends/backend/agfafocus.c

2088 wiersze
54 KiB
C

/* sane - Scanner Access Now Easy.
This file (C) 1997 Ingo Schneider
(C) 1998 Karl Anders Øygard
This file is part of the SANE package.
SANE is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
SANE is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with sane; see the file COPYING.
If not, see <https://www.gnu.org/licenses/>.
This file implements a SANE backend for AGFA Focus flatbed scanners. */
#include "../include/sane/config.h"
#include <signal.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include "../include/sane/sane.h"
#include "../include/sane/sanei.h"
#include "../include/sane/sanei_config.h"
#include "../include/sane/saneopts.h"
#include "../include/sane/sanei_scsi.h"
#include "../include/sane/sanei_thread.h"
#define BACKEND_NAME agfafocus
#include "../include/sane/sanei_backend.h"
#include "agfafocus.h"
#ifndef PATH_MAX
# define PATH_MAX 1024
#endif
#undef Byte
#define Byte SANE_Byte
static const SANE_Device **devlist = 0;
static int num_devices;
static AgfaFocus_Device *agfafocus_devices;
static const SANE_String_Const focus_mode_list[] =
{
"Lineart", "Gray (6 bit)",
0
};
static const SANE_String_Const focusii_mode_list[] =
{
"Lineart", "Gray (6 bit)", "Gray (8 bit)",
0
};
static const SANE_String_Const focuscolor_mode_list[] =
{
"Lineart", "Gray (6 bit)", "Gray (8 bit)", "Color (18 bit)", "Color (24 bit)",
0
};
static const SANE_String_Const halftone_list[] =
{
"None", "Dispersed dot 4x4", "Round (Clustered dot 4x4)", "Diamond (Clustered dot 4x4)",
0
};
static const SANE_String_Const halftone_upload_list[] =
{
"None", "Dispersed dot 4x4", "Round (Clustered dot 4x4)", "Diamond (Clustered dot 4x4)",
0
};
static const SANE_String_Const source_list[] =
{
"Opaque/Normal", "Transparency",
0
};
static const SANE_String_Const quality_list[] =
{
"Low", "Normal", "High",
0
};
static size_t
max_string_size (const SANE_String_Const strings[])
{
size_t size, max_size = 0;
int i;
DBG (11, ">> max_string_size\n");
for (i = 0; strings[i]; ++i)
{
size = strlen (strings[i]) + 1;
if (size > max_size)
max_size = size;
}
DBG (11, "<< max_string_size\n");
return max_size;
}
/* sets loc_s bytes long value at offset loc in scsi command to value size */
static void
set_size (Byte * loc, int loc_s, size_t size)
{
int i;
for (i = 0; i < loc_s; i++)
{
loc[loc_s - i - 1] = (size >> (i * 8)) & 0xff;
}
}
/* gets loc_s bytes long value from loc in scsi command */
static int
get_size (Byte * loc, int loc_s)
{
int i;
int j = 0;
for (i = 0; i < loc_s; i++)
{
j = (j << 8) + (loc[i] & 0xff);
}
return j;
}
static long
reserve_unit (int fd)
{
struct
{
/* Command */
Byte cmd;
Byte lun;
Byte res[2];
Byte tr_len;
Byte ctrl;
}
scsi_reserve;
memset (&scsi_reserve, 0, sizeof (scsi_reserve));
scsi_reserve.cmd = 0x16; /* RELEASE */
DBG (3, "reserve_unit()\n");
return sanei_scsi_cmd (fd, &scsi_reserve, sizeof (scsi_reserve), 0, 0);
}
static long
release_unit (int fd)
{
struct
{
/* Command */
Byte cmd;
Byte lun;
Byte res[2];
Byte tr_len;
Byte ctrl;
}
scsi_release;
memset (&scsi_release, 0, sizeof (scsi_release));
scsi_release.cmd = 0x17; /* RELEASE */
DBG (3, "release_unit()\n");
return sanei_scsi_cmd (fd, &scsi_release, sizeof (scsi_release), 0, 0);
}
static SANE_Status
test_ready (int fd)
{
SANE_Status status;
int try;
struct
{
/* Command */
Byte cmd;
Byte lun;
Byte res[2];
Byte tr_len;
Byte ctrl;
}
scsi_test_ready;
memset (&scsi_test_ready, 0, sizeof (scsi_test_ready));
scsi_test_ready.cmd = 0x00; /* TEST UNIT READY */
for (try = 0; try < 1000; ++try)
{
DBG (3, "test_ready: sending TEST_UNIT_READY\n");
status = sanei_scsi_cmd (fd, &scsi_test_ready, sizeof (scsi_test_ready),
0, 0);
switch (status)
{
case SANE_STATUS_DEVICE_BUSY:
usleep (100000); /* retry after 100ms */
break;
case SANE_STATUS_GOOD:
return status;
default:
DBG (1, "test_ready: test unit ready failed (%s)\n",
sane_strstatus (status));
return status;
}
}
DBG (1, "test_ready: timed out after %d attempts\n", try);
return SANE_STATUS_IO_ERROR;
}
static SANE_Status
sense_handler (int scsi_fd, u_char *result, void *arg)
{
(void) scsi_fd; /* silence gcc */
(void) arg; /* silence gcc */
if (result[0])
{
DBG (0, "sense_handler() : sense code = %02x\n", result[0]);
return SANE_STATUS_IO_ERROR;
}
else
{
return SANE_STATUS_GOOD;
}
}
static SANE_Status
stop_scan (int fd)
{
(void) fd; /* silence gcc */
/* XXX don't know how to stop the scanner. To be tested ! */
#if 0
const Byte scsi_rewind[] =
{
0x01, 0x00, 0x00, 0x00, 0x00, 0x00
};
DBG (1, "Trying to stop scanner...\n");
return sanei_scsi_cmd (fd, scsi_rewind, sizeof (scsi_rewind), 0, 0);
#else
return SANE_STATUS_GOOD;
#endif
}
static SANE_Status
start_scan (int fd, SANE_Bool cont)
{
struct
{
/* Command */
Byte cmd;
Byte lun;
Byte res[2];
Byte tr_len;
Byte ctrl;
/* Data */
Byte wid;
}
scsi_start_scan;
memset (&scsi_start_scan, 0, sizeof (scsi_start_scan));
scsi_start_scan.cmd = 0x1b; /* SCAN */
scsi_start_scan.tr_len = 1;
scsi_start_scan.wid = 0;
scsi_start_scan.ctrl = (cont == SANE_TRUE) ? 0x80 : 0x00;
DBG (1, "Starting scanner ...\n");
return sanei_scsi_cmd (fd, &scsi_start_scan, sizeof (scsi_start_scan), 0, 0);
}
static void
wait_ready (int fd)
{
struct
{
Byte bytes[2]; /* Total # of bytes */
Byte scan[2]; /* ms to complete - driver sleep time */
} result;
size_t size = sizeof (result);
SANE_Status status;
struct {
Byte cmd;
Byte lun;
Byte data_type;
Byte re1[3];
Byte tr_len[3];
Byte ctrl;
} cmd;
memset (&cmd, 0, sizeof (cmd));
cmd.cmd = 0x28; /* READ */
cmd.data_type = 0x80; /* get scan time */
set_size (cmd.tr_len, 3, sizeof (result));
while (1)
{
status = sanei_scsi_cmd (fd, &cmd, sizeof (cmd),
&result, &size);
if (status != SANE_STATUS_GOOD || size != sizeof (result))
{
/*
Command failed, the assembler code of the windows scan library
ignores this condition, and so do I
*/
break;
}
else
{
/* left is the amount of seconds left till the scanner is
ready * 100 */
int left = get_size (result.scan, 2);
DBG (1, "wait_ready() : %d left...\n", left);
if (!left)
break;
/* We delay only for half the given time */
