Merge branch 'master' of github.com:jupyter/repo2docker into feature/launch_script

pull/363/head
Joseph Hamman 2018-08-13 14:12:12 -06:00
commit da0ed1eee0
26 zmienionych plików z 896 dodań i 50 usunięć

1
.gitignore vendored
Wyświetl plik

@ -9,6 +9,7 @@ MANIFEST
.DS_Store
.cache
.pytest_cache
.coverage
htmlcov

Wyświetl plik

@ -15,9 +15,17 @@ install:
script:
# cd into tests so CWD being repo2docker does not hide
# possible issues with MANIFEST.in
- if [ ${REPO_TYPE} == "r" ]; then cd tests && travis_wait pytest --cov repo2docker
-v ${REPO_TYPE}; else cd tests && travis_retry pytest --cov repo2docker -v ${REPO_TYPE};
fi
- pushd tests;
if [ ${REPO_TYPE} == "r" ]; then
travis_wait pytest --cov repo2docker -v ${REPO_TYPE};
else
travis_retry pytest --cov repo2docker -v ${REPO_TYPE};
fi;
popd;
- pip install -r docs/doc-requirements.txt
- pushd docs;
make html;
popd;
after_success:
- pip install codecov
- codecov
@ -35,8 +43,10 @@ jobs:
branch: master
env:
matrix:
- REPO_TYPE=base
- REPO_TYPE=conda
- REPO_TYPE=venv
- REPO_TYPE=stencila
- REPO_TYPE=julia
- REPO_TYPE=r
- REPO_TYPE=dockerfile

Wyświetl plik

@ -2,7 +2,7 @@
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXOPTS = -W
SPHINXBUILD = python3 -msphinx
SPHINXPROJ = repo2docker
SOURCEDIR = source

Wyświetl plik

@ -1,7 +1,9 @@
.. NOTE: the header characters are different in this file because it is 'included' in another site
.. see https://raw.githubusercontent.com/jupyterhub/binder/master/doc/using.rst
.. _config-files:
Configuration Files
~~~~~~~~~~~~~~~~~~~
-------------------
``repo2docker`` looks for configuration files in the repository being built
to determine how to build it. In general, ``repo2docker`` uses the same
@ -31,7 +33,7 @@ Below is a list of supported configuration files (roughly in the order of build
:depth: 1
``Dockerfile``
^^^^^^^^^^^^^^
~~~~~~~~~~~~~~
In the majority of cases, providing your own Dockerfile is not necessary as the base
images provide core functionality, compact image sizes, and efficient builds. We recommend
@ -46,7 +48,7 @@ best-practices with Dockerfiles.
.. _environment-yml:
``environment.yml``
^^^^^^^^^^^^^^^^^^^
~~~~~~~~~~~~~~~~~~~
``environment.yml`` is the standard configuration file used by Anaconda, conda,
and miniconda that lets you install Python packages.
@ -63,7 +65,7 @@ a Python version in a ``runtime.txt`` file in addition to your
``environment.yml``, your ``runtime.txt`` **will be ignored**.
``requirements.txt``
^^^^^^^^^^^^^^^^^^^^
~~~~~~~~~~~~~~~~~~~~
This specifies a list of Python packages that should be installed in your
environment. Our
@ -71,7 +73,7 @@ environment. Our
on GitHub shows a typical requirements file.
``REQUIRE``
^^^^^^^^^^^
~~~~~~~~~~~
This specifies a list of Julia packages. Repositories with a ``REQUIRE`` file
**must also contain an** ``environment.yml`` **file**. To see an example of a
@ -79,7 +81,7 @@ Julia repository with ``REQUIRE`` and ``environment.yml``,
visit `binder-examples/julia-python <https://github.com/binder-examples/julia-python>`_.
``install.R``
^^^^^^^^^^^^^
~~~~~~~~~~~~~
This is used to install R libraries pinned to a specific snapshot on
`MRAN <https://mran.microsoft.com/documents/rro/reproducibility>`_.
@ -87,7 +89,7 @@ To set the date of the snapshot add a runtime.txt_.
For an example ``install.R`` file, visit our `example install.R file <https://github.com/binder-examples/r/blob/master/install.R>`_.
``apt.txt``
^^^^^^^^^^^
~~~~~~~~~~~
A list of Debian packages that should be installed. The base image used is usually the latest released
version of Ubuntu.
@ -97,7 +99,7 @@ We use ``apt.txt``, for example, to install LaTeX in our
``setup.py``
^^^^^^^^^^^^
~~~~~~~~~~~~
To install your repository like a Python package, you may include a
``setup.py`` file. repo2docker installs ``setup.py`` files by running
@ -110,7 +112,7 @@ repo2docker **requires configuration files such as** ``environment.yml`` or
.. _postBuild:
``postBuild``
^^^^^^^^^^^^^
~~~~~~~~~~~~~
A script that can contain arbitrary commands to be run after the whole repository has been built. If you
want this to be a shell script, make sure the first line is ```#!/bin/bash``.
@ -136,7 +138,7 @@ equivalent.
.. _runtime.txt:
``runtime.txt``
^^^^^^^^^^^^^^^
~~~~~~~~~~~~~~~
This allows you to control the runtime of Python or R.

