use a function instead of inlined code to compute LiDE50 shading coefficients

merge-requests/1/head
Stphane Voltz 2012-10-10 16:19:58 +02:00
rodzic c04c167ecd
commit d0759450a0
1 zmienionych plików z 121 dodań i 207 usunięć

Wyświetl plik

@ -2392,40 +2392,65 @@ compute_averaged_planar (Genesys_Device * dev,
unsigned int o,
unsigned int coeff,
unsigned int target_bright,
unsigned int target_dark,
SANE_Bool deletion)
unsigned int target_dark)
{
unsigned int x, i, j, br, dk, res, avgpixels, val, loop;
unsigned int x, i, j, br, dk, res, avgpixels, val;
DBG (DBG_info, "%s: pixels=%d, offset=%d\n", __FUNCTION__, pixels_per_line, o);
DBG (DBG_info, "%s: pixels=%d, offset=%d\n", __FUNCTION__, pixels_per_line,
o);
/* initialize result */
memset (shading_data, 0xff, words_per_color * 3 * 2);
/*
strangely i can write 0x20000 bytes beginning at 0x00000 without overwriting
slope tables - which begin at address 0x10000(for 1200dpi hw mode):
memory is organized in words(2 bytes) instead of single bytes. explains
quite some things
*/
/*
another one: the dark/white shading is actually performed _after_ reducing
resolution via averaging. only dark/white shading data for what would be
first pixel at full resolution is used.
*/
/*
scanner raw input to output value calculation:
o=(i-off)*(gain/coeff)
from datasheet:
off=dark_average
gain=coeff*bright_target/(bright_average-dark_average)
works for dark_target==0
what we want is these:
bright_target=(bright_average-off)*(gain/coeff)
dark_target=(dark_average-off)*(gain/coeff)
leading to
off = (dark_average*bright_target - bright_average*dark_target)/(bright_target - dark_target)
gain = (bright_target - dark_target)/(bright_average - dark_average)*coeff
*/
/* duplicate half-ccd logic */
res = dev->settings.xres;
if ((dev->model->flags & GENESYS_FLAG_HALF_CCD_MODE)
&& dev->settings.xres <= dev->sensor.optical_res / 2)
{
/* scanner is using half-ccd mode */
res *= 2;
}
if (dev->settings.double_xres == SANE_TRUE)
{
/* scanner is using double x resolution */
res *= 2;
}
/* this should be evenly dividable */
if ((dev->model->flags & GENESYS_FLAG_HALF_CCD_MODE) &&
dev->settings.xres <= dev->sensor.optical_res / 2)
res *= 2; /* scanner is using half-ccd mode */
/*this should be evenly dividable */
avgpixels = dev->sensor.optical_res / res;
if(deletion==SANE_TRUE)
{
loop=1;
}
/* gl841 supports 1/1 1/2 1/3 1/4 1/5 1/6 1/8 1/10 1/12 1/15 averaging */
if (avgpixels < 1)
avgpixels = 1;
else if (avgpixels < 6)
avgpixels = avgpixels;
else if (avgpixels < 8)
avgpixels = 6;
else if (avgpixels < 10)
avgpixels = 8;
else if (avgpixels < 12)
avgpixels = 10;
else if (avgpixels < 15)
avgpixels = 12;
else
{
loop=avgpixels;
}
avgpixels = 15;
DBG (DBG_info, "%s: averaging over %d pixels\n", __FUNCTION__, avgpixels);
@ -2440,41 +2465,87 @@ compute_averaged_planar (Genesys_Device * dev,
dk = 0;
br = 0;
for (i = 0; i < loop; i++)
for (i = 0; i < avgpixels; i++)
{
/* dark data */
dk += (dev->dark_average_data[(x + i + pixels_per_line * j) * 2]
| (dev-> dark_average_data[(x + i + pixels_per_line * j) * 2 + 1] << 8));
dk +=
(dev->dark_average_data[(x + i +
pixels_per_line * j) *
2] |
(dev->dark_average_data
[(x + i + pixels_per_line * j) * 2 + 1] << 8));
/* white data */
br += (dev->white_average_data[(x + i + pixels_per_line * j) * 2]
| (dev-> white_average_data[(x + i + pixels_per_line * j) * 2 + 1] << 8));