else if (left < 200)
usleep (left * 5000);
else
sleep (left / 200);
}
}
return;
}
static SANE_Status
get_read_sizes (int fd, int *lines_available, int *bpl, int *total_lines)
{
struct {
Byte reserved1[8];
Byte line_width[2];
Byte total_lines[2];
Byte cur_line[2];
Byte lines_this_block[2];
Byte reserved[8];
} read_sizes;
const Byte scsi_read[] =
{
0x28, 0x00, /* opcode, lun */
0x81, /* data type 81 == read time left */
0x00, 0x00, 0x00, /* reserved */
0x00, 0x00, sizeof (read_sizes), /* transfer length */
0x00, /* control byte */
};
size_t size = sizeof (read_sizes);
SANE_Status status;
status = sanei_scsi_cmd (fd, scsi_read, sizeof (scsi_read), &read_sizes, &size);
if (status != SANE_STATUS_GOOD || size != sizeof (read_sizes))
{
/* Command failed */
return SANE_STATUS_IO_ERROR;
}
else
{
*lines_available = get_size (read_sizes.lines_this_block, 2);
*bpl = get_size (read_sizes.cur_line, 2);
if (total_lines)
*total_lines = get_size (read_sizes.total_lines, 2);
}
DBG (1, "get_read_sizes() : %d of %d, %d\n",
*lines_available, total_lines ? *total_lines : -1, *bpl);
return SANE_STATUS_GOOD;
}
static SANE_Status
set_window (AgfaFocus_Scanner * s)
/* This function sets and sends the window for scanning */
{
double pixels_per_mm = (double) s->val[OPT_RESOLUTION].w / MM_PER_INCH;
SANE_Bool auto_bright = s->val[OPT_AUTO_BRIGHTNESS].b;
SANE_Bool auto_contr = s->val[OPT_AUTO_CONTRAST].b;
/* ranges down 255 (dark) down to 1(bright) */
int brightness = auto_bright ? 0 : (SANE_UNFIX (s->val[OPT_BRIGHTNESS].w)
* -1.27 + 128.5);
/* ranges from 1 (little contrast) up to 255 (much contrast) */
int contrast = auto_contr ? 0 : (SANE_UNFIX (s->val[OPT_CONTRAST].w)
* 1.27 + 128.5);
int width;
/* ranges from 40 (dark) down to 0 (bright) */
int bright_adjust = (SANE_UNFIX (s->val[OPT_BRIGHTNESS].w) * -20.0) / 100.0 + 20.0;
/* ranges from 20 (little contrast) down to -20 = 235 (much contrast) */
int contr_adjust = (SANE_UNFIX (s->val[OPT_CONTRAST].w) * -20.0) / 100.0;
/* Warning ! The following structure SEEMS to be a valid SCSI-2 SET_WINDOW
command. But e.g. the limits for the window are only 2 Bytes instead
of 4. The scanner was built at about 1990, so SCSI-2 wasn't available
for development... */
struct
{
Byte cmd;
Byte lun;
Byte re1[4];
Byte tr_len[3];
Byte ctrl;
Byte re2[6];
Byte wd_len[2];
struct
{
Byte wid; /* Window ID */
Byte autobit; /* Window creation */
Byte x_axis_res[2]; /* X resolution */
Byte y_axis_res[2]; /* X resolution */
Byte x_axis_ul[2]; /* X upper left */
Byte y_axis_ul[2]; /* Y upper left */
Byte wwidth[2]; /* Width */
Byte wlength[2]; /* Length */
Byte contrast; /* Contrast */
Byte dummy1;
Byte intensity; /* Intensity */
Byte image_comp; /* Image composition (0, 2, 5) */
Byte bpp; /* Bits per pixel */
Byte tonecurve; /* Tone curve (0 - 8) */
Byte ht_pattern; /* Halftone pattern */
Byte paddingtype; /* Padding type */
Byte bitordering[2]; /* Bit ordering (0 = left to right) */
Byte comprtype; /* Compression type */
Byte comprarg; /* Compression argument */
Byte dummy2[6];
Byte edge; /* Sharpening (0 - 7) */
Byte dummy3;
Byte bright_adjust; /* */
Byte contr_adjust; /* */
Byte imagewidthtruncation; /* */
Byte dummy4;
Byte quality_type; /* 0 normal, 1 high, 255 low */
Byte red_att;
Byte green_att;
Byte blue_att;
Byte dummy5[5];
Byte color_planes;
Byte orig_type;
Byte fixturetype;
Byte exposure[2];
Byte defocus[2];
Byte dummy6[4];
Byte descreen_factor;
Byte packing_word_length;
Byte packing_number_of_pixels;
Byte packing_color_mode;
Byte strokenab;
Byte rotatenab;
Byte autostrokenab;
Byte dummy7;
}
wd;
}
cmd;
memset (&cmd, 0, sizeof (cmd));
cmd.cmd = 0x24; /* SET WINDOW PARAMETERS */
switch (s->hw->type)
{
case AGFAGRAY64:
case AGFALINEART:
case AGFAGRAY256:
set_size (cmd.tr_len, 3, 36 + 8);
set_size (cmd.wd_len, 2, 36);
break;
case AGFACOLOR:
set_size (cmd.tr_len, 3, 65 + 8);
set_size (cmd.wd_len, 2, 65);
break;
}
/* Resolution. Original comment in German: Aufloesung */
set_size (cmd.wd.x_axis_res, 2, s->val[OPT_RESOLUTION].w);
set_size (cmd.wd.y_axis_res, 2, s->val[OPT_RESOLUTION].w);
/* Scan window position/size. Original comment in German:
Fensterposition / Groesse */
set_size (cmd.wd.x_axis_ul, 2,
SANE_UNFIX (s->val[OPT_TL_X].w) * pixels_per_mm + 0.5);
set_size (cmd.wd.y_axis_ul, 2,
SANE_UNFIX (s->val[OPT_TL_Y].w) * pixels_per_mm + 0.5);
width = (SANE_UNFIX (s->val[OPT_BR_X].w - s->val[OPT_TL_X].w) * pixels_per_mm) + 0.5;
if (s->bpp == 1 && width % 8)
width += 8 - width % 8;
set_size (cmd.wd.wwidth, 2, width);
set_size (cmd.wd.wlength, 2, SANE_UNFIX (s->val[OPT_BR_Y].w - s->val[OPT_TL_Y].w)
* pixels_per_mm + 0.5);
cmd.wd.bpp = s->bpp;
if (s->mode == COLOR18BIT ||
s->mode == COLOR24BIT)
{
cmd.wd.paddingtype = 3;
cmd.wd.ht_pattern = 3;
cmd.wd.red_att = s->r_att;
cmd.wd.blue_att = s->g_att;
cmd.wd.green_att = s->b_att;
cmd.wd.color_planes = 0x0e;
set_size (cmd.wd.exposure, 2, s->exposure);
cmd.wd.packing_word_length = 1;
cmd.wd.packing_number_of_pixels = 1;
cmd.wd.packing_color_mode = 2;
if (s->bpp == 6)
cmd.wd.edge = s->edge;
DBG (3,
"Setting parameters: imc %d, bpp %d, res %d, exp %d, attenuation [%d, %d, %d], edge %d\n",
s->image_composition, s->bpp, s->val[OPT_RESOLUTION].w,
s->exposure, cmd.wd.red_att, cmd.wd.blue_att, cmd.wd.green_att, s->edge);
}
else
{
if (s->bpp == 1)
cmd.wd.ht_pattern = s->halftone;
else
cmd.wd.ht_pattern = 3;
cmd.wd.intensity = brightness;
cmd.wd.contrast = contrast;
cmd.wd.contr_adjust = contr_adjust;
cmd.wd.bright_adjust = bright_adjust;
cmd.wd.tonecurve = s->tonecurve;
cmd.wd.paddingtype = 3;
cmd.wd.edge = s->edge;
if (s->lin_log)
cmd.wd.dummy3 = 0x02;
DBG (3,
"Setting parameters: imc %d, bpp %d, res %d, bri %d, con %d, bad %d, cad %d, ht %d, edge %d\n",
s->image_composition, s->bpp, s->val[OPT_RESOLUTION].w,
brightness, contrast, bright_adjust, contr_adjust, s->halftone, s->edge);
}
cmd.wd.image_comp = s->image_composition;
cmd.wd.quality_type = s->quality;
cmd.wd.orig_type = s->original;
return sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), 0, 0);
}
/* Tell scanner to scan more data. */
