radiosonde_auto_rx/imet/imet1ab_cpafsk.c

1077 wiersze
28 KiB
C

/*
* radiosonde iMet-1-AB (GPS: Trimble/ublox)
* author: zilog80
* usage:
* gcc imet1ab.c -lm -o imet1ab
* ./imet1ab [options] audio.wav
* options:
* -r, --raw
* -i, --invert
* -1 (trimble: TOW/s)
* -2 (ublox: TOW/ms)
*
*
* AFSK 1200Hz/2400Hz, noncoherent correlation:
* option -b
* gcc imet1ab_cpafsk.c -lm -o imet1ab_cpfsk
* ./imet1ab_cpfsk -b -v imet1ab.wav
*
* waveform output:
* gcc -DMULTI imet1ab_cpafsk.c -lm -o imet1ab_multi
* ./imet1ab_multi -b imet1ab.wav > multi_imet.wav
* wenn leise und 8bit, z.B.:
* ./imet1ab_multi -b -g 100 imet1ab.wav > multi_imet.wav
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
typedef unsigned char ui8_t;
typedef struct {
int frnr;
char id1[9]; char id2[9];
int week; double gpssec;
//int jahr; int monat; int tag;
int wday;
int std; int min; int sek; int ms;
double lat; double lon; double alt;
double vH; double vD; double vV;
double vx; double vy; double vD2;
} gpx_t;
gpx_t gpx;
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_color = 0, // Farbe
option_inv = 0, // invertiert Signal
option_b = 0,
option_gps = 0,
wavloaded = 0;
/* -------------------------------------------------------------------------- */
#define BAUD_RATE 2400
// iMet: AFSK Baudrate 2400
/* 1200 Hz: out-in
2400 Hz: lang -> Baudrate
4800 Hz: kurz (2x)
*/
unsigned int sample_rate, channels, bytes_sec, bits_sample, blockalign, datblocksize, datsize8;
float samples_per_bit = 0;
int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
int read_wav_header(FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(dat, 1, 4, fp) < 4) return -1;
datsize8 = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24);
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
// bits_sample
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// channels
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
// sample_rate
if (fread(dat, 1, 4, fp) < 4) return -1;
sample_rate = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); //memcpy(&sr, dat, 4);
// bytes/sec
if (fread(dat, 1, 4, fp) < 4) return -1;
bytes_sec = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24);
// block align
if (fread(dat, 1, 2, fp) < 2) return -1;
blockalign = dat[0] | (dat[1] << 8);
// bits/sample
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
if ((bits_sample != 8) && (bits_sample != 16)) return -2;
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
datblocksize = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24);
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/(float)BAUD_RATE;
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
return 0;
}
int read_wavheader(FILE *fp, unsigned char chIn, unsigned char chOut, FILE *fout) {
unsigned int size = 0;
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
fseek(fp, 0, SEEK_SET);
if (fread(txt, 1, 4, fp) < 4) return -1; fwrite(txt, 1, 4, fout);
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(dat, 1, 4, fp) < 4) return -1;
size = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24);
size = ((size+8-44)*chOut)/chIn + 44-8;
for (byte = 0; byte < 4; byte++) { dat[byte] = size & 0xFF; size >>= 8; }
fwrite(dat, 1, 4, fout);
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1; fwrite(txt, 1, 4, fout);
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1; fprintf(fout, "%c", byte & 0xFF);
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1; fwrite(dat, 1, 4, fout);
if (fread(dat, 1, 2, fp) < 2) return -1; fwrite(dat, 1, 2, fout);
// channels
if (fread(dat, 1, 2, fp) < 2) return -1;
dat[0] = chOut; fwrite(dat, 1, 2, fout);
// sample_rate
if (fread(dat, 1, 4, fp) < 4) return -1; fwrite(dat, 1, 4, fout);
// bytes/sec
if (fread(dat, 1, 4, fp) < 4) return -1;
size = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24);
size = (size*chOut)/chIn;
for (byte = 0; byte < 4; byte++) { dat[byte] = size & 0xFF; size >>= 8; }
fwrite(dat, 1, 4, fout);
// block align
if (fread(dat, 1, 2, fp) < 2) return -1;
size = dat[0] | (dat[1] << 8);
size = (size*chOut)/chIn;
for (byte = 0; byte < 2; byte++) { dat[byte] = size & 0xFF; size >>= 8; }
fwrite(dat, 1, 2, fout);
// bits/sample
if (fread(dat, 1, 2, fp) < 2) return -1; fwrite(dat, 1, 2, fout);
//bits_sample = dat[0] + (dat[1] << 8);
//if ((bits_sample != 8) && (bits_sample != 16)) return -2;
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1; fprintf(fout, "%c", byte & 0xFF);
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
size = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24);
size = (size*chOut)/chIn;
for (byte = 0; byte < 4; byte++) { dat[byte] = size & 0xFF; size >>= 8; }
fwrite(dat, 1, 4, fout);
return 0;
}
int f32read_sample(FILE *fp, double *s) { // channels == 1
int i;
short b = 0;
for (i = 0; i < channels; i++) {
if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF;
if (bits_sample == 8) { b -= 128; }
if (i == 0) { // i = 0: links bzw. mono
*s = b/128.0;
if (bits_sample == 16) { *s /= 256.0; }
}
}
return 0;
}
int f32write_mults(FILE *fp, double *w, int ch) {
int i;
int b;
double x;
for (i = 0; i < ch; i++) {
x = 128.0 * w[i];
if (bits_sample == 8) { x += 128.0; }
if (bits_sample == 16) { x *= 256.0; }
b = (int)x; // -> short
// 16 bit (short) -> (int)
fwrite( &b, bits_sample/8, 1, fp); // + 0000 .. 7FFF -> 0000 0000 .. 0000 7FFF
// - 8000 .. FFFF -> FFFF 8000 .. FFFF FFFF
}
return 0;
}
#define EOF_INT 0x1000000
int read_signed_sample(FILE *fp) { // int = i32_t
int byte, i, ret; // EOF -> 0x1000000
for (i = 0; i < channels; i++) {
// i = 0: links bzw. mono
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) ret = byte;
if (bits_sample == 16) {
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) ret += byte << 8;
}
}
if (bits_sample == 8) return ret-128;
if (bits_sample == 16) return (short)ret;
return ret;
}
int par=1, // init_sample > 0
par_alt=1;
unsigned long sample_count = 0;
int read_afsk_bits(FILE *fp, int *len) {
int n, sample;
float l;
