sane-project-backends/doc/teco/teco2.txt

267 wiersze
7.7 KiB
Plaintext

BACKEND TECO2
INQUIRY
TECO VM3564 (1)
000: 06 00 02 02 43 00 00 10 52 45 4c 49 53 59 53 20 ....C...RELISYS
016: 41 56 45 43 20 49 49 20 53 33 20 20 20 20 20 20 AVEC II S3
032: 31 2e 30 37 31 2e 30 37 00 01 54 45 43 4f 20 56 1.071.07..TECO V
048: 4d 33 35 36 34 20 00 01 01 2c 00 01 02 58 09 f6 M3564 ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
TECO VM3564 (2)
000: 06 00 02 02 43 00 00 10 52 45 4c 49 53 59 53 20 ....C...RELISYS
016: 41 56 45 43 20 49 49 20 53 33 20 20 20 20 20 20 AVEC II S3
032: 31 2e 30 39 31 2e 30 39 00 01 54 45 43 4f 20 56 1.091.09..TECO V
048: 4d 33 35 36 34 20 00 01 01 2c 00 01 02 58 09 f6 M3564 ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
TECO VM356A (1)
000: 06 00 02 02 43 00 00 00 52 45 4c 49 53 59 53 20 ....C...RELISYS
016: 41 50 4f 4c 4c 4f 20 45 78 70 72 65 73 73 20 33 APOLLO Express 3
032: 31 2e 30 33 31 2e 30 33 00 01 54 45 43 4f 20 56 1.031.03..TECO V
048: 4d 33 35 36 41 20 00 01 01 2c 00 01 02 58 09 f6 M356A ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
TECO VM356A (2)
000: 06 00 02 02 43 00 00 10 50 72 69 6d 61 78 20 20 ....C...Primax
016: 4a 65 77 65 6c 20 20 20 20 20 20 20 20 20 20 20 Jewel
032: 31 2e 30 31 31 2e 30 31 00 01 54 45 43 4f 20 56 1.011.01..TECO V
048: 4d 33 35 36 41 20 00 01 01 2c 00 01 02 58 09 f6 M356A ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
TECO VM3575
000: 06 00 02 02 43 00 00 00 20 20 20 20 20 20 20 20 ....C...
016: 46 6c 61 74 62 65 64 20 53 63 61 6e 6e 65 72 20 Flatbed Scanner
032: 31 2e 30 33 31 2e 30 33 00 01 54 45 43 4f 20 56 1.031.03..TECO V
048: 4d 33 35 37 35 20 00 01 01 2c 00 01 02 58 09 f6 M3575 ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
TECO VM656A
000: 06 00 02 02 43 00 00 00 52 45 4c 49 53 59 53 20 ....C...RELISYS
016: 41 50 4f 4c 4c 4f 20 45 78 70 72 65 73 73 20 36 APOLLO Express 6
032: 31 2e 30 33 31 2e 30 33 00 01 54 45 43 4f 20 56 1.031.03..TECO V
048: 4d 36 35 36 41 00 01 01 2c 00 01 02 58 09 f6 0d M656A...,...X...
064: af 01 2c 00 08 01 00 00 ..,.....
TECO VM6575
000: 06 00 02 02 43 00 00 10 52 45 4c 49 53 59 53 20 ....C...RELISYS
016: 53 43 4f 52 50 49 4f 20 50 72 6f 20 20 20 20 20 SCORPIO Pro
032: 31 2e 30 31 31 2e 30 31 00 01 54 45 43 4f 20 56 1.011.01..TECO V
048: 4d 36 35 37 35 20 00 01 01 2c 00 01 02 58 09 f6 M6575 ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
TECO VM6586
000: 06 00 02 02 43 00 00 00 20 20 20 20 20 20 20 20 ....C...
016: 46 6c 61 74 62 65 64 20 53 63 61 6e 6e 65 72 20 Flatbed Scanner
032: 33 2e 30 31 33 2e 30 31 00 01 54 45 43 4f 20 56 3.013.01..TECO V
048: 4d 36 35 38 36 20 00 01 01 2c 00 01 02 58 09 f6 M6586 ...,...X..
064: 0d af 01 2c 00 08 01 00 ...,....
/*--------------------------------------------------------------------------*/
SCSI Commands supported by the TECO VM3575:
REQUEST SENSE
03 00 00 00 12 00
VENDOR-06
???
Receives 4 bytes of data
VENDOR-9
Get calibration lines - 12 lines
2 = ?
0x00 color scan
0x01 grayscal scan
0x02 b&w scan
Returns 6 bytes per pixel, probably 2 bytes per color in little endian order. (2550 * 6 = 15300)
VENDOR-0C
??? Unsupported?
VENDOR-0E
Set calibration. Apparently the line is computed from the calibration lines. It is not an average though.