static SANE_Status
request_more_data (AgfaFocus_Scanner * s)
{
SANE_Status status;
int lines_available;
int bytes_per_line;
status = start_scan (s->fd, SANE_TRUE);
if (status != SANE_STATUS_GOOD)
return status;
if (!s->hw->disconnect)
wait_ready (s->fd);
status = get_read_sizes (s->fd, &lines_available, &bytes_per_line, 0);
if (!lines_available)
return SANE_STATUS_INVAL;
s->lines_available = lines_available;
return SANE_STATUS_GOOD;
}
static SANE_Status
upload_dither_matrix (AgfaFocus_Scanner * s, int rows, int cols, int *dither_matrix)
{
struct {
Byte cmd;
Byte lun;
Byte data_type;
Byte re1[3];
Byte tr_len[3];
Byte ctrl;
struct {
Byte nrrows[2];
Byte nrcols[2];
struct {
Byte data[2];
} element[256];
} wd;
} cmd;
SANE_Status status;
int i;
memset (&cmd, 0, sizeof (cmd));
cmd.cmd = 0x2a; /* WRITE */
cmd.data_type = 0x81; /* upload dither matrix */
set_size (cmd.tr_len, 3, 4 + (2 * rows * cols));
set_size (cmd.wd.nrrows, 2, rows);
set_size (cmd.wd.nrcols, 2, cols);
for (i = 0; i < cols * rows; ++i)
set_size (cmd.wd.element[i].data, 2, dither_matrix[i]);
status = sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), 0, 0);
if (status != SANE_STATUS_GOOD)
/* Command failed */
return SANE_STATUS_IO_ERROR;
DBG (1, "upload_dither_matrix(): uploaded dither matrix: %d, %d\n", rows, cols);
return SANE_STATUS_GOOD;
}
#if 0
static SANE_Status
upload_tonecurve (AgfaFocus_Scanner * s, int color_type, int input, int output, int dither_matrix[256])
{
struct {
Byte cmd;
Byte lun;
Byte re1[4];
Byte tr_len[3];
Byte ctrl;
Byte re2[6];
Byte wd_len[2];
struct {
Byte color_type[2];
Byte nrinput[2];
Byte nroutput[2];
struct {
Byte data[2];
} outputval[256];
} wd;
} cmd;
SANE_Status status;
int i, j;
memset (&cmd, 0, sizeof (cmd));
cmd.cmd = 0x80;
set_size (cmd.tr_len, 3, sizeof (cmd.wd));
set_size (cmd.wd.nrrows, 2, rows);
set_size (cmd.wd.nrrows, 2, cols);
for (i = 0; i < cols; ++i)
for (j = 0; j < rows; ++j)
set_size (cmd.wd.element[j + i * rows].data, 2, dither_matrix[j + i * rows]);
status = sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), 0, 0);
if (status != SANE_STATUS_GOOD)
/* * Command failed * */
return SANE_STATUS_IO_ERROR;
DBG (1, "upload_dither_matrix(): uploaded dither matrix\n");
return SANE_STATUS_GOOD;
}
#endif
/* May only be called when there is at least one row of data to
be read.
Original comment in German: Darf nur aufgerufen werden, wenn
wirklich noch Zeilen zu scannen/lesen sind ! */
static SANE_Status
read_data (AgfaFocus_Scanner * s, SANE_Byte *buf, int lines, int bpl)
{
struct {
Byte cmd;
Byte lun;
Byte re1[4];
Byte tr_len[3];
Byte ctrl;
} cmd;
SANE_Status status;
size_t size;
unsigned int i;
memset (&cmd, 0, sizeof (cmd));
cmd.cmd = 0x28; /* READ */
set_size (cmd.tr_len, 3, lines);
size = lines * bpl;
status = sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), buf, &size);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "sanei_scsi_cmd() = %d\n", status);
return SANE_STATUS_IO_ERROR;
}
if (size != ((unsigned int) lines * bpl))
{
DBG (1, "sanei_scsi_cmd(): got %lu bytes, expected %d\n",
(u_long) size, lines * bpl);
return SANE_STATUS_INVAL;
}
DBG (1, "Got %lu bytes\n", (u_long) size);
/* Reverse: */
if (s->bpp != 1)
{
if (s->bpp != 6)
for (i = 0; i < size; i++)
buf[i] = 255 - buf[i];
else
for (i = 0; i < size; i++)
buf[i] = 255 - ((buf[i] * 256.0f) / 64.0f);
}
s->lines_available -= lines;
return SANE_STATUS_GOOD;
}
static SANE_Status
attach (const char *devname, AgfaFocus_Device ** devp)
{
#define ATTACH_SCSI_INQ_LEN 55
const Byte scsi_inquiry[] =
{
0x12, 0x00, 0x00, 0x00, ATTACH_SCSI_INQ_LEN, 0x00
};
Byte result[ATTACH_SCSI_INQ_LEN];
int fd;
AgfaFocus_Device *dev;
SANE_Status status;
size_t size;
int i;
for (dev = agfafocus_devices; dev; dev = dev->next)
if (strcmp (dev->sane.name, devname) == 0)
{
if (devp)
*devp = dev;
return SANE_STATUS_GOOD;
}
DBG (3, "attach: opening %s\n", devname);
status = sanei_scsi_open (devname, &fd, sense_handler, 0);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "attach: open failed (%s)\n", sane_strstatus (status));
return SANE_STATUS_INVAL;
}
DBG (4, "attach: sending INQUIRY\n");
size = sizeof (result);
status = sanei_scsi_cmd (fd, scsi_inquiry, sizeof (scsi_inquiry),
result, &size);
if (status != SANE_STATUS_GOOD || size != ATTACH_SCSI_INQ_LEN)
{
DBG (1, "attach: inquiry failed (%s)\n", sane_strstatus (status));
sanei_scsi_close (fd);
return status;
}
status = test_ready (fd);
sanei_scsi_close (fd);
if (status != SANE_STATUS_GOOD)
return status;
/* The structure send by the scanner after inquiry is not SCSI-2
compatible. The standard manufacturer/model fields are no ASCII
strings, but ? At offset 36 my SIEMENS scanner identifies as an
AGFA one ?! */
if (result[0] != 6 || strncmp ((char *)result + 36, "AGFA0", 5))
{
DBG (1, "attach: device doesn't look like a Siemens 9036 scanner\n");
return SANE_STATUS_INVAL;
}
DBG (4, "Inquiry data:\n");
DBG (4, "-----------\n");
for (i = 5; i < 55; i += 10)
DBG (4, "%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
result[i], result[i + 1], result[i + 2], result[i + 3], result[i + 4],
result[i + 5], result[i + 6], result[i + 7], result[i + 8],
result[i + 9]);
dev = malloc (sizeof (*dev));
if (!dev)
return SANE_STATUS_NO_MEM;
memset (dev, 0, sizeof (*dev));
dev->sane.name = strdup (devname);
if (!strncmp ((char *)result + 36, "AGFA01", 6)) {
dev->sane.vendor = "AGFA";
dev->sane.model = "Focus GS Scanner (6 bit)";
dev->upload_user_defines = SANE_TRUE;
dev->type = AGFAGRAY64;
} else if (!strncmp ((char *)result + 36, "AGFA02", 6)) {
dev->sane.vendor = "AGFA";
dev->sane.model = "Focus Lineart Scanner";
dev->upload_user_defines = SANE_FALSE;
dev->type = AGFALINEART;
} else if (!strncmp ((char *)result + 36, "AGFA03", 6)) {
dev->sane.vendor = "AGFA";
dev->sane.model = "Focus II";
dev->upload_user_defines = SANE_TRUE;
dev->type = AGFAGRAY256;
} else if (!strncmp ((char *)result + 36, "AGFA04", 6)) {
dev->sane.vendor = "AGFA";
dev->sane.model = "Focus Color";
dev->upload_user_defines = SANE_TRUE;
dev->type = AGFACOLOR;
} else {
free (dev);