n = 0;
do{ // High // par>0
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
if (option_inv) sample = -sample;
sample_count++;
par_alt = par;
par = (sample >= 0) ? 1 : -1;
n++;
} while (par*par_alt > 0);
do{ // Low // par<0
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
if (option_inv) sample = -sample;
sample_count++;
par_alt = par;
par = (sample >= 0) ? 1 : -1;
n++;
} while (par*par_alt > 0); // par>0
l = (float)n / (samples_per_bit/2.0);
*len = (int)(l+0.5); // round(l)
return 0;
}
int read_afsk_bits1(FILE *fp, int *len) {
int n; static int sample;
float l;
while (sample >= 0) {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
if (option_inv) sample = -sample;
sample_count++;
}
n = 0;
while (sample < 0) {
n++;
par_alt = par;
par = (sample >= 0) ? 1 : -1;
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
if (option_inv) sample = -sample;
sample_count++;
}
while (sample >= 0) {
n++;
par_alt = par;
par = (sample >= 0) ? 1 : -1;
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
if (option_inv) sample = -sample;
sample_count++;
}
l = (float)n / (samples_per_bit/2.0);
*len = (int)(l+0.5); // round(l)
return 0;
}
/* -------------------------------------------------------------------------- */
/*
Beginn/Header:
69 69 69 69 69 10
Ende:
96 96 96 96 96 96 96 96 96
*/
#define pos_Start 0x05 // 2 byte
#define pos_RecordNo 0x08 // 2 byte
#define pos_SondeID1 0x12 // 5 byte
#define pos_SondeID2 0x2C // 5 byte
#define pos_GPSTOW 0x8A // 4 byte
#define pos_GPSlat 0x8E // 4 byte
#define pos_GPSlon 0x92 // 4 byte
#define pos_GPSalt 0x96 // 4 byte
//Velocity East-North-Up (ENU)
#define pos_GPSvO 0x84 // 2 byte
#define pos_GPSvN 0x86 // 2 byte
#define pos_GPSvV 0x88 // 2 byte
#define pos_xcSum 0xC2 // 1 byte: xsumDLE(frame+pos_Start, 189)
// 189 = pos_xcSum-pos_Start
#define FRAMELEN 204
ui8_t frame[FRAMELEN+6];
double B60B60 = 0xB60B60; // 2^32/360 = 0xB60B60.xxx
char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
typedef struct {
int cnt;
int tow;
} gpstow_t;
gpstow_t tow0, tow1;
int gpsTOW(int gpstime) {
int day;
tow0 = tow1;
tow1.tow = gpstime;
tow1.cnt = gpx.frnr;
if (!option_gps) {
if (tow1.cnt-tow0.cnt == 1) {
if (tow1.tow-tow0.tow > 998 && tow1.tow-tow0.tow < 1002) option_gps = 2;
if (tow1.tow-tow0.tow > 0 && tow1.tow-tow0.tow < 2 ) option_gps = 1;
}
}
gpx.gpssec = gpstime;
if (option_gps == 2) {
gpx.ms = gpstime % 1000;
gpx.gpssec /= 1000.0;
gpstime /= 1000;
}
if (gpx.gpssec<0 || gpx.gpssec>7*24*60*60) return 1; // 1 Woche = 604800 sek
day = gpstime / (24 * 3600);
gpstime %= (24*3600);
if ((day < 0) || (day > 6)) {
//gpx.wday = 0;
return 1;
}
gpx.wday = day;
gpx.std = gpstime / 3600;
gpx.min = (gpstime % 3600) / 60;
gpx.sek = gpstime % 60;
return 0;
}
int gpsLat(int lat) {
gpx.lat = lat / B60B60;
if (gpx.lat < -90 || gpx.lat > 90) return 1;
return 0;
}
int gpsLon(int lon) {
gpx.lon = lon / B60B60;
if (gpx.lon < -180 || gpx.lon > 180) return 1;
return 0;
}
int gpsAlt(int alt) {
gpx.alt = alt / 1000.0;