Wyświetl plik

@ -1,10 +1,10 @@
.. _usage:
.. _deploy:
Using ``repo2docker`` as part of your Continuous Integration
============================================================
We've created for you the `continuous-build <https://www.github.com/binder-examples/continuous-build/>`_
repository so that you can push a `Docker <https://docs.docker.com/>`_ container
We've created for you the `continuous-build <https://www.github.com/binder-examples/continuous-build/>`_
repository so that you can push a `Docker <https://docs.docker.com/>`_ container
to `Docker Hub <https://hub.docker.com/>`_ directly from a Github repository
that has a Jupyter notebook. Here are instructions to do this.
@ -25,7 +25,7 @@ to pull from Docker Hub.
Step 1. Clone the Repository
............................
First, fork the `continuous-build <https://www.github.com/binder-examples/continuous-build/>`_ Github
repository to your account, and clone the branch.
repository to your account, and clone the branch.
git clone https://www.github.com/<username>/continuous-build
# or
@ -35,9 +35,9 @@ repository to your account, and clone the branch.
Step 2. Choose your Configuration
.................................
The hidden folder `.circleci/config.yml` has instructions for `CircleCI <https://circleci.com/dashboard/>`_
The hidden folder `.circleci/config.yml` has instructions for `CircleCI <https://circleci.com/dashboard/>`_
to automatically discover and build your repo2docker jupyter notebook container.
The default template provided in the repository in this folder will do the most basic steps,
The default template provided in the repository in this folder will do the most basic steps,
including:
1. clone of the repository with the notebook that you specify
@ -45,7 +45,7 @@ including:
3. push to Docker Hub
This repository aims to provide templates for your use.
If you have a request for a new template, please
If you have a request for a new template, please
`let us know <https://www.github.com/binder-examples/continuous-build/issues/>`_.
We will add templates as they are requested to do additional tasks like test containers, run
nbconvert, etc.
@ -57,7 +57,7 @@ creating a new folder called "myrepo" and then copying the entire folder there.
mkdir -p myrepo
cp -R continuous-build/.circleci myrepo/
You would then logically create a Github repository in the "myrepo" folder,
You would then logically create a Github repository in the "myrepo" folder,
add the circleci configuration folder, and continue on to the next steps.
cd myrepo
@ -69,7 +69,7 @@ Step 3. Docker Hub
..................
Go to `Docker Hub <https://hub.docker.com/>`_, log in, and click the big blue
button that says "create repository" (not an automated build). Choose an organization
and name that you like (in the traditional format ``<ORG>/<NAME>``), and
and name that you like (in the traditional format ``<ORG>/<NAME>``), and
remember it! We will be adding it, along with your
Docker credentials, to be encrypted CircleCI environment variables.
@ -78,12 +78,12 @@ Step 4. Connect to CircleCI
...........................
If you navigate to the main `app page <https://circleci.com/dashboard/>`_ you
should be able to click "Add Projects" and then select your repository. If you don't
see it on the list, then select a different organization in the top left. Once
see it on the list, then select a different organization in the top left. Once
you find the repository, you can click the button to "Start Building" adn accept
the defaults.
Before you push or trigger a build, let's set up the following environment variables.
Also in the project interface on CirleCi, click the gears icon next to the project
Also in the project interface on CirleCi, click the gears icon next to the project
name to get to your project settings. Under settings, click on the "Environment
Variables" tab. In this section, you want to define the following:
@ -92,7 +92,7 @@ Variables" tab. In this section, you want to define the following:
3. ``DOCKER_USER`` and ``DOCKER_PASS`` should be your credentials (to allowing pushing)
4. ``REPO_NAME`` should be the full Github url (or other) of the repository with the notebook. This doesn't have to coincide with the repository you are using to do the build (e.g., "myrepo" in our example).
If you don't define the ``CONTAINER_NAME`` it will default to be the repository where it is
If you don't define the ``CONTAINER_NAME`` it will default to be the repository where it is
building from, which you should only do if the Docker Hub repository is named equivalently.
If you don't define either of the variables from step 3. for the Docker credentials, your
image will build but not be pushed to Docker Hub. Finally, if you don't define the ``REPO_NAME``
@ -120,7 +120,7 @@ You should then be able to pull your new container, and run it! Here is an examp
docker pull <ORG>/<NAME>
docker run -it --name repo2docker -p 8888:8888 <ORG>/<NAME> jupyter notebook --ip 0.0.0.0
For a pre-built working example, try the following:

Wyświetl plik

@ -57,19 +57,19 @@ Bash on Windows) provides additional information about Windows and docker.
.. _using Windows and the WSL: https://nickjanetakis.com/blog/setting-up-docker-for-windows-and-wsl-to-work-flawlessly
.. _jupyterhub:
.. _jupyterhub_ready:
JupyterHub-ready images
-----------------------
`JupyterHub <https://jupyterhub.readthedocs.io/en/stable/>`_ allows multiple
JupyterHub_ allows multiple
users to collaborate on a shared Jupyter server. ``repo2docker`` can build
Docker images that can be shared within a JupyterHub deployment. For example,
`mybinder.org <https://mybinder.org>`_ uses JupyterHub and ``repo2docker``
to allow anyone to build a Docker image of a git repository online and
share an executable version of the repository with a URL to the built image.
To build `JupyterHub <https://github.com/jupyterhub/jupyterhub>`_-ready
To build JupyterHub_-ready
Docker images with ``repo2docker``, the version of your JupterHub deployment
must be included in the ``environment.yml`` or ``requiements.txt`` of the
git repositories you build.
@ -79,3 +79,5 @@ command to run ``jupyterhub-singleuser`` by adding this line in your
configuration file::
c.DockerSpawner.cmd = ['jupyterhub-singleuser']
.. _JupyterHub: https://github.com/jupyterhub/jupyterhub