DBG (1, "attach: device looks like an AGFA scanner, but wasn't recognised\n");
return SANE_STATUS_INVAL;
}
dev->sane.type = "flatbed scanner";
dev->transparent = result[45] & 0x80 ? SANE_TRUE : SANE_FALSE;
dev->analoglog = result[46] & 0x80 ? SANE_TRUE : SANE_FALSE;
dev->tos5 = result[46] & 0x05 ? SANE_TRUE : SANE_FALSE;
dev->quality = result[47] & 0x40 ? SANE_TRUE : SANE_FALSE;
dev->disconnect = result[47] & 0x80 ? SANE_TRUE : SANE_FALSE;
DBG (4, "\n");
DBG (4, "scan modes:\n");
DBG (4, "-----------\n");
DBG (4, "three pass color mode: %s\n", dev->type >= AGFACOLOR ? "yes" : "no");
DBG (4, "8 bit gray mode: %s\n", dev->type >= AGFAGRAY64 ? "yes" : "no");
DBG (4, "uploadable matrices: %s\n", dev->upload_user_defines ? "yes" : "no");
DBG (4, "transparency: %s\n", dev->transparent ? "yes" : "no");
DBG (4, "disconnect: %s\n", dev->disconnect ? "yes" : "no");
DBG (4, "quality calibration: %s\n", dev->quality ? "yes" : "no");
dev->handle = 0;
DBG (3, "attach: found AgfaFocus scanner model\n");
++num_devices;
dev->next = agfafocus_devices;
agfafocus_devices = dev;
if (devp)
*devp = dev;
return SANE_STATUS_GOOD;
}
static SANE_Status
do_eof (AgfaFocus_Scanner *s)
{
if (s->pipe >= 0)
{
close (s->pipe);
s->pipe = -1;
}
return SANE_STATUS_EOF;
}
static SANE_Status
do_cancel (AgfaFocus_Scanner * s)
{
s->scanning = SANE_FALSE;
s->pass = 0;
do_eof (s);
if (sanei_thread_is_valid (s->reader_pid))
{
int exit_status;
/* ensure child knows it's time to stop: */
sanei_thread_kill (s->reader_pid);
sanei_thread_waitpid (s->reader_pid, &exit_status);
sanei_thread_invalidate(s->reader_pid);
}
if (s->fd >= 0)
{
stop_scan (s->fd);
release_unit (s->fd);
sanei_scsi_close (s->fd);
s->fd = -1;
}
return SANE_STATUS_CANCELLED;
}
static SANE_Status
init_options (AgfaFocus_Scanner * s)
{
int i;
/* Hardware Limitations: must be static ! */
static const SANE_Int dpi_list[] =
{8, 100, 200, 300, 400, 500, 600, 700, 800};
static const SANE_Range percentage_range =
{
SANE_FIX(-100), /* minimum */
SANE_FIX(100), /* maximum */
SANE_FIX(1) /* quantization */
};
static const SANE_Range sharpen_range =
{0, 7, 1};
static const SANE_Range exposure_range =
{0, 100, 0};
static const SANE_Range attenuation_range =
{
SANE_FIX(0), /* minimum */
SANE_FIX(100), /* maximum */
SANE_FIX(1) /* quantization */
};
static const SANE_Range x_range =
{0, SANE_FIX (8.27 * MM_PER_INCH), 0};
static const SANE_Range y_range =
{0, SANE_FIX (12.72 * MM_PER_INCH), 0};
/* ------ */
memset (s->opt, 0, sizeof (s->opt));
memset (s->val, 0, sizeof (s->val));
for (i = 0; i < NUM_OPTIONS; ++i)
{
s->opt[i].size = sizeof (SANE_Word);
s->opt[i].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
}
s->opt[OPT_NUM_OPTS].title = SANE_TITLE_NUM_OPTIONS;
s->opt[OPT_NUM_OPTS].desc = SANE_DESC_NUM_OPTIONS;
s->opt[OPT_NUM_OPTS].type = SANE_TYPE_INT;
s->opt[OPT_NUM_OPTS].cap = SANE_CAP_SOFT_DETECT;
s->val[OPT_NUM_OPTS].w = NUM_OPTIONS;
/* "Mode" group: */
s->opt[OPT_MODE_GROUP].title = "Scan Mode";
s->opt[OPT_MODE_GROUP].desc = "";
s->opt[OPT_MODE_GROUP].type = SANE_TYPE_GROUP;
s->opt[OPT_MODE_GROUP].cap = 0;
s->opt[OPT_MODE_GROUP].constraint_type = SANE_CONSTRAINT_NONE;
/* scan mode */
s->opt[OPT_MODE].name = SANE_NAME_SCAN_MODE;
s->opt[OPT_MODE].title = SANE_TITLE_SCAN_MODE;
s->opt[OPT_MODE].desc = SANE_DESC_SCAN_MODE;
s->opt[OPT_MODE].type = SANE_TYPE_STRING;
switch (s->hw->type)
{
case AGFACOLOR:
s->opt[OPT_MODE].size = max_string_size (focuscolor_mode_list);
s->opt[OPT_MODE].constraint.string_list = focuscolor_mode_list;
s->val[OPT_MODE].s = strdup (focuscolor_mode_list[0]);
break;
case AGFAGRAY256:
s->opt[OPT_MODE].size = max_string_size (focusii_mode_list);
s->opt[OPT_MODE].constraint.string_list = focusii_mode_list;
s->val[OPT_MODE].s = strdup (focusii_mode_list[0]);
break;
default:
s->opt[OPT_MODE].size = max_string_size (focus_mode_list);
s->opt[OPT_MODE].constraint.string_list = focus_mode_list;
s->val[OPT_MODE].s = strdup (focus_mode_list[0]);
break;
}
s->opt[OPT_MODE].constraint_type = SANE_CONSTRAINT_STRING_LIST;
/* resolution */
s->opt[OPT_RESOLUTION].name = SANE_NAME_SCAN_RESOLUTION;
s->opt[OPT_RESOLUTION].title = SANE_TITLE_SCAN_RESOLUTION;
s->opt[OPT_RESOLUTION].desc = SANE_DESC_SCAN_RESOLUTION;
s->opt[OPT_RESOLUTION].type = SANE_TYPE_INT;
s->opt[OPT_RESOLUTION].unit = SANE_UNIT_DPI;
s->opt[OPT_RESOLUTION].constraint_type = SANE_CONSTRAINT_WORD_LIST;
s->opt[OPT_RESOLUTION].constraint.word_list = dpi_list;
s->val[OPT_RESOLUTION].w = 100;
s->opt[OPT_SOURCE].name = SANE_NAME_SCAN_SOURCE;
s->opt[OPT_SOURCE].title = SANE_TITLE_SCAN_SOURCE;
s->opt[OPT_SOURCE].desc = SANE_DESC_SCAN_SOURCE;
s->opt[OPT_SOURCE].type = SANE_TYPE_STRING;
s->opt[OPT_SOURCE].unit = SANE_UNIT_NONE;
if (!s->hw->transparent)
s->opt[OPT_SOURCE].cap |= SANE_CAP_INACTIVE;
else
s->opt[OPT_SOURCE].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_SOURCE].constraint_type = SANE_CONSTRAINT_STRING_LIST;
s->opt[OPT_SOURCE].constraint.string_list = source_list;
s->opt[OPT_SOURCE].size = max_string_size (source_list);
s->val[OPT_SOURCE].s = strdup (source_list[0]);
/* "Geometry" group: */
s->opt[OPT_GEOMETRY_GROUP].title = "Geometry";
s->opt[OPT_GEOMETRY_GROUP].desc = "";
s->opt[OPT_GEOMETRY_GROUP].type = SANE_TYPE_GROUP;
s->opt[OPT_GEOMETRY_GROUP].cap = SANE_CAP_ADVANCED;
s->opt[OPT_GEOMETRY_GROUP].constraint_type = SANE_CONSTRAINT_NONE;
/* top-left x */
s->opt[OPT_TL_X].name = SANE_NAME_SCAN_TL_X;
s->opt[OPT_TL_X].title = SANE_TITLE_SCAN_TL_X;
s->opt[OPT_TL_X].desc = SANE_DESC_SCAN_TL_X;
s->opt[OPT_TL_X].type = SANE_TYPE_FIXED;
s->opt[OPT_TL_X].unit = SANE_UNIT_MM;
s->opt[OPT_TL_X].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_TL_X].constraint.range = &x_range;
s->val[OPT_TL_X].w = 0;
/* top-left y */
s->opt[OPT_TL_Y].name = SANE_NAME_SCAN_TL_Y;
s->opt[OPT_TL_Y].title = SANE_TITLE_SCAN_TL_Y;
s->opt[OPT_TL_Y].desc = SANE_DESC_SCAN_TL_Y;
s->opt[OPT_TL_Y].type = SANE_TYPE_FIXED;
s->opt[OPT_TL_Y].unit = SANE_UNIT_MM;
s->opt[OPT_TL_Y].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_TL_Y].constraint.range = &y_range;
s->val[OPT_TL_Y].w = 0;
