kopia lustrzana https://github.com/projecthorus/radiosonde_auto_rx
235 wiersze
8.4 KiB
Python
235 wiersze
8.4 KiB
Python
#!/usr/bin/env python
|
|
#
|
|
# Radiosonde Log Plotter
|
|
#
|
|
# Copyright (C) 2019 Mark Jessop <vk5qi@rfhead.net>
|
|
# Released under GNU GPL v3 or later
|
|
#
|
|
# Note: This script is very much a first pass, and doesn't have any error checking of data.
|
|
#
|
|
# Usage: plot_sonde_log.py [-h] [--metric] [--alt-limit ALT_LIMIT]
|
|
# [--temp-limit TEMP_LIMIT] [--decimation DECIMATION]
|
|
# filename
|
|
#
|
|
# positional arguments:
|
|
# filename Log File name.
|
|
#
|
|
# optional arguments:
|
|
# -h, --help show this help message and exit
|
|
# --metric Use metric altitudes. (Default is to use Feet)
|
|
# --alt-limit ALT_LIMIT
|
|
# Limit plot to supplied altitude (feet or metres,
|
|
# depending on user selection)
|
|
# --temp-limit TEMP_LIMIT
|
|
# Limit plot to a lower temperature in degrees. (Default
|
|
# is no limit, plot will autoscale)
|
|
# --decimation DECIMATION
|
|
# Decimate input data by X times. (Default = 10)
|
|
#
|
|
|
|
import argparse
|
|
import os.path
|
|
import sys
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from dateutil.parser import parse
|
|
from math import radians, degrees, sin, cos, atan2, sqrt, pi
|
|
|
|
|
|
# Earthmaths code by Daniel Richman (thanks!)
|
|
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
|
|
def position_info(listener, balloon):
|
|
"""
|
|
Calculate and return information from 2 (lat, lon, alt) tuples
|
|
|
|
Returns a dict with:
|
|
|
|
- angle at centre
|
|
- great circle distance
|
|
- distance in a straight line
|
|
- bearing (azimuth or initial course)
|
|
- elevation (altitude)
|
|
|
|
Input and output latitudes, longitudes, angles, bearings and elevations are
|
|
in degrees, and input altitudes and output distances are in meters.
|
|
"""
|
|
|
|
# Earth:
|
|
radius = 6371000.0
|
|
|
|
(lat1, lon1, alt1) = listener
|
|
(lat2, lon2, alt2) = balloon
|
|
|
|
lat1 = radians(lat1)
|
|
lat2 = radians(lat2)
|
|
lon1 = radians(lon1)
|
|
lon2 = radians(lon2)
|
|
|
|
# Calculate the bearing, the angle at the centre, and the great circle
|
|
# distance using Vincenty's_formulae with f = 0 (a sphere). See
|
|
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
|
|
# http://en.wikipedia.org/wiki/Great-circle_navigation and
|
|
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
|
|
d_lon = lon2 - lon1
|
|
sa = cos(lat2) * sin(d_lon)
|
|
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
|
|
bearing = atan2(sa, sb)
|
|
aa = sqrt((sa ** 2) + (sb ** 2))
|
|
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
|
|
angle_at_centre = atan2(aa, ab)
|
|
great_circle_distance = angle_at_centre * radius
|
|
|
|
# Armed with the angle at the centre, calculating the remaining items
|
|
# is a simple 2D triangley circley problem:
|
|
|
|
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
|
|
# straight line. The angle between (r + alt1) and (r + alt2) is the
|
|
# angle at the centre. The angle between distance in a straight line and
|
|
# (r + alt1) is the elevation plus pi/2.
|
|
|
|
# Use sum of angle in a triangle to express the third angle in terms
|
|
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
|
|
# expand with compound angle formulae and solve for tan elevation by
|
|
# dividing both sides by cos elevation
|
|
ta = radius + alt1
|
|
tb = radius + alt2
|
|
ea = (cos(angle_at_centre) * tb) - ta
|
|
eb = sin(angle_at_centre) * tb
|
|
elevation = atan2(ea, eb)