if (gpx.alt < -200 || gpx.alt > 50000) return 1;
return 0;
}
int get_GPStow() {
int i, tow;
int err = 0;
tow = 0;
for (i = 0; i < 4; i++) {
tow |= frame[pos_GPSTOW+i] << (8*i);
}
err = gpsTOW(tow);
return err;
}
int get_GPSpos() {
int i, lat, lon, alt;
int err = 0;
lat = lon = alt = 0;
for (i = 0; i < 4; i++) {
lat |= frame[pos_GPSlat+i] << (8*i);
lon |= frame[pos_GPSlon+i] << (8*i);
alt |= frame[pos_GPSalt+i] << (8*i);
}
err = 0;
err |= gpsLat(lat) << 1;
err |= gpsLon(lon) << 2;
err |= gpsAlt(alt) << 3;
return err;
}
int get_GPSvel() {
int i;
unsigned byte;
ui8_t gpsVel_bytes[2];
short vel16;
double vx, vy, dir, alpha;
const double ms2kn100 = 2e2; // m/s -> knots: 1 m/s = 3.6/1.852 kn = 1.94 kn
for (i = 0; i < 2; i++) {
byte = frame[pos_GPSvO + i];
if (byte > 0xFF) return -1;
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8;
vx = vel16 / ms2kn100; // ost
for (i = 0; i < 2; i++) {
byte = frame[pos_GPSvN + i];
if (byte > 0xFF) return -1;
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8;
vy= vel16 / ms2kn100; // nord
gpx.vx = vx;
gpx.vy = vy;
gpx.vH = sqrt(vx*vx+vy*vy);
///*
alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
gpx.vD2 = dir;
//*/
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx.vD = dir;
for (i = 0; i < 2; i++) {
byte = frame[pos_GPSvV + i];
if (byte > 0xFF) return -1;
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8;
gpx.vV = vel16 / ms2kn100;
return 0;
}
int get_RecordNo() {
int i;
unsigned byte;
ui8_t frnr_bytes[2];
int frnr;
for (i = 0; i < 2; i++) {
byte = frame[pos_RecordNo + i];
frnr_bytes[i] = byte;
}
frnr = frnr_bytes[0] + (frnr_bytes[1] << 8);
gpx.frnr = frnr;
return 0;
}
int get_SondeID() {
int i;
unsigned byte;
ui8_t sondeid_bytes[8]; // 5 bis 6 ascii + '\0'
int IDlen = 6+1; // < 9
int err = 0;
for (i = 0; i < IDlen; i++) {
byte = frame[pos_SondeID1 + i];
if (byte == 0) IDlen = i+1;
else
if (byte < 0x20 || byte > 0x7E) err |= 0x1;
sondeid_bytes[i] = byte;
}
for (i = 0; i < IDlen; i++) {
gpx.id1[i] = sondeid_bytes[i];
}
IDlen = 6+1;
for (i = 0; i < IDlen; i++) {
byte = frame[pos_SondeID2 + i];
if (byte == 0) IDlen = i+1;
else
if (byte < 0x20 || byte > 0x7E) err |= 0x2;
sondeid_bytes[i] = byte;
}
for (i = 0; i < IDlen; i++) {
gpx.id2[i] = sondeid_bytes[i];
}
return err;
}
/* -------------------------------------------------------------------------- */
// Frame: <DLE><id><data_bytes><DLE><ETX>,
// <DLE>=0x10, <ETX>=0x03; <id>=0xb9
// (.. 69) 10 b9 01 .. .. 10 03 cs (96 ..)
// 8bit-xor-checksum:
// xsumDLE(frame+pos_Start, pos_xcSum-pos_Start)
int xsumDLE(ui8_t bytes[], int len) {
int i, xsum = 0;
for (i = 0; i < len; i++) { // TSIP-Protokoll: <DLE>=0x10
// innnerhalb <DLE>, 0x10 doppelt, und 0x10^0x10=0x00
if (bytes[i] != 0x10) xsum ^= bytes[i];
// ausser <DLE> zu Beginn/Ende
}
return xsum & 0xFF;
}
/* -------------------------------------------------------------------------- */
int bits2byte(char *bits) {
int i, d = 1, byte = 0;
for (i = 0; i < 8; i++) {