Wyświetl plik

@ -21,7 +21,7 @@ repo2docker is called with this command::
where ``<URL-or-path to repo>`` is a URL or path to the source repository.
For example, use the following to build an image of Peter Norvig's
`Pytudes <https://github.com/norvig/pytudes/>`_::
Pytudes_::
jupyter-repo2docker https://github.com/norvig/pytudes
@ -47,12 +47,14 @@ Python 3.6 unless you include the version of Python in your
Python 2.7, 3.5, and 3.6. In the case of this repo, a Python version is not
specified in their configuation files and Python 3.6 is installed.
`Pytudes <https://github.com/norvig/pytudes>`_
Pytudes_
uses a `requirements.txt file <https://github.com/norvig/pytudes/blob/master/requirements.txt>`_
to specify its Python environment. ``repo2docker`` uses ``pip`` to install
dependencies listed in the ``requirement.txt`` in the image. To learn more about
configuration files in ``repo2docker`` visit :ref:`config-files`.
.. _Pytudes: https://github.com/norvig/pytudes
When the image is built, a message will be output to your terminal::
Copy/paste this URL into your browser when you connect for the first time,

Wyświetl plik

@ -18,6 +18,7 @@ import tempfile
import time
import docker
from urllib.parse import urlparse
from docker.utils import kwargs_from_env
from docker.errors import DockerException
import escapism
@ -520,11 +521,26 @@ class Repo2Docker(Application):
Returns running container
"""
client = docker.from_env(version='auto')
docker_host = os.environ.get('DOCKER_HOST')
if docker_host:
host_name = urlparse(docker_host).hostname
else:
host_name = '127.0.0.1'
self.hostname = host_name
if not self.run_cmd:
port = str(self._get_free_port())
self.port = port
run_cmd = ['jupyter', 'notebook', '--ip', '0.0.0.0',
'--port', port]
# To use the option --NotebookApp.custom_display_url
# make sure the base-notebook image is updated:
# docker pull jupyter/base-notebook
run_cmd = [
'jupyter', 'notebook',
'--ip', '0.0.0.0',
'--port', port,
"--NotebookApp.custom_display_url=http://{}:{}".format(host_name, port),
]
ports = {'%s/tcp' % port: port}
else:
# run_cmd given by user, if port is also given then pass it on
@ -535,6 +551,7 @@ class Repo2Docker(Application):
ports = {}
# store ports on self so they can be retrieved in tests
self.ports = ports
container_volumes = {}
if self.volumes:
api_client = docker.APIClient(