/* bottom-right x */
s->opt[OPT_BR_X].name = SANE_NAME_SCAN_BR_X;
s->opt[OPT_BR_X].title = SANE_TITLE_SCAN_BR_X;
s->opt[OPT_BR_X].desc = SANE_DESC_SCAN_BR_X;
s->opt[OPT_BR_X].type = SANE_TYPE_FIXED;
s->opt[OPT_BR_X].unit = SANE_UNIT_MM;
s->opt[OPT_BR_X].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_BR_X].constraint.range = &x_range;
s->val[OPT_BR_X].w = x_range.max;
/* bottom-right y */
s->opt[OPT_BR_Y].name = SANE_NAME_SCAN_BR_Y;
s->opt[OPT_BR_Y].title = SANE_TITLE_SCAN_BR_Y;
s->opt[OPT_BR_Y].desc = SANE_DESC_SCAN_BR_Y;
s->opt[OPT_BR_Y].type = SANE_TYPE_FIXED;
s->opt[OPT_BR_Y].unit = SANE_UNIT_MM;
s->opt[OPT_BR_Y].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_BR_Y].constraint.range = &y_range;
s->val[OPT_BR_Y].w = y_range.max;
/* "Enhancement" group: */
s->opt[OPT_ENHANCEMENT_GROUP].title = "Enhancement";
s->opt[OPT_ENHANCEMENT_GROUP].desc = "";
s->opt[OPT_ENHANCEMENT_GROUP].type = SANE_TYPE_GROUP;
s->opt[OPT_ENHANCEMENT_GROUP].cap = 0;
s->opt[OPT_ENHANCEMENT_GROUP].constraint_type = SANE_CONSTRAINT_NONE;
/* exposure */
s->opt[OPT_EXPOSURE].name = "exposure";
s->opt[OPT_EXPOSURE].title = "Exposure";
s->opt[OPT_EXPOSURE].desc = "Analog exposure control.";
s->opt[OPT_EXPOSURE].type = SANE_TYPE_INT;
s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_EXPOSURE].unit = SANE_UNIT_PERCENT;
s->opt[OPT_EXPOSURE].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_EXPOSURE].constraint.range = &exposure_range;
s->val[OPT_EXPOSURE].w = 23;
/* brightness automatic correct */
s->opt[OPT_AUTO_BRIGHTNESS].name = "adjust-bright";
s->opt[OPT_AUTO_BRIGHTNESS].title = "Automatic brightness correction";
s->opt[OPT_AUTO_BRIGHTNESS].desc = "Turns on automatic brightness correction of "
"the acquired image. This makes the scanner do a two pass scan to analyse the "
"brightness of the image before it's scanned.";
s->opt[OPT_AUTO_BRIGHTNESS].type = SANE_TYPE_BOOL;
s->val[OPT_AUTO_BRIGHTNESS].b = SANE_FALSE;
/* contrast automatic correct */
s->opt[OPT_AUTO_CONTRAST].name = "adjust-contr";
s->opt[OPT_AUTO_CONTRAST].title = "Automatic contrast correction";
s->opt[OPT_AUTO_CONTRAST].desc = "Turns on automatic contrast correction of "
"the acquired image. This makes the scanner do a two pass scan to analyse "
"the contrast of the image to be scanned.";
s->opt[OPT_AUTO_CONTRAST].type = SANE_TYPE_BOOL;
s->val[OPT_AUTO_CONTRAST].b = SANE_FALSE;
/* brightness */
s->opt[OPT_BRIGHTNESS].name = SANE_NAME_BRIGHTNESS;
s->opt[OPT_BRIGHTNESS].title = SANE_TITLE_BRIGHTNESS;
s->opt[OPT_BRIGHTNESS].desc = "Controls the brightness of the acquired image. "
"When automatic brightness is enabled, this can be used to adjust the selected brightness.";
s->opt[OPT_BRIGHTNESS].type = SANE_TYPE_FIXED;
s->opt[OPT_BRIGHTNESS].unit = SANE_UNIT_PERCENT;
s->opt[OPT_BRIGHTNESS].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_BRIGHTNESS].constraint.range = &percentage_range;
s->val[OPT_BRIGHTNESS].w = 0;
/* contrast */
s->opt[OPT_CONTRAST].name = SANE_NAME_CONTRAST;
s->opt[OPT_CONTRAST].title = SANE_TITLE_CONTRAST;
s->opt[OPT_CONTRAST].desc = "Controls the contrast of the acquired image. "
"When automatic contrast is enabled, this can be used to adjust the selected contrast.";
s->opt[OPT_CONTRAST].type = SANE_TYPE_FIXED;
s->opt[OPT_CONTRAST].unit = SANE_UNIT_PERCENT;
s->opt[OPT_CONTRAST].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_CONTRAST].constraint.range = &percentage_range;
s->val[OPT_CONTRAST].w = 0;
/* halftone patterns */
s->opt[OPT_HALFTONE_PATTERN].name = SANE_NAME_HALFTONE_PATTERN;
s->opt[OPT_HALFTONE_PATTERN].title = SANE_TITLE_HALFTONE_PATTERN;
s->opt[OPT_HALFTONE_PATTERN].desc = SANE_DESC_HALFTONE_PATTERN;
s->opt[OPT_HALFTONE_PATTERN].type = SANE_TYPE_STRING;
s->opt[OPT_HALFTONE_PATTERN].size = 32;
s->opt[OPT_HALFTONE_PATTERN].constraint_type = SANE_CONSTRAINT_STRING_LIST;
if (s->hw->upload_user_defines)
{
s->opt[OPT_HALFTONE_PATTERN].constraint.string_list = halftone_upload_list;
s->val[OPT_HALFTONE_PATTERN].s = strdup (halftone_upload_list[0]);
}
else
{
s->opt[OPT_HALFTONE_PATTERN].constraint.string_list = halftone_list;
s->val[OPT_HALFTONE_PATTERN].s = strdup (halftone_list[0]);
}
/* red-attenuation */
s->opt[OPT_ATTENUATION_RED].name = "red-attenuation";
s->opt[OPT_ATTENUATION_RED].title = "Red attenuation";
s->opt[OPT_ATTENUATION_RED].desc = "Controls the red attenuation of the acquired image. "
"Higher values mean less impact on scanned image.";
s->opt[OPT_ATTENUATION_RED].type = SANE_TYPE_FIXED;
s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_RED].unit = SANE_UNIT_PERCENT;
s->opt[OPT_ATTENUATION_RED].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_ATTENUATION_RED].constraint.range = &attenuation_range;
s->val[OPT_ATTENUATION_RED].w = SANE_FIX (50.0);
/* green-attenuation */
s->opt[OPT_ATTENUATION_GREEN].name = "green-attenuation";
s->opt[OPT_ATTENUATION_GREEN].title = "Green attenuation";
s->opt[OPT_ATTENUATION_GREEN].desc = "Controls the green attenuation of the acquired image. "
"Higher values mean less impact on scanned image.";
s->opt[OPT_ATTENUATION_GREEN].type = SANE_TYPE_FIXED;
s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_GREEN].unit = SANE_UNIT_PERCENT;
s->opt[OPT_ATTENUATION_GREEN].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_ATTENUATION_GREEN].constraint.range = &attenuation_range;
s->val[OPT_ATTENUATION_GREEN].w = SANE_FIX (50.0);
/* blue-attenuation */
s->opt[OPT_ATTENUATION_BLUE].name = "blue-attenuation";
s->opt[OPT_ATTENUATION_BLUE].title = "Blue attenuation";
s->opt[OPT_ATTENUATION_BLUE].desc = "Controls the blue attenuation of the acquired image. "
"Higher values mean less impact on scanned image.";
s->opt[OPT_ATTENUATION_BLUE].type = SANE_TYPE_FIXED;
s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_BLUE].unit = SANE_UNIT_PERCENT;
s->opt[OPT_ATTENUATION_BLUE].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_ATTENUATION_BLUE].constraint.range = &attenuation_range;
s->val[OPT_ATTENUATION_BLUE].w = SANE_FIX (50.0);
/* quality-calibration */
s->opt[OPT_QUALITY].name = SANE_NAME_QUALITY_CAL;