if (bits[i] == 1) byte += d;
else if (bits[i] == 0) byte += 0;
d <<= 1;
}
return byte & 0xFF;
}
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_RESET "\x1b[0m"
void print_frame(int len) {
FILE *fpo;
int i;
int err1, err2, err3;
if (option_raw) {
for (i = 0; i < len; i++) {
if (option_color) {
if (i >= pos_GPSTOW && i < pos_GPSalt+4) fprintf(stdout, ANSI_COLOR_CYAN);
else fprintf(stdout, ANSI_COLOR_RESET);
}
fprintf(stdout, "%02x ", frame[i]);
}
if (option_verbose) { // pos_xcSum-pos_Start=189
fprintf(stdout, " [%02X # %02X]", frame[pos_xcSum], xsumDLE(frame+pos_Start, pos_xcSum-pos_Start));
}
fprintf(stdout, "\n");
}
else {
fpo = stdout;
get_RecordNo();
err1 = get_SondeID();
err2 = get_GPStow();
err3 = get_GPSpos();
if ( !err1 || !err2 || !err3 ) {
fprintf(fpo, "[%5d] ", gpx.frnr);
if ( err1!=0x3 ) {
fprintf(fpo, "(%s) ", err1&0x1?gpx.id2:gpx.id1);
}
if ( !err2 ) {
fprintf(fpo, "%s ",weekday[gpx.wday]);
fprintf(fpo, "%02d:%02d:%02d", gpx.std, gpx.min, gpx.sek);
if (option_gps == 2) fprintf(fpo, ".%03d", gpx.ms);
fprintf(fpo, " ");
}
if ( !err3 ) {
fprintf(fpo, " lat: %.6f ", gpx.lat);
fprintf(fpo, " lon: %.6f ", gpx.lon);
fprintf(fpo, " alt: %.2f ", gpx.alt);
if (option_verbose) {
err3 = get_GPSvel();
if (!err3) {
if (option_verbose == 2) fprintf(fpo, " (%.1f , %.1f : %.1f°) ", gpx.vx, gpx.vy, gpx.vD2);
fprintf(fpo, " vH: %.1f D: %.1f° vV: %.1f ", gpx.vH, gpx.vD, gpx.vV);
}
}
}
fprintf(fpo, "\n");
}
}
}
int demod_zeroX(FILE *fp) {
int bitl1 = 0,
bitl2 = 0,
bitl4 = 0,
bytepos = 0,
bitpos = 0,
head = 0,
inout = 0,
byteval = 0;
int i, len;
char bitbuf[8];
while (!read_afsk_bits(fp, &len)) {
if (len == 0) continue;
if (len == 1) {
bitl1++;
if (bitl1 < 2) continue;
}
if (len == 2) bitl2++;
if (len == 4) {
bitl4++;
inout = 1;
bitl1 = 0;
bitl2 = 0;
}
if (len == 3) {
if (bitl1 == 1 && bitpos < 7) {
bitl1 = 0; bitbuf[bitpos++] = 1;
bitl2++;
len = 2;
}
}
if (len > 0 && len < 3) {
bitl4 = 0;
inout = 0;
if (head > 0) {
head = 0;
if (bytepos > pos_GPSalt+4) print_frame(FRAMELEN);
bitpos = 0;
bytepos = 0;
for (i=0; i<FRAMELEN; i++) frame[i] = 0;
}
}
if (bitl1 == 2) { bitl1 = 0; bitbuf[bitpos++] = 1; }
if (bitl2 == 1) { bitl2 = 0; bitbuf[bitpos++] = 0; }
if (bitpos > 7 || inout) {
if (bitpos > 2) {
if (bytepos < FRAMELEN) {
byteval = bits2byte(bitbuf);
if (byteval == 0x10 && frame[bytepos-1] == 0x10) frame[bytepos-1] = 0x10;
else { // woher die doppelte 0x10?
frame[bytepos] = byteval & 0xFF; // koennte vom TSIP-Protokoll kommen:
bytepos++; // <DLE><id><data_bytes><DLE><ETX>,
} // wobei <DLE>=0x10, <ETX>=0x03.
} // wenn 0x10 in data, dann doppelt.
}
bitpos = 0;
}
if (bitl4 > 2) { head = 1; }
}
return 0;
}
/*
* noncoherent demod/correlation
*
N = sample_rate/2400
f0 = 1/N
f1 = 2/N = 2*f0
unbekannte Phase phi des Signals A_k * cos(2*PI*f_k * t + phi)
correlator exp(i * 2*PI*f_j * t)
sum_{t=0}^{N-1} A_k * cos(2*PI*f_k * t + phi) * exp(i * 2*PI*f_j * t)
= A_k*N/2 * exp(-i*phi) , falls j=k
(sonst 0, wenn f_j-f_k=m/N, m=+-1,+-2,...)