Wyświetl plik

@ -43,6 +43,11 @@ RUN adduser --disabled-password \
${NB_USER}
WORKDIR ${HOME}
RUN wget --quiet -O - https://deb.nodesource.com/gpgkey/nodesource.gpg.key | apt-key add - && \
DISTRO="bionic" && \
echo "deb https://deb.nodesource.com/node_10.x $DISTRO main" >> /etc/apt/sources.list.d/nodesource.list && \
echo "deb-src https://deb.nodesource.com/node_10.x $DISTRO main" >> /etc/apt/sources.list.d/nodesource.list
RUN apt-get update && \
apt-get install --yes --no-install-recommends \
{% for package in base_packages -%}
@ -65,9 +70,9 @@ RUN apt-get update && \
EXPOSE 8888
{% if env -%}
# Almost all environment variables
{% for item in env -%}
{% if build_env -%}
# Environment variables required for build
{% for item in build_env -%}
ENV {{item[0]}} {{item[1]}}
{% endfor -%}
{% endif -%}
@ -94,6 +99,14 @@ USER root
COPY src/ ${HOME}
RUN chown -R ${NB_USER}:${NB_USER} ${HOME}
{% if env -%}
# The rest of the environment
{% for item in env -%}
ENV {{item[0]}} {{item[1]}}
{% endfor -%}
{% endif -%}
# Run assemble scripts! These will actually build the specification
# in the repository into the image.
{% for sd in assemble_script_directives -%}
@ -186,14 +199,25 @@ class BuildPack:
return {
# Utils!
"less",
# FIXME: Use npm from nodesource!
# Everything seems to depend on npm these days, unfortunately.
"npm",
"nodejs",
"unzip",
}
def get_build_env(self):
"""
Ordered list of environment variables to be set for this image.
Ordered so that environment variables can use other environment
variables in their values.
Expects tuples, with the first item being the environment variable
name and the second item being the value.
These environment variables will be set prior to build.
Use .get_env() to set environment variables after build.
"""
return []
def get_env(self):
"""
Ordered list of environment variables to be set for this image.
@ -203,6 +227,8 @@ class BuildPack:
Expects tuples, with the first item being the environment variable
name and the second item being the value.
These variables will not be available to build.
"""
return []
@ -237,6 +263,30 @@ class BuildPack:
"""
return {}
@property
def stencila_manifest_dir(self):
"""Find the stencila manifest dir if it exists"""
if hasattr(self, '_stencila_manifest_dir'):
return self._stencila_manifest_dir
# look for a manifest.xml that suggests stencila could be used
# when we find one, stencila should be installed
# and set environment variables such that
# this file is located at:
# ${STENCILA_ARCHIVE_DIR}/${STENCILA_ARCHIVE}/manifest.xml
self._stencila_manifest_dir = None
for root, dirs, files in os.walk("."):
if "manifest.xml" in files:
self._stencila_manifest_dir = root.split(os.path.sep, 1)[1]
self.log.info(
"Found stencila manifest.xml in %s",
self._stencila_manifest_dir,
)
break
return self._stencila_manifest_dir
def get_build_scripts(self):
"""
Ordered list of shell script snippets to build the base image.
@ -349,6 +399,7 @@ class BuildPack:
return t.render(
packages=sorted(self.get_packages()),
path=self.get_path(),
build_env=self.get_build_env(),
env=self.get_env(),
labels=self.get_labels(),
build_script_directives=build_script_directives,
@ -416,11 +467,31 @@ class BuildPack:
class BaseImage(BuildPack):
def get_env(self):
def get_build_env(self):
"""Return env directives required for build"""
return [
("APP_BASE", "/srv")
]
def get_env(self):
"""Return env directives to be set after build"""
env = []
if self.stencila_manifest_dir:
# manifest_dir is the path containing the manifest.xml
# archive_dir is the directory containing archive directories (one level up)
# default archive is the name of the directory in the archive_dir
# such that
# ${STENCILA_ARCHIVE_DIR}/${STENCILA_ARCHIVE}/manifest.xml
# exists.
archive_dir, archive = os.path.split(self.stencila_manifest_dir)
env.extend([
("STENCILA_ARCHIVE_DIR", "${HOME}/" + archive_dir),
("STENCILA_ARCHIVE", archive),
])
return env
def detect(self):
return True
@ -453,6 +524,22 @@ class BaseImage(BuildPack):
))
except FileNotFoundError:
pass
if self.stencila_manifest_dir:
assemble_scripts.extend(
[
(
"${NB_USER}",
r"""
${KERNEL_PYTHON_PREFIX}/bin/pip install --no-cache https://github.com/stencila/py/archive/f6a245fd.tar.gz && \
${KERNEL_PYTHON_PREFIX}/bin/python -m stencila register && \
${NB_PYTHON_PREFIX}/bin/pip install --no-cache nbstencilaproxy==0.1.1 && \
jupyter serverextension enable --sys-prefix --py nbstencilaproxy && \
jupyter nbextension install --sys-prefix --py nbstencilaproxy && \
jupyter nbextension enable --sys-prefix --py nbstencilaproxy
""",
)
]
)
return assemble_scripts
def get_post_build_scripts(self):

Wyświetl plik

@ -18,14 +18,14 @@ class CondaBuildPack(BaseImage):
Uses miniconda since it is more lightweight than Anaconda.
"""
def get_env(self):
def get_build_env(self):
"""Return environment variables to be set.
We set `CONDA_DIR` to the conda install directory and
the `NB_PYTHON_PREFIX` to the location of the jupyter binary.
"""
env = super().get_env() + [
env = super().get_build_env() + [
('CONDA_DIR', '${APP_BASE}/conda'),
('NB_PYTHON_PREFIX', '${CONDA_DIR}'),
]

Wyświetl plik

@ -57,8 +57,12 @@ if [[ -f /tmp/kernel-environment.yml ]]; then
conda env create -n kernel -f /tmp/kernel-environment.yml
${CONDA_DIR}/envs/kernel/bin/ipython kernel install --prefix "${CONDA_DIR}"
rm -f ${CONDA_DIR}/envs/kernel/conda-meta/history
fi
# remove conda history file,
# which seems to result in some effective pinning of packages in the initial env,
# which we don't intend
rm -f ${CONDA_DIR}/conda-meta/history
# Clean things out!
conda clean -tipsy

Wyświetl plik

@ -12,7 +12,7 @@ class JuliaBuildPack(CondaBuildPack):
See https://github.com/JuliaPy/PyCall.jl/issues/410
"""
def get_env(self):
def get_build_env(self):
"""Get additional environment settings for Julia and Jupyter
Returns:
@ -31,7 +31,7 @@ class JuliaBuildPack(CondaBuildPack):
For example, a tuple may be `('JULIA_VERSION', '0.6.0')`.
"""
return super().get_env() + [
return super().get_build_env() + [
('JULIA_PATH', '${APP_BASE}/julia'),
('JULIA_HOME', '${JULIA_PATH}/bin'),
('JULIA_PKGDIR', '${JULIA_PATH}/pkg'),

Wyświetl plik

@ -82,7 +82,7 @@ class RBuildPack(PythonBuildPack):
'/usr/lib/rstudio-server/bin/'
]
def get_env(self):
def get_build_env(self):
"""
Return environment variables to be set.
@ -90,7 +90,7 @@ class RBuildPack(PythonBuildPack):
without needing root. This is set via the `R_LIBS_USER` environment
variable, so we set that here.
"""
return super().get_env() + [
return super().get_build_env() + [
# This is the path where user libraries are installed
('R_LIBS_USER', '${APP_BASE}/rlibs')
]

Wyświetl plik

@ -0,0 +1 @@
Test that node 10 is installed and runnable.