s->opt[OPT_QUALITY].title = SANE_TITLE_QUALITY_CAL;
s->opt[OPT_QUALITY].desc = "Controls the calibration that will be done in the "
"scanner. Less calibration result in faster scanner times.";
s->opt[OPT_QUALITY].type = SANE_TYPE_STRING;
s->opt[OPT_QUALITY].size = 32;
if (!s->hw->quality)
s->opt[OPT_QUALITY].cap |= SANE_CAP_INACTIVE;
else
s->opt[OPT_QUALITY].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_QUALITY].constraint_type = SANE_CONSTRAINT_STRING_LIST;
s->opt[OPT_QUALITY].constraint.string_list = quality_list;
s->val[OPT_QUALITY].s = strdup (quality_list[1]);
/* sharpening */
s->opt[OPT_SHARPEN].name = "sharpen";
s->opt[OPT_SHARPEN].title = "Sharpening";
s->opt[OPT_SHARPEN].desc = "Controls the sharpening that will be "
"done by the video processor in the scanner.";
s->opt[OPT_SHARPEN].type = SANE_TYPE_INT;
s->opt[OPT_SHARPEN].unit = SANE_UNIT_NONE;
s->opt[OPT_SHARPEN].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_SHARPEN].constraint.range = &sharpen_range;
s->val[OPT_SHARPEN].w = 1;
return SANE_STATUS_GOOD;
}
static SANE_Status
attach_one (const char *dev)
{
attach (dev, 0);
return SANE_STATUS_GOOD;
}
SANE_Status
sane_init (SANE_Int * version_code, SANE_Auth_Callback authorize)
{
char dev_name[PATH_MAX];
size_t len;
FILE *fp;
(void) authorize; /* silence gcc */
DBG_INIT ();
sanei_thread_init ();
if (version_code)
*version_code = SANE_VERSION_CODE (SANE_CURRENT_MAJOR, SANE_CURRENT_MINOR, 0);
fp = sanei_config_open ("agfafocus.conf");
if (!fp)
{
/* default to /dev/scanner instead of insisting on config file */
attach ("/dev/scanner", 0);
return SANE_STATUS_GOOD;
}
while (sanei_config_read (dev_name, sizeof (dev_name), fp))
{
if (dev_name[0] == '#') /* ignore line comments */
continue;
len = strlen (dev_name);
if (!len)
continue; /* ignore empty lines */
sanei_config_attach_matching_devices (dev_name, attach_one);
}
fclose (fp);
return SANE_STATUS_GOOD;
}
void
sane_exit (void)
{
AgfaFocus_Device *dev, *next;
for (dev = agfafocus_devices; dev; dev = next)
{
next = dev->next;
if (dev->handle)
sane_close (dev->handle);
free (dev);
}
if (devlist)
free (devlist);
}
SANE_Status
sane_get_devices (const SANE_Device *** device_list, SANE_Bool local_only)
{
AgfaFocus_Device *dev;
int i;
(void) local_only; /* silence gcc */
if (devlist)
free (devlist);
devlist = malloc ((num_devices + 1) * sizeof (devlist[0]));
if (!devlist)
return SANE_STATUS_NO_MEM;
for (dev = agfafocus_devices, i = 0; i < num_devices; dev = dev->next)
devlist[i++] = &dev->sane;
devlist[i++] = 0;
*device_list = devlist;
return SANE_STATUS_GOOD;
}
SANE_Status
sane_open (SANE_String_Const devicename, SANE_Handle * handle)
{
AgfaFocus_Device *dev;
SANE_Status status;
AgfaFocus_Scanner *s;
if (devicename[0])
{
status = attach (devicename, &dev);
if (status != SANE_STATUS_GOOD)
return status;
}
else
{
/* empty devicname -> use first device */
dev = agfafocus_devices;
}
if (!dev)
return SANE_STATUS_INVAL;
if (dev->handle)
return SANE_STATUS_DEVICE_BUSY;
s = malloc (sizeof (*s));
if (!s)
return SANE_STATUS_NO_MEM;
memset (s, 0, sizeof (*s));
s->scanning = SANE_FALSE;
s->fd = -1;
s->hw = dev;
s->hw->handle = s;
init_options (s);
*handle = s;
return SANE_STATUS_GOOD;
}
void
sane_close (SANE_Handle handle)
{
AgfaFocus_Scanner *s = handle;
if (s->scanning)
do_cancel (handle);
s->hw->handle = 0;
free (handle);
}
const SANE_Option_Descriptor *
sane_get_option_descriptor (SANE_Handle handle, SANE_Int option)
{
AgfaFocus_Scanner *s = handle;
if ((unsigned) option >= NUM_OPTIONS)
return 0;
return s->opt + option;
}
SANE_Status
sane_control_option (SANE_Handle handle, SANE_Int option,
SANE_Action action, void *val, SANE_Int * info)
{
AgfaFocus_Scanner *s = handle;
SANE_Status status;
if (info)
*info = 0;
if (s->scanning)
return SANE_STATUS_DEVICE_BUSY;
if (option >= NUM_OPTIONS || !SANE_OPTION_IS_ACTIVE (s->opt[option].cap))
return SANE_STATUS_UNSUPPORTED;
if (action == SANE_ACTION_GET_VALUE)
{
switch (option)
{
case OPT_RESOLUTION:
case OPT_TL_X:
case OPT_TL_Y:
case OPT_BR_X:
case OPT_BR_Y:
case OPT_NUM_OPTS:
case OPT_BRIGHTNESS:
case OPT_CONTRAST:
case OPT_SHARPEN:
case OPT_EXPOSURE:
case OPT_ATTENUATION_RED:
case OPT_ATTENUATION_GREEN:
case OPT_ATTENUATION_BLUE:
*(SANE_Word *) val = s->val[option].w;
break;
case OPT_AUTO_BRIGHTNESS:
case OPT_AUTO_CONTRAST:
*(SANE_Bool *) val = s->val[option].b;
break;
case OPT_MODE:
case OPT_HALFTONE_PATTERN:
case OPT_QUALITY:
case OPT_SOURCE:
strcpy (val, s->val[option].s);
return (SANE_STATUS_GOOD);
default:
return SANE_STATUS_UNSUPPORTED;
}
}
else if (action == SANE_ACTION_SET_VALUE)
{
if (!SANE_OPTION_IS_SETTABLE (s->opt[option].cap))
return SANE_STATUS_UNSUPPORTED;
status = sanei_constrain_value (s->opt + option, val, info);
if (status != SANE_STATUS_GOOD)
return status;
switch (option)
{
case OPT_RESOLUTION:
case OPT_TL_X:
case OPT_TL_Y:
case OPT_BR_X:
case OPT_BR_Y:
if (info)
*info |= SANE_INFO_RELOAD_PARAMS;
// fall through
case OPT_SHARPEN:
case OPT_EXPOSURE:
case OPT_ATTENUATION_RED:
case OPT_ATTENUATION_GREEN:
case OPT_ATTENUATION_BLUE:
case OPT_BRIGHTNESS:
case OPT_CONTRAST:
s->val[option].w = *(SANE_Word *) val;
break;
case OPT_AUTO_BRIGHTNESS:
case OPT_AUTO_CONTRAST:
s->val[option].b = *(SANE_Bool *) val;
break;
case OPT_MODE:
if (strcmp (s->val[option].s, (SANE_String) val))
{
if (info)
*info |= SANE_INFO_RELOAD_OPTIONS | SANE_INFO_RELOAD_PARAMS;
if (s->val[option].s)
free (s->val[option].s);
s->val[option].s = strdup (val);
if (strcmp (s->val[option].s, "Gray (6 bit)") == 0)
s->mode = GRAY6BIT;
else if (strcmp (s->val[option].s, "Gray (8 bit)") == 0)
s->mode = GRAY8BIT;
else if (strcmp (s->val[option].s, "Color (18 bit)") == 0)
s->mode = COLOR18BIT;
else if (strcmp (s->val[option].s, "Color (24 bit)") == 0)
s->mode = COLOR24BIT;
else
s->mode = LINEART;
switch (s->mode)
{
case LINEART:
s->opt[OPT_HALFTONE_PATTERN].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_SHARPEN].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_CONTRAST].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_CONTRAST].cap &= ~SANE_CAP_INACTIVE;