INQUIRY
12 00 00 00 48 00
standard inquiry
72 bytes
32-39: firmware version
42-52: real scanner name
54-55: min X resolution
56-57: max X resolution
58-59: min Y resolution
60-61: max Y resolution
62-63: scan area length
64-65: scan area width
66-67: unit for scan area (eg 300th of inch)
eg if 62-63 = 2550 and 66-67 = 300, the length is 2550/300=8.5 inches.
SCAN
1B 00 00 00 00 00
VENDOR-1C
1c 00 00 00 00 00
(Same opcode as RECEIVE DIAGNOSTIC RESULTS)
sends 4 bytes of data.
SET WINDOW
24 00 00 00 00 00 00 00 35 00 (VM3575)
24 00 00 00 00 00 00 00 38 00 (VM6586)
Total length is
07 = length
VM3575 53-8 = 45
VM6586 56-8 = 48
VM3552 69-8 = 61
10-11 = X Resolution
12-13 = Y resolution
14-17 = X top left corner
18-21 = Y top left corner
22-25 = width (size in inches * 300)
26-29 = length (size in inches * 300)
31 = 0x80 ?
33 = scan mode
0x00 = black & white
0x02 = grayscale
0x05 = color
34 = bit depth? - invariant, always 8
36 = (vm6586 only ?) halftone pattern ?
1 = type 1 dithering
37 =
0x80 = RIF?
48 = color channel to use
if scan mode is 0 or 2:
0x00 = red
0x01 = green
0x02 = blue
if scan mode is 05 -> ignored
TWAIN leaves 0x02
50 = ?
VM6585 only:
52-53 = size of a line expected?
54-55 = number of lines expected?
READ
28 00 00 00 00 19 00 1f 0e 00
5 = number of lines to read
7-8 = buffer size.
Always number of lines to read * size of a line.
0x2000 appears to be the upper limit
SEND
2A 00 03 00 00 04 00 0C 00 00
2 = data type code
0x03 = gamma
4-5 = data type qualifier (?)
6-8 = length (0xc00 = 3276 = 3*2^10)
or:
5-6: length of each gamma
7-8: length of all gamma
OBJECT POSITION
31 00 00 00 00 00 00 00 00 00
Park the CCD.
GET DATA BUFFER STATUS
34 01 00 00 00 00 00 00 12 00
1 = bit 1 is wait
7-8 = allocation length
returned buffer is 0x12 bytes long.
00 00 0f 00 00 00 00 14 00 00 00 80 1b 6c 09 f6 05 05
0-2 = additional length (0x12-3 = 0x0F)
7 = ? always 0x14
11 = bit 7 - (maybe) scanner is ready to send data
12-13 = number of lines (constant during a scan)
14-15 = bytes per line (constant during a scan)
16-17 = garbage (the command only returns 0x10 bytes)
/*--------------------------------------------------------------------------*/
Scan sequence
Get some info:
INQUIRY
Setup the scan:
REQUEST SENSE
TUR
SET WINDOWS
GET BUFFER STATUS
VENDOR-0C
VENDOR-09 (read calibration)
VENDOR-0E (send new calibration)
REQUEST SENSE
SEND(10)
SET WINDOWS (same as the first one)
COMMAND 06
RECEIVE DIAGNOSTIC RESULTS
SCAN
GET BUFFER STATUS
loop until all data read:
READ(10)
park the CCD:
OBJECT POSITION
/*--------------------------------------------------------------------------*/
calibration
TECO VM3575 reads 12 lines of calibration
TECO VM656A reads 8 lines of calibration
TECO VM6586 ??
Algorithms used (text from Alex Wulms):
The old algorithm was based on the assumption that the calibration value needs
to be an offset, to go from the value obtained during input to the average
value (0x800).
E.g., if the input value is 0x800, the calibration value must be 0x800 (0x1000
- 0x800).
Likewise, if the input value is 0x700, the calibration value must be 0x900
(0x1000 - 0x700)
And if the input value is 0x600, the calibration value must be 0xA00
The new algorithm is based on the assumption that the calibration needs to be
a multiplication factor, to compensate for the too strong or too weak pixel
in the sensor. Again, we want to obtain the average value (approximately
0x800) for every pixel read during calibration.
E.g., if the input value is 0x800, the calibration value must be 0x800
(0x800*0x800 / 0x800).
Likewise, if the input value is 0x700, the calibration value must be 0x924
(0x800*0x800 / 0x700).
And if the input value is 0x600, the calibration value must 0xAAA (0x800*0x800
/ 0x600)
Though, careful comparison with scans done under windows has shown that the
factor is slightly different from 0x800*0x800(=0x400000) but in stead it
seems to be approximately 0x40302f (which would mean that the average value
is approximately 0x803 in stead of 0x800).
Hope this is clarifies the new algorithm.