Wyświetl plik

@ -0,0 +1,7 @@
#!/bin/sh
set -e
which node
node --version | grep v10
which npm
npm --version | grep 6.2

Wyświetl plik

@ -24,3 +24,9 @@
url: https://github.com/binder-examples/requirements
ref: test
verify: python -c 'import matplotlib'
# Test that custom channels and downgrades don't
# get blocked by pinning
- name: Xeus-Cling
url: https://github.com/QuantStack/xeus-cling
ref: 0.4.5
verify: jupyter kernelspec list

Wyświetl plik

@ -0,0 +1,21 @@
@article{kluyver2016jupyter,
title={Jupyter Notebooks-a publishing format for reproducible computational workflows.},
author={Kluyver, Thomas and Ragan-Kelley, Benjamin and P{\'e}rez, Fernando and Granger, Brian E and Bussonnier, Matthias and Frederic, Jonathan and Kelley, Kyle and Hamrick, Jessica B and Grout, Jason and Corlay, Sylvain and others},
journal={ELPUB},
pages={87--90},
year={2016}
}
@article{ragan2014jupyter,
title={The Jupyter/IPython architecture: a unified view of computational research, from interactive exploration to communication and publication.},
author={Ragan-Kelley, M and Perez, F and Granger, B and Kluyver, T and Ivanov, P and Frederic, J and Bussonnier, M},
journal={AGU Fall Meeting Abstracts},
year={2014}
}
@article{perez2015project,
title={Project Jupyter: Computational narratives as the engine of collaborative data science},
author={Perez, Fernando and Granger, Brian E},
journal={Retrieved September},
volume={11},
pages={207},
year={2015}
}

Wyświetl plik

@ -0,0 +1,6 @@
<dar>
<documents>
<document id="py-jupyter.ipynb" name="py-jupyter.ipynb" type="article" path="py-jupyter.ipynb.jats.xml" src="py-jupyter.ipynb" />
</documents>
<assets/>
</dar>