br +=
(dev->white_average_data[(x + i +
pixels_per_line * j) *
2] |
(dev->white_average_data
[(x + i + pixels_per_line * j) * 2 + 1] << 8));
}
br /= i;
dk /= i;
br /= avgpixels;
dk /= avgpixels;
if (br * target_dark > dk * target_bright)
val = 0;
else if (dk * target_bright - br * target_dark > 65535
* (target_bright - target_dark))
else if (dk * target_bright - br * target_dark >
65535 * (target_bright - target_dark))
val = 65535;
else
val = (dk * target_bright - br * target_dark) / (target_bright
- target_dark);
val =
(dk * target_bright - br * target_dark) / (target_bright -
target_dark);
shading_data[(x/avgpixels) * 2 * 2 + words_per_color * 2 * j] = val & 0xff;
shading_data[(x/avgpixels) * 2 * 2 + words_per_color * 2 * j + 1] = val >> 8;
/*fill all pixels, even if only the last one is relevant*/
for (i = 0; i < avgpixels; i++)
{
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j] = val & 0xff;
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 1] = val >> 8;
}
val = br - dk;
if (65535 * val > (target_bright - target_dark) * coeff)
val = (coeff * (target_bright - target_dark)) / val;
else
val = 65535;
shading_data[(x/avgpixels) * 2 * 2 + words_per_color * 2 * j + 2] = val & 0xff;
shading_data[(x/avgpixels) * 2 * 2 + words_per_color * 2 * j + 3] = val >> 8;
/*fill all pixels, even if only the last one is relevant*/
for (i = 0; i < avgpixels; i++)
{
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 2] = val & 0xff;
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 3] = val >> 8;
}
}
/*fill remaining channels*/
for (j = channels; j < 3; j++)
{
for (i = 0; i < avgpixels; i++)
{
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j] =
shading_data[(x + o + i) * 2 * 2 + words_per_color * 0];
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 1] =
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * 0 + 1];
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 2] =
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * 0 + 2];
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 3] =
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * 0 + 3];
}
}
}
}
@ -2741,14 +2812,12 @@ genesys_send_shading_coefficient (Genesys_Device * dev)
uint8_t channels;
int o;
unsigned int length; /**> number of shading calibration data words */
unsigned int x, j, i, res, factor;
unsigned int factor;
unsigned int cmat[3]; /**> matrix of color channels */
unsigned int coeff, target_code, val, avgpixels, dk, words_per_color = 0;
unsigned int target_dark, target_bright, br;
unsigned int coeff, target_code, words_per_color = 0;
DBGSTART;
pixels_per_line = dev->calib_pixels;
channels = dev->calib_channels;
@ -2954,170 +3023,15 @@ genesys_send_shading_coefficient (Genesys_Device * dev)
0xdc00);
break;
case CCD_CANONLIDE35:
target_bright = 0xfa00;
target_dark = 0xa00;
o = 4; /*first four pixels are ignored */
memset (shading_data, 0xff, length);
/*
strangely i can write 0x20000 bytes beginning at 0x00000 without overwriting
slope tables - which begin at address 0x10000(for 1200dpi hw mode):
memory is organized in words(2 bytes) instead of single bytes. explains
quite some things
*/
/*
another one: the dark/white shading is actually performed _after_ reducing
resolution via averaging. only dark/white shading data for what would be
first pixel at full resolution is used.