break;
case GRAY6BIT:
s->opt[OPT_SHARPEN].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_CONTRAST].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_CONTRAST].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE;
break;
case GRAY8BIT:
s->opt[OPT_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_CONTRAST].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_CONTRAST].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_SHARPEN].cap |= SANE_CAP_INACTIVE;
break;
case COLOR18BIT:
s->opt[OPT_EXPOSURE].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_RED].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_GREEN].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_BLUE].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_BRIGHTNESS].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_CONTRAST].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_BRIGHTNESS].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_CONTRAST].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_SHARPEN].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE;
break;
case COLOR24BIT:
s->opt[OPT_EXPOSURE].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_RED].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_GREEN].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_ATTENUATION_BLUE].cap &= ~SANE_CAP_INACTIVE;
s->opt[OPT_BRIGHTNESS].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_CONTRAST].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_BRIGHTNESS].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_AUTO_CONTRAST].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_SHARPEN].cap |= SANE_CAP_INACTIVE;
s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE;
break;
}
}
break;
case OPT_SOURCE:
case OPT_QUALITY:
case OPT_HALFTONE_PATTERN:
if (info && strcmp (s->val[option].s, (SANE_String) val))
*info |= SANE_INFO_RELOAD_OPTIONS | SANE_INFO_RELOAD_PARAMS;
if (s->val[option].s)
free (s->val[option].s);
s->val[option].s = strdup (val);
break;
default:
return SANE_STATUS_UNSUPPORTED;
}
}
else
{
return SANE_STATUS_UNSUPPORTED;
}
return SANE_STATUS_GOOD;
}
SANE_Status
sane_get_parameters (SANE_Handle handle, SANE_Parameters * params)
{
AgfaFocus_Scanner *s = handle;
if (!s->scanning)
{
double width, height, dpi;
const char *quality;
const char *original;
memset (&s->params, 0, sizeof (s->params));
width = SANE_UNFIX (s->val[OPT_BR_X].w - s->val[OPT_TL_X].w);
height = SANE_UNFIX (s->val[OPT_BR_Y].w - s->val[OPT_TL_Y].w);
dpi = s->val[OPT_RESOLUTION].w;
/* make best-effort guess at what parameters will look like once
scanning starts. */
if (dpi > 0.0 && width > 0.0 && height > 0.0)
{
double dots_per_mm = dpi / MM_PER_INCH;
s->params.pixels_per_line = width * dots_per_mm + 0.5;
s->params.lines = height * dots_per_mm + 0.5;
}
/* Should we specify calibration quality? */
if (SANE_OPTION_IS_ACTIVE (s->opt[OPT_QUALITY].cap))
{
DBG(3, " -------------- setting quality\n");
quality = s->val[OPT_QUALITY].s;
if (strcmp (quality, "Low") == 0 )
s->quality = 255;
else if (strcmp (quality, "High") == 0)
s->quality = 1;
else
s->quality = 0;
}
else
s->quality = 0;
/* Should we select source type? */
if (SANE_OPTION_IS_ACTIVE (s->opt[OPT_SOURCE].cap))
{
DBG(3, " -------------- setting source\n");
original = s->val[OPT_SOURCE].s;
if (strcmp (original, "Transparency") == 0)
s->original = 0;
else
s->original = 1;
}
else
s->original = 0;
s->exposure = ((s->val[OPT_EXPOSURE].w * (255.0f - 80.0f)) / 100.0f) + 80.0f;
s->r_att = (SANE_UNFIX (s->val[OPT_ATTENUATION_RED].w) * 20.0f) / 100.0f;
s->g_att = (SANE_UNFIX (s->val[OPT_ATTENUATION_GREEN].w) * 20.0f) / 100.0f;
s->b_att = (SANE_UNFIX (s->val[OPT_ATTENUATION_BLUE].w) * 20.0f) / 100.0f;
s->tonecurve = 0;
switch (s->mode)
{
case LINEART:
{
const char *halftone;
s->image_composition = 0;
/* in 1 bpp mode, lines need to be 8 pixel length */
if (s->params.pixels_per_line % 8)
s->params.pixels_per_line += 8 - (s->params.pixels_per_line % 8);
s->params.format = SANE_FRAME_GRAY;
s->params.bytes_per_line = s->params.pixels_per_line / 8;
s->bpp = s->params.depth = 1;
halftone = s->val[OPT_HALFTONE_PATTERN].s;
if (strcmp (halftone, "1") == 0 )
s->halftone = 1;
else if (strcmp (halftone, "Dispersed dot 4x4") == 0)
s->halftone = 2;
else if (strcmp (halftone, "Round (Clustered dot 4x4)") == 0)
s->halftone = 3;
else if (strcmp (halftone, "Diamond (Clustered dot 4x4)") == 0)
s->halftone = 4;
else if (strcmp (halftone, "User defined") == 0)
s->halftone = 5;
else
s->halftone = 0;
s->edge = s->val[OPT_SHARPEN].w;
}
break;
case GRAY6BIT:
s->image_composition = 2;
s->params.format = SANE_FRAME_GRAY;
s->params.bytes_per_line = s->params.pixels_per_line;
s->bpp = 6;
s->params.depth = 8;
s->edge = s->val[OPT_SHARPEN].w;
break;
case GRAY8BIT:
s->image_composition = 2;
s->params.format = SANE_FRAME_GRAY;
s->params.bytes_per_line = s->params.pixels_per_line;
s->bpp = s->params.depth = 8;
break;
case COLOR18BIT:
s->image_composition = 5;
s->params.format = SANE_FRAME_RED;
s->params.bytes_per_line = s->params.pixels_per_line;
s->bpp = 6;
s->params.depth = 8;
s->edge = s->val[OPT_SHARPEN].w;
break;
case COLOR24BIT:
s->image_composition = 5;
s->params.format = SANE_FRAME_RED;
s->params.bytes_per_line = s->params.pixels_per_line;
s->bpp = s->params.depth = 8;
break;
}
s->pass = 0;
/*s->params.bytes_per_line =
(s->params.pixels_per_line + (8 - s->params.depth))
/ (8 / s->params.depth);*/
}
else
if (s->mode == COLOR18BIT ||
s->mode == COLOR24BIT)
s->params.format = SANE_FRAME_RED + s->pass;
s->params.last_frame = (s->params.format != SANE_FRAME_RED && s->params.format != SANE_FRAME_GREEN);
if (params)
*params = s->params;
return SANE_STATUS_GOOD;
}
/* This function is executed as a child process. The reason this is
executed as a subprocess is because some (most?) generic SCSI
interfaces block a SCSI request until it has completed. With a
subprocess, we can let it block waiting for the request to finish
while the main process can go about to do more important things
(such as recognizing when the user presses a cancel button).