File diff suppressed because one or more lines are too long

Wyświetl plik

@ -0,0 +1,212 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD v1.1d3 20150301//EN" "JATS-archivearticle1.dtd">
<article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">
<front>
<article-meta>
<title-group>
<article-title>Jupyter and Stencila</article-title>
</title-group>
<contrib-group content-type="author">
<contrib contrib-type="person">
<name>
<surname>Pawlik</surname>
<given-names>Aleksandra</given-names>
</name>
</contrib>
</contrib-group>
<abstract>
<p>An example of a Jupyter notebook converted into a JATS document for editing in Stencila.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="introduction-1">
<title>Introduction</title>
<p>Jupyter notebooks (<xref ref-type="bibr" rid="ref-1">1</xref>&#x2013;<xref ref-type="bibr" rid="ref-3">3</xref>) are one of the most popular platforms for doing reproducible research. Stencila supports importing of Jupyter Notebook <monospace>.ipynb</monospace> files. This allows you to work with collegues to refine a document for final publication while still retaining the code cells, and thus reprodubility of your the work. In the future we also plan to support exporting to <monospace>.ipynb</monospace> files.</p>
</sec>
<sec id="markdown-cells-1">
<title>Markdown cells</title>
<p>Most standard Markdown should be supported by the importer including inline <monospace>code</monospace>, headings etc (although the Stencila user interface do not currently support rendering of some elements e.g.&#xA0;math and lists).</p>
</sec>
<sec id="code-cells-1">
<title>Code cells</title>
<p>Code cells in notebooks are imported without loss. Stencila&#x2019;s user interface currently differs from Jupyter in that code cells are executed on update while you are typing. This produces a very reactive user experience but is inappropriate for more compute intensive, longer running code cells. We are currently working on improving this to allowing users to decide to execute cells explicitly (e.g.&#xA0;using <monospace>Ctrl+Enter</monospace>).</p>
<code specific-use="cell"><named-content><alternatives>
<code specific-use="source" language="pyjp" executable="yes">import sys
import time
&apos;Hello this is Python %s.%s and it is %s&apos; % (sys.version_info[0], sys.version_info[1], time.strftime(&apos;%c&apos;))</code>
<code specific-use="output" language="json">{}</code>
</alternatives>
</named-content>
</code>
<p>Stencila also support Jupyter code cells that produce plots. The cell below produces a simple plot based on the example from <ext-link ext-link-type="uri" xlink:href="https://matplotlib.org/examples/shapes_and_collections/scatter_demo.html">the Matplotlib website</ext-link>. Try changing the code below (for example, the variable <monospace>N</monospace>).</p>
<code specific-use="cell"><named-content><alternatives>
<code specific-use="source" language="pyjp" executable="yes">import numpy as np
import matplotlib.pyplot as plt
N = 50
N = min(N, 1000) # Prevent generation of too many numbers :)
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radii
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()</code>
<code specific-use="output" language="json">{}</code>
</alternatives>
</named-content>
</code>
<p>We are currently working on supporting <ext-link ext-link-type="uri" xlink:href="http://ipython.readthedocs.io/en/stable/interactive/magics.html">Jupyter&#x2019;s magic commands</ext-link> in Stencila via a bridge to Jupyter kernels.</p>
</sec>
<sec id="metadata-1">
<title>Metadata</title>
<p>To add some metadata about the document (such as authors, title, abstract and so on), In Jupyter, select <monospace>Edit -&gt; Edit Notebook metadata</monospace> from the top menu. Add the title and abstract as JSON strings and authors and organisations metadata as <ext-link ext-link-type="uri" xlink:href="https://www.w3schools.com/js/js_json_arrays.asp">JSON arrays</ext-link>. Author <monospace>affiliation</monospace> identifiers (like <monospace>university-of-earth</monospace> below) must be unique and preferably use only lowercase characters and no spaces.</p>
<p>For example,</p>
<preformat> &quot;authors&quot;: [
{
&quot;given-names&quot;: &quot;Your first name goes here&quot;,
&quot;surname&quot;: &quot;Your last name goes here&quot;,
&quot;email&quot;: &quot;your.email@your-organisation&quot;,
&quot;corresponding&quot;: &quot;yes / no&quot;,
&quot;affiliation&quot;: &quot;university-of-earth&quot;
}
],
&quot;organisations&quot;: [
{
&quot;university-of-earth&quot;: {
&quot;institution&quot;: &quot;Your organisation name&quot;,
&quot;city&quot;: &quot;Your city&quot;,
&quot;country&quot;: &quot;Your country&quot;
}
],
&quot;title&quot;: &quot;Your title goes here&quot;,
&quot;abstract&quot;: &quot;This is a paper about lots of different interesting things&quot;,
</preformat>
</sec>
<sec id="citations-and-references-1">
<title>Citations and references</title>
<p>Stencila supports Pandoc style citations and reference lists within Jupyter notebook Markdown cells. Add a <monospace>bibliography</monospace> entry to the notebook&#x2019;s metadata which points to a file containing your list of references e.g.</p>
<code language="json">&quot;bibliography&quot;: &quot;my-bibliography.bibtex&quot;</code>
<p>Then, within Markdown cells, you can insert citations inside square brackets and separated by semicolons. Each citation is represented using the <monospace>@</monospace> symbol followed by the citation identifier from the bibliography database e.g.</p>
<code language="json">[@perez2015project; @kluyver2016jupyter]</code>
<p>The <ext-link ext-link-type="uri" xlink:href="https://github.com/takluyver/cite2c">cite2c</ext-link> Jupyter extension allows for easier, &#x201C;cite-while-you-write&#x201D; insertion of citations from a Zotero library. We&#x2019;re hoping to support conversion of cite2cstyle citations/references in the <ext-link ext-link-type="uri" xlink:href="https://github.com/stencila/convert/issues/14">future</ext-link>.</p>
</sec>
</body>
<back>
<ref-list>
<ref id="ref-1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perez</surname>
<given-names>Fernando</given-names>
</name>
<name>
<surname>Granger</surname>
<given-names>Brian E</given-names>
</name>
</person-group>
<article-title>Project jupyter: Computational narratives as the engine of collaborative data science</article-title>
<source>Retrieved September</source>
<year>2015</year>
<volume>11</volume>
<fpage>207</fpage>
</element-citation>
</ref>
<ref id="ref-2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kluyver</surname>
<given-names>Thomas</given-names>
</name>
<name>
<surname>Ragan-Kelley</surname>
<given-names>Benjamin</given-names>
</name>
<name>
<surname>P&#xE9;rez</surname>
<given-names>Fernando</given-names>
</name>
<name>
<surname>Granger</surname>
<given-names>Brian E</given-names>
</name>
<name>
<surname>Bussonnier</surname>
<given-names>Matthias</given-names>
</name>
<name>
<surname>Frederic</surname>
<given-names>Jonathan</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>Kyle</given-names>
</name>
<name>
<surname>Hamrick</surname>
<given-names>Jessica B</given-names>
</name>
<name>
<surname>Grout</surname>
<given-names>Jason</given-names>
</name>
<name>
<surname>Corlay</surname>
<given-names>Sylvain</given-names>
</name>
<name>
<surname>Others</surname>
</name>
</person-group>
<article-title>Jupyter notebooks-a publishing format for reproducible computational workflows.</article-title>
<source>ELPUB</source>
<year>2016</year>
<fpage>87</fpage>
</element-citation>
</ref>
<ref id="ref-3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ragan-Kelley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Granger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kluyver</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Frederic</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bussonnier</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The jupyter/ipython architecture: A unified view of computational research, from interactive exploration to communication and publication.</article-title>
<source>AGU Fall Meeting Abstracts</source>
<year>2014</year>
</element-citation>
</ref>
</ref-list>
</back>
</article>

Wyświetl plik

@ -0,0 +1,13 @@
@article{baumer2014r,
title={R Markdown: Integrating a reproducible analysis tool into introductory statistics},
author={Baumer, Ben and Cetinkaya-Rundel, Mine and Bray, Andrew and Loi, Linda and Horton, Nicholas J},
journal={arXiv preprint arXiv:1402.1894},
year={2014}
}
@book{xie2016bookdown,
title={Bookdown: Authoring Books and Technical Documents with R Markdown},
author={Xie, Yihui},
year={2016},
publisher={CRC Press}
}