insbesondere bei WFM sind Amplituden A_f0, A_f1 unterschiedlich
-> gainBit0, gainBit1, gainBit_ anpassen
*/
// 1200 Hz
#define COSf_(i) cosf[ i % (2*N)]
#define SINf_(i) cosf[( i +2*N-N/2) % (2*N)]
// 2400 Hz
#define COSf0(i) cosf[(2*i) % (2*N)]
#define SINf0(i) cosf[(2*i + 2*N-N/2) %( 2*N)]
// 4800 Hz
#define COSf1(i) cosf[(4*i) % (2*N)]
#define SINf1(i) cosf[(4*i + 2*N-N/2) % (2*N)]
#define CH_OUT 5
int demod_cpafsk(FILE *fp, double gainOut) {
FILE *fout = NULL;
int i, N;
unsigned int sample, frame_sync, sync, framesample, bitsample;
unsigned char chIn = 0, chOut = 0;
double out[CH_OUT];
double dc_ofs = 0.0; //0.001;
double s, si,
*bufs = NULL,
*buf0 = NULL,
*buf1 = NULL;
char sbit, *bufsbit = NULL;
double *cosf = NULL;
double gainBit0 = 0.5625, // 0.65,
gainBit1 = 1.0625, // 0.80,
gainBit_ = 1.00;
double sum1, sum2,
bit0, bit1, bit_;
double delay_s, delay_0, delay_1, delay__;
char bitbuf[8];
int bytepos = 0,
bitpos = 0,
byteval = 0,
mbit = 0;
bytepos = FRAMELEN+1;
frame_sync = 0;
sync = 0;
fout = NULL;
#ifdef MULTI
fout = stdout;
#endif
if (sample_rate % 48000) {
fprintf(stderr, "wav: sample_rate not 48k or 96k\n");
return -1;
}
N = sample_rate / BAUD_RATE; // 2400 Hz;
chIn = channels;
chOut = CH_OUT;
if (fout) {
i = read_wavheader(fp, chIn, chOut, fout);
if (i != 0) {
fprintf(stderr, "error: wav header\n");
return -1;
}
}
bufsbit = (char *)calloc( N+1, sizeof(char)); if (bufsbit == NULL) return -1;
bufs = (double *)calloc( 2*(N+1), sizeof(double)); if (bufs == NULL) return -1;
buf0 = (double *)calloc( 2*(N+1), sizeof(double)); if (buf0 == NULL) return -1;
buf1 = (double *)calloc( 2*(N+1), sizeof(double)); if (buf1 == NULL) return -1;
cosf = (double *)calloc( 2*(N+1), sizeof(double)); if (cosf == NULL) return -1;
for (i = 0; i < 2*N; i++) {
cosf[i] = cos(M_PI*i/N);
}
sample = 0;
while (f32read_sample(fp, &s) != EOF) {
s += dc_ofs;
bufs[sample % (2*N)] = s;
sum1 = 0;
sum2 = 0;
for (i = 0; i < N; i++) {
si = bufs[(sample+2*N-i) % (2*N)];
sum1 += si*COSf0(i);
sum2 += si*SINf0(i);
}
bit0 = 4*(sum1*sum1 + sum2*sum2)/(double)(N*N); // A_0*A_0 (betont Flanken)
bit0 *= gainBit0;
sum1 = 0;
sum2 = 0;
for (i = 0; i < N; i++) {
si = bufs[(sample+2*N-i) % (2*N)];
sum1 += si*COSf1(i);
sum2 += si*SINf1(i);
}
bit1 = 4*(sum1*sum1 + sum2*sum2)/(double)(N*N); // A_1*A_1 (betont Flanken)
bit1 *= gainBit1;
sum1 = 0;
sum2 = 0;
for (i = 0; i < 2*N; i++) {
si = bufs[(sample+2*N-i) % (2*N)];
sum1 += si*COSf_(i);
sum2 += si*SINf_(i);
}
bit_ = (sum1*sum1 + sum2*sum2)/(double)(N*N); // A__*A__ (betont Flanken)
bit_ *= gainBit_;
buf0[sample % (2*N)] = bit0;
buf1[sample % (2*N)] = bit1;
delay_s = bufs[(sample+N) % (2*N)]; // sample - N
delay_1 = buf1[(sample+2*N-N/2) % (2*N)]; // sample - N/2