WARNING: Since this is executed as a subprocess, it's NOT possible
to update any of the variables in the main process (in particular
the scanner state cannot be updated). */
static int
reader_process (void *scanner)
{
AgfaFocus_Scanner *s = (AgfaFocus_Scanner *) scanner;
int fd = s->reader_pipe;
SANE_Status status;
SANE_Byte *data;
int lines_read = 0;
int lines_per_buffer;
int bytes_per_line = 0, total_lines = 0;
int i;
sigset_t sigterm_set;
sigset_t ignore_set;
struct SIGACTION act;
if (sanei_thread_is_forked()) close (s->pipe);
sigfillset (&ignore_set);
sigdelset (&ignore_set, SIGTERM);
#if defined (__APPLE__) && defined (__MACH__)
sigdelset (&ignore_set, SIGUSR2);
#endif
sigprocmask (SIG_SETMASK, &ignore_set, 0);
memset (&act, 0, sizeof (act));
sigaction (SIGTERM, &act, 0);
sigemptyset (&sigterm_set);
sigaddset (&sigterm_set, SIGTERM);
if (!s->hw->disconnect)
wait_ready (s->fd);
status = get_read_sizes (s->fd, &s->lines_available, &bytes_per_line, &total_lines);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: get_read_sizes() failed: %s\n",
sane_strstatus (status));
do_cancel (s);
close (fd);
return 1;
}
if (!s->lines_available || !bytes_per_line || !total_lines || bytes_per_line < s->params.bytes_per_line)
{
DBG (1, "open: invalid sizes: %d, %d, %d\n",
s->lines_available, bytes_per_line, total_lines);
do_cancel (s);
close (fd);
return 1;
}
lines_per_buffer = sanei_scsi_max_request_size / bytes_per_line;
if (!lines_per_buffer)
{
close (fd);
return 2; /* resolution is too high */
}
data = malloc (lines_per_buffer * bytes_per_line);
if (!data)
{
DBG (1, "open malloc(%lu) failed.\n", (u_long) lines_per_buffer * bytes_per_line);
do_cancel (s);
close (fd);
return 1;
}
while (lines_read < s->params.lines)
{
int lines = lines_per_buffer;
if (s->lines_available == 0)
{
/* No lines in scanner? Scan some more */
status = request_more_data (s);
if (status != SANE_STATUS_GOOD)
{
close (fd);
return 1;
}
}
/* We only request as many lines as there are already scanned */
if (lines > s->lines_available)
lines = s->lines_available;
DBG (1, "Requesting %d lines, in scanner: %d, total: %d\n", lines,
s->lines_available, s->params.lines);
status = read_data (s, data, lines, bytes_per_line);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "sane_read: read_data() failed (%s)\n",
sane_strstatus (status));
do_cancel (s);
close (fd);
return 1;
}
/* Sometimes the scanner will return more bytes per line than
requested, so we copy only what we wanted. */
for (i = 0; i < lines; i++)
if (write (fd, data + i * bytes_per_line, s->params.bytes_per_line) != s->params.bytes_per_line)
{
do_cancel (s);
close (fd);
return 1;
}
lines_read += lines;
}
close (fd);
return 0;
}
SANE_Status
sane_start (SANE_Handle handle)
{
AgfaFocus_Scanner *s = handle;
SANE_Status status;
int fds[2];
/* First make sure we have a current parameter set. Some of the
parameters will be overwritten below, but that's OK. */
status = sane_get_parameters (s, 0);
if (status != SANE_STATUS_GOOD)
return status;
/* don't initialise scanner if we're doing a three-pass scan */
if (s->pass == 0)
{
if (s->fd < 0)
{
status = sanei_scsi_open (s->hw->sane.name, &s->fd, sense_handler, 0);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: open of %s failed: %s\n",
s->hw->sane.name, sane_strstatus (status));
s->fd = -1;
return status;
}
}
status = test_ready (s->fd);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: test_ready() failed: %s\n", sane_strstatus (status));
sanei_scsi_close (s->fd);
s->fd = -1;
return status;
}
status = reserve_unit (s->fd);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: reserve_unit() failed: %s\n", sane_strstatus (status));
sanei_scsi_close (s->fd);
s->fd = -1;
return status;
}
status = set_window (s);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: set_window() failed: %s\n", sane_strstatus (status));
release_unit (s->fd);
sanei_scsi_close (s->fd);
s->fd = -1;
return status;
}
{
int matrix[256] = {
2, 60, 16, 56, 3, 57, 13, 53,
34, 18, 48, 32, 35, 19, 45, 29,
10, 50, 6, 63, 11, 51, 7, 61,
42, 26, 38, 22, 43, 27, 39, 23,
4, 58, 14, 54, 1, 59, 15, 55,
36, 20, 46, 30, 33, 17, 47, 31,
12, 52, 8, 62, 9, 49, 5, 63,
44, 28, 40, 24, 41, 25, 37, 21
};
status = upload_dither_matrix (s, 8, 8, matrix);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: upload_dither_matrix() failed: %s\n", sane_strstatus (status));
release_unit (s->fd);
sanei_scsi_close (s->fd);
s->fd = -1;
return status;
}
}
s->scanning = SANE_TRUE;
status = start_scan (s->fd, SANE_FALSE);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: start_scan() failed: %s\n", sane_strstatus (status));
do_cancel (s);
return status;
}
}
else
{
/* continue three-pass scan */
status = start_scan (s->fd, SANE_TRUE);
if (status != SANE_STATUS_GOOD)
{
DBG (1, "open: start_scan() failed: %s\n", sane_strstatus (status));
do_cancel (s);
return status;
}
}
if (pipe (fds) < 0)
return SANE_STATUS_IO_ERROR;
s->pipe = fds[0];
s->reader_pipe = fds[1];
s->reader_pid = sanei_thread_begin (reader_process, (void *) s);
if (sanei_thread_is_forked()) close (s->reader_pipe);
return SANE_STATUS_GOOD;
}
SANE_Status
sane_read (SANE_Handle handle, SANE_Byte * buf, SANE_Int max_len,
SANE_Int * len)
{
AgfaFocus_Scanner *s = handle;
ssize_t nread;
*len = 0;
nread = read (s->pipe, buf, max_len);
DBG (3, "read %ld bytes\n", (long) nread);
if (!s->scanning)
return do_cancel (s);
if (nread < 0) {
if (errno == EAGAIN) {
return SANE_STATUS_GOOD;
} else {
do_cancel (s);
return SANE_STATUS_IO_ERROR;
}
}
*len = nread;
if (nread == 0) {
s->pass++;
return do_eof (s);
}
return SANE_STATUS_GOOD;
}
void
sane_cancel (SANE_Handle handle)
{
AgfaFocus_Scanner *s = handle;
if (sanei_thread_is_valid (s->reader_pid))
sanei_thread_kill (s->reader_pid);
s->scanning = SANE_FALSE;
}
SANE_Status
sane_set_io_mode (SANE_Handle handle, SANE_Bool non_blocking)
{
AgfaFocus_Scanner *s = handle;
if (!s->scanning)
return SANE_STATUS_INVAL;
if (fcntl (s->pipe, F_SETFL, non_blocking ? O_NONBLOCK : 0) < 0)
return SANE_STATUS_IO_ERROR;
return SANE_STATUS_GOOD;
}
SANE_Status
sane_get_select_fd (SANE_Handle handle, SANE_Int * fd)
{
AgfaFocus_Scanner *s = handle;
if (!s->scanning)
return SANE_STATUS_INVAL;
*fd = s->pipe;
return SANE_STATUS_GOOD;
}