Wyświetl plik

@ -0,0 +1,6 @@
<dar>
<documents>
<document id="rmarkdown.Rmd" name="rmarkdown.Rmd" type="article" path="rmarkdown.Rmd.jats.xml" src="rmarkdown.Rmd" />
</documents>
<assets/>
</dar>

Wyświetl plik

@ -0,0 +1,57 @@
---
title: RMarkdown and Stencila
author:
- surname: Bentley
given-names: Nokome
affiliation: stencila
- surname: Pawlik
given-names: Aleksandra
- surname: Aufrieter
given-names: Michael
affiliation: substance
- surname: Buchtala
given-names: Oliver
affiliation: substance
organisations:
- id: stencila
name: Stencila
city: Kaikoura
country: New Zealand
- id: substance
name: Substance GmbH
city: Linz
country: Austria
abstract: |
Stencila currently supports import of RMarkdown documents. This allows use cases like allowing collaborators to work on the same document using a WYSIWYG editing environment, or for you to put the final touches on a paper before final submission to a journal.
bibliography: bibliography.bibtex
---
# Introduction
[RMarkdown](https://rmarkdown.rstudio.com/) is a popular format for reproducible research using the R programming language ([@baumer2014r],[@xie2016bookdown]). Stencila is a able to import RMarkdown documents. For example, the source for this example document is available on [Github](https://github.com/stencila/stencila/blob/more-examples/data/r-markdown/rmarkdown.Rmd). Eventually, we'll also support exporting to RMarkdown, allowing WYSIWYG editing of RMarkdown documents in Stencila.
# Code chunks
In RMarkdown, code "chunks" are written using "fenced" code blocks. Stencila converts these code "chunks" into Stencila code "cells" like this one:
```{r}
n <- 500
```
Stencila cells behave like functions having zero or more named `inputs` (like function arguments) and an optional `output` (like a assigning a function's return value). A cell's inputs and outputs are determined by analyzing the cell's code. The cell above has no inputs but produces an output variable named `n`. Stencila's execution engine uses this information to make code cells reactive. For instance, the cell below has `n` as an input i.e it is dependent on the first cell. So when you update the `n` in the cell above, the following plot will update.
```{r}
s <- min(1000, n)
x <- runif(s)
y <- x + runif(s)
z <- y + rnorm(s)
plot(x, y, cex=z*2, col=rainbow(length(z), alpha=0.5)[rank(x+z)], pch=16)
```
# Figures
In RMarkdown, code chunks can have various options. A common use for options is to set the caption and dimensions of figures. Stencila converts code chunks with the `fig.cap` option into JATS `<fig fig-type="repro-fig">` elements with a `<caption>`. This allows the user to edit the figure caption and for automatic figure numbering and referencing (although that is not working 100% right now). Other options are placed in a comment at the top of the cell so that they are preserved (and eventually will be used to apply those options within the R execution context).
```{r fig.width=7,fig.height=6,fig.cap="Figure title"}
hist(z, breaks=40, col=hsv(0.6, 0.9, 1), xlab="Value", main="")
```