delay_0 = buf0[(sample+2*N-N/2) % (2*N)]; // sample - N/2
delay__ = bit_; // sample
sbit = (delay_1 > delay_0) ? 1 : -1;
if (bit_ > delay_1 && bit_ > delay_0) sbit = 0;
bufsbit[sample % N] = sbit;
if (fout) {
out[0] = delay_s;
out[1] = delay_1 * gainOut;
out[2] = delay_0 * gainOut;
out[3] = delay__ * gainOut;
out[4] = sbit * 0.4;
f32write_mults(fout, out, chOut);
}
else {
if (sbit != 0 && sync > 4*N) { // TODO: accurate frame-sync
frame_sync = 1;
}
if (sbit == 0) sync += 1;
else sync = 0;
if (frame_sync) {
bytepos = 0;
bitpos = 0;
framesample = 0;
bitsample = 0;
frame_sync = 0;
}
if (bytepos < FRAMELEN) {
bitsample = framesample % N;
if (bitsample == N-1) {
if (bitpos < 8) {
mbit = 0;
for (i = -N/4; i < N/4; i++) {
mbit += bufsbit[(sample + N/2 + i) % N];
}
bitbuf[bitpos] = (mbit > 0) ? 1 : 0;
bitpos++;
}
if (bitpos == 8) {
byteval = bits2byte(bitbuf);
if (byteval == 0x10 && frame[bytepos-1] == 0x10) frame[bytepos-1] = 0x10;
else { // woher die doppelte 0x10?
frame[bytepos] = byteval & 0xFF; // koennte vom TSIP-Protokoll kommen:
bytepos++; // <DLE><id><data_bytes><DLE><ETX>,
} // wobei <DLE>=0x10, <ETX>=0x03.
bitpos++; // wenn 0x10 in data, dann doppelt.
}
//
// TODO: optional byte-sync
}
framesample++;
if (framesample % (10*N) == 0) bitpos = 0;
}
if (bytepos == FRAMELEN) {
print_frame(FRAMELEN);
bitpos = 0;
bytepos++;
for (i=0; i<FRAMELEN; i++) frame[i] = 0;
}
}
sample++;
}
if (cosf) { free(cosf); cosf = NULL; }
if (bufs) { free(bufs); bufs = NULL; }
if (buf0) { free(buf0); buf0 = NULL; }
if (buf1) { free(buf1); buf1 = NULL; }
if (bufsbit) { free(bufsbit); bufsbit = NULL; }
return 0;
}
int main(int argc, char **argv) {
FILE *fp = NULL;
char *fpname = NULL;
double gainOut = 1.0;
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -i, --invert\n");
fprintf(stderr, " -b\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -1 (v1: TOW/s)\n");
fprintf(stderr, " -2 (v2: TOW/ms)\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if (strcmp(*argv, "-vv") == 0) { option_verbose = 2; }
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--color") == 0) ) {
option_color = 1;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1;
}
else if ( (strcmp(*argv, "-1") == 0) ) { option_gps = 1; } // Trimble
else if ( (strcmp(*argv, "-2") == 0) ) { option_gps = 2; } // ublox
else if (strcmp(*argv, "-b") == 0) { option_b = 1; }
else if ( (strcmp(*argv, "-g") == 0) ) {
++argv;
if (*argv) {
gainOut = atof(*argv);
if (gainOut <= 0) gainOut = 1.0;
}
else return -1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
if ( read_wav_header(fp) != 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
if (!option_b) {
demod_zeroX(fp);
}
else {
demod_cpafsk(fp, gainOut);
}
fclose(fp);
return 0;
}