*/
/*
scanner raw input to output value calculation:
o=(i-off)*(gain/coeff)
from datasheet:
off=dark_average
gain=coeff*bright_target/(bright_average-dark_average)
works for dark_target==0
what we want is these:
bright_target=(bright_average-off)*(gain/coeff)
dark_target=(dark_average-off)*(gain/coeff)
leading to
off = (dark_average*bright_target - bright_average*dark_target)/(bright_target - dark_target)
gain = (bright_target - dark_target)/(bright_average - dark_average)*coeff
*/
/* duplicate half-ccd logic */
res = dev->settings.xres;
if ((dev->model->flags & GENESYS_FLAG_HALF_CCD_MODE) &&
dev->settings.xres <= dev->sensor.optical_res / 2)
res *= 2; /* scanner is using half-ccd mode */
/*this should be evenly dividable */
avgpixels = dev->sensor.optical_res / res;
/* gl841 supports 1/1 1/2 1/3 1/4 1/5 1/6 1/8 1/10 1/12 1/15 averaging */
if (avgpixels < 1)
avgpixels = 1;
else if (avgpixels < 6)
avgpixels = avgpixels;
else if (avgpixels < 8)
avgpixels = 6;
else if (avgpixels < 10)
avgpixels = 8;
else if (avgpixels < 12)
avgpixels = 10;
else if (avgpixels < 15)
avgpixels = 12;
else
avgpixels = 15;
DBG (DBG_info,
"genesys_send_shading_coefficient: averaging over %d pixels\n",
avgpixels);
for (x = 0; x <= pixels_per_line - avgpixels; x += avgpixels)
{
if ((x + o) * 2 * 2 + 3 > words_per_color * 2)
break;
for (j = 0; j < channels; j++)
{
dk = 0;
br = 0;
for (i = 0; i < avgpixels; i++)
{
/* dark data */
dk +=
(dev->dark_average_data[(x + i +
pixels_per_line * j) *
2] |
(dev->dark_average_data
[(x + i + pixels_per_line * j) * 2 + 1] << 8));
/* white data */
br +=
(dev->white_average_data[(x + i +
pixels_per_line * j) *
2] |
(dev->white_average_data
[(x + i + pixels_per_line * j) * 2 + 1] << 8));
}
br /= avgpixels;
dk /= avgpixels;
if (br * target_dark > dk * target_bright)
val = 0;
else if (dk * target_bright - br * target_dark >
65535 * (target_bright - target_dark))
val = 65535;
else
val =
(dk * target_bright - br * target_dark) / (target_bright -
target_dark);
/*fill all pixels, even if only the last one is relevant*/
for (i = 0; i < avgpixels; i++)
{
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j] = val & 0xff;
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 1] = val >> 8;
}
val = br - dk;
if (65535 * val > (target_bright - target_dark) * coeff)
val = (coeff * (target_bright - target_dark)) / val;
else
val = 65535;
/*fill all pixels, even if only the last one is relevant*/
for (i = 0; i < avgpixels; i++)
{
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 2] = val & 0xff;
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 3] = val >> 8;
}
}
/*fill remaining channels*/
for (j = channels; j < 3; j++)
{
for (i = 0; i < avgpixels; i++)
{
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j] =
shading_data[(x + o + i) * 2 * 2 + words_per_color * 0];
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 1] =
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * 0 + 1];
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 2] =
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * 0 + 2];
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * j + 3] =
shading_data[(x + o + i) * 2 * 2 +
words_per_color * 2 * 0 + 3];
}
}
}
/* creates a black line in image
for ( x = 65; x < 66; x++) {
for ( j = 0; j < 3; j++) {
shading_data[(x+o) * 2 * 2 + words_per_color * 2 * j + 0] = 0;
shading_data[(x+o) * 2 * 2 + words_per_color * 2 * j + 1] = 0;
shading_data[(x+o) * 2 * 2 + words_per_color * 2 * j + 2] = 0;
shading_data[(x+o) * 2 * 2 + words_per_color * 2 * j + 3] = 0;
}
}
*/
compute_averaged_planar (dev,
shading_data,
pixels_per_line,
words_per_color,
channels,
4,
coeff,
0xfa00,
0x0a00);
break;
case CCD_PLUSTEK_3600:
compute_shifted_coefficients (dev,