Wyświetl plik

@ -0,0 +1,141 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD v1.1d3 20150301//EN" "JATS-archivearticle1.dtd">
<article xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">
<front>
<article-meta>
<title-group>
<article-title>RMarkdown and Stencila</article-title>
</title-group>
<contrib-group content-type="author">
<contrib contrib-type="person">
<name>
<surname>Bentley</surname>
<given-names>Nokome</given-names>
</name>
<xref ref-type="aff" rid="stencila" />
</contrib>
<contrib contrib-type="person">
<name>
<surname>Pawlik</surname>
<given-names>Aleksandra</given-names>
</name>
</contrib>
<contrib contrib-type="person">
<name>
<surname>Aufrieter</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="substance" />
</contrib>
<contrib contrib-type="person">
<name>
<surname>Buchtala</surname>
<given-names>Oliver</given-names>
</name>
<xref ref-type="aff" rid="substance" />
</contrib>
</contrib-group>
<aff id="stencila">
<institution content-type="orgname">Stencila</institution>
<city>Kaikoura</city>
<country>New Zealand</country>
</aff>
<aff id="substance">
<institution content-type="orgname">Substance GmbH</institution>
<city>Linz</city>
<country>Austria</country>
</aff>
<abstract>
<p>Stencila currently supports import of RMarkdown documents. This allows use cases like allowing collaborators to work on the same document using a WYSIWYG editing environment, or for you to put the final touches on a paper before final submission to a journal.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="introduction-1">
<title>Introduction</title>
<p><ext-link ext-link-type="uri" xlink:href="https://rmarkdown.rstudio.com/">RMarkdown</ext-link> is a popular format for reproducible research using the R programming language (<xref ref-type="bibr" rid="ref-1">1</xref>,<xref ref-type="bibr" rid="ref-2">2</xref>). Stencila is a able to import RMarkdown documents. For example, the source for this example document is available on <ext-link ext-link-type="uri" xlink:href="https://github.com/stencila/stencila/blob/more-examples/data/r-markdown/rmarkdown.Rmd">Github</ext-link>. Eventually, we&#x2019;ll also support exporting to RMarkdown, allowing WYSIWYG editing of RMarkdown documents in Stencila.</p>
</sec>
<sec id="code-chunks-1">
<title>Code chunks</title>
<p>In RMarkdown, code &#x201C;chunks&#x201D; are written using &#x201C;fenced&#x201D; code blocks. Stencila converts these code &#x201C;chunks&#x201D; into Stencila code &#x201C;cells&#x201D; like this one:</p>
<code specific-use="cell"><named-content><alternatives>
<code specific-use="source" language="r" executable="yes">n &lt;- 500</code>
<code specific-use="output" language="json">{}</code>
</alternatives>
</named-content>
</code>
<p>Stencila cells behave like functions having zero or more named <monospace>inputs</monospace> (like function arguments) and an optional <monospace>output</monospace> (like a assigning a function&#x2019;s return value). A cell&#x2019;s inputs and outputs are determined by analyzing the cell&#x2019;s code. The cell above has no inputs but produces an output variable named <monospace>n</monospace>. Stencila&#x2019;s execution engine uses this information to make code cells reactive. For instance, the cell below has <monospace>n</monospace> as an input i.e it is dependent on the first cell. So when you update the <monospace>n</monospace> in the cell above, the following plot will update.</p>
<code specific-use="cell"><named-content><alternatives>
<code specific-use="source" language="r" executable="yes">s &lt;- min(1000, n)
x &lt;- runif(s)
y &lt;- x + runif(s)
z &lt;- y + rnorm(s)
plot(x, y, cex=z*2, col=rainbow(length(z), alpha=0.5)[rank(x+z)], pch=16)</code>
<code specific-use="output" language="json">{}</code>
</alternatives>
</named-content>
</code>
</sec>
<sec id="figures-1">
<title>Figures</title>
<p>In RMarkdown, code chunks can have various options. A common use for options is to set the caption and dimensions of figures. Stencila converts code chunks with the <monospace>fig.cap</monospace> option into JATS <monospace>&lt;fig fig-type=&quot;repro-fig&quot;&gt;</monospace> elements with a <monospace>&lt;caption&gt;</monospace>. This allows the user to edit the figure caption and for automatic figure numbering and referencing (although that is not working 100% right now). Other options are placed in a comment at the top of the cell so that they are preserved (and eventually will be used to apply those options within the R execution context).</p>
<fig fig-type="repro-fig">
<caption>
<title>Figure title</title>
</caption>
<alternatives>
<code specific-use="source" language="r" executable="yes">#: fig.width=7,fig.height=6
hist(z, breaks=40, col=hsv(0.6, 0.9, 1), xlab=&quot;Value&quot;, main=&quot;&quot;)</code>
<code specific-use="output" language="json">{}</code>
</alternatives>
</fig>
</sec>
</body>
<back>
<ref-list>
<ref id="ref-1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baumer</surname>
<given-names>Ben</given-names>
</name>
<name>
<surname>Cetinkaya-Rundel</surname>
<given-names>Mine</given-names>
</name>
<name>
<surname>Bray</surname>
<given-names>Andrew</given-names>
</name>
<name>
<surname>Loi</surname>
<given-names>Linda</given-names>
</name>
<name>
<surname>Horton</surname>
<given-names>Nicholas J</given-names>
</name>
</person-group>
<article-title>R markdown: Integrating a reproducible analysis tool into introductory statistics</article-title>
<source>arXiv preprint arXiv:1402.1894</source>
<year>2014</year>
</element-citation>
</ref>
<ref id="ref-2">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Yihui</given-names>
</name>
</person-group>
<source>Bookdown: Authoring books and technical documents with r markdown</source>
<publisher-name>CRC Press</publisher-name>
<year>2016</year>
</element-citation>
</ref>
</ref-list>
</back>
</article>

Wyświetl plik

@ -0,0 +1,4 @@
#!/bin/sh
jupyter serverextension list 2>&1 | grep nbstencilaproxy
jupyter nbextension list 2>&1 | grep nbstencilaproxy

Wyświetl plik

@ -0,0 +1,52 @@
"""
Test if the explict hostname is supplied correctly to the container
"""
import requests
import time
from repo2docker.app import Repo2Docker
def test_connect_url(tmpdir):
tmpdir.chdir()
#q = tmpdir.join("environment.yml")
#q.write("dependencies:\n"
# " - notebook==5.6.0")
p = tmpdir.join("requirements.txt")
p.write("notebook==5.6.0")
app = Repo2Docker()
argv = [str(tmpdir), ]
app.initialize(argv)
app.debug = True
app.run = False
app.start() # This just build the image and does not run it.
container = app.start_container()
container_url = 'http://{}:{}/api'.format(app.hostname, app.port)
expected_url = 'http://{}:{}'.format(app.hostname, app.port)
# wait a bit for the container to be ready
# give the container a chance to start
time.sleep(1)
try:
# try a few times to connect
success = False
for i in range(1, 4):
container.reload()
assert container.status == 'running'
if expected_url not in container.logs().decode("utf8"):
time.sleep(i * 3)
continue
try:
info = requests.get(container_url).json()
except Exception as e:
print("Error: %s" % e)
time.sleep(i * 3)
else:
print(info)
success = True
break
assert success, "Notebook never started in %s" % container
finally:
# stop the container
container.stop()
app.wait_for_container(container)