|
|
|
|
# Use cosine rule to find unknown side.
|
|
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
|
|
|
|
# Give a bearing in range 0 <= b < 2pi
|
|
if bearing < 0:
|
|
bearing += 2 * pi
|
|
|
|
return {
|
|
"listener": listener, "balloon": balloon,
|
|
"listener_radians": (lat1, lon1, alt1),
|
|
"balloon_radians": (lat2, lon2, alt2),
|
|
"angle_at_centre": degrees(angle_at_centre),
|
|
"angle_at_centre_radians": angle_at_centre,
|
|
"bearing": degrees(bearing),
|
|
"bearing_radians": bearing,
|
|
"great_circle_distance": great_circle_distance,
|
|
"straight_distance": distance,
|
|
"elevation": degrees(elevation),
|
|
"elevation_radians": elevation
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Data format:
|
|
# 2019-04-17T00:40:40.000Z,P4740856,7611,-35.38981,139.47062,12908.1,-67.9,25.0,RS41,402.500,SATS 9,BATT -1.0
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("filename", type=str, help="Log File name.")
|
|
parser.add_argument("--metric", action="store_true", default=False, help="Use metric altitudes. (Default is to use Feet)")
|
|
parser.add_argument("--alt-limit", default=20000, type=int, help="Limit plot to supplied altitude (feet or metres, depending on user selection)")
|
|
parser.add_argument("--temp-limit", default=None, type=float, help="Limit plot to a lower temperature in degrees. (Default is no limit, plot will autoscale)")
|
|
parser.add_argument("--decimation", default=10, type=int, help="Decimate input data by X times. (Default = 10)")
|
|
args = parser.parse_args()
|
|
|
|
# Load in the file.
|
|
data = np.genfromtxt(args.filename,delimiter=',', dtype=None)
|
|
|
|
decimation = args.decimation
|
|
|
|
# Extract fields.
|
|
times = data['f0']
|
|
latitude = data['f3']
|
|
longitude = data['f4']
|
|
altitude = data['f5']
|
|
temperature = data['f6']
|
|
humidity = data['f7']
|
|
|
|
_output = [] # Altitude, Wind Speed, Wind Direction, Temperature, Dew Point
|
|
# First entry, We assume all the values are unknown for now.
|
|
_output.append([altitude[0], np.NaN, np.NaN, np.NaN, np.NaN])
|
|
|
|
i = decimation
|
|
while i < len(times):
|
|
# Check if we are descending. If so, break.
|
|
if altitude[i] < _output[-1][0]:
|
|
break
|
|
|
|
# If we have valid PTU data, calculate the dew point.
|
|
if temperature[i] != -273:
|
|
T = temperature[i]
|
|
RH = humidity[i]
|
|
DP = 243.04*(np.log(RH/100)+((17.625*T)/(243.04+T)))/(17.625-np.log(RH/100)-((17.625*T)/(243.04+T)))
|
|
else:
|
|
# Otherwise we insert NaNs, so data isn't plotted.
|
|
T = np.NaN
|
|
DP = np.NaN
|
|
|
|
# Calculate time delta between telemetry frames.
|
|
_time = parse(times[i])
|
|
_time_old = parse(times[i-decimation])
|
|
_delta_seconds = (_time - _time_old).total_seconds()
|
|
|
|
# Calculate the movement direction and distance, and then calculate the movement speed.
|
|
_movement = position_info((latitude[i], longitude[i], altitude[i]), (latitude[i-decimation], longitude[i-decimation], altitude[i-decimation]))
|
|
_heading = _movement['bearing']
|
|
_speed = (_movement['great_circle_distance']/_delta_seconds)*1.94384 # Convert to knots
|
|
|
|
|
|
_output.append([altitude[i], _speed, _heading, T, DP])
|
|
|
|
i += decimation
|
|
|
|
# Convert our output data into something we can process easier.
|
|
data_np = np.array(_output)
|
|
|
|
if args.metric:
|
|
_alt = data_np[:,0]
|
|
else:
|
|
_alt = data_np[:,0]*3.28084 # Convert to feet.
|
|
|
|
_speed = data_np[:,1]
|
|
_direction = data_np[:,2]/10.0
|
|
_temp = data_np[:,3]
|
|
_dp = data_np[:,4]
|
|
|
|
# Produce a boolean array to limit the plotted data.
|
|
_data_limit = _alt < args.alt_limit
|
|
|
|
# Plot the data...
|
|
plt.figure()
|
|
plt.plot(_speed[_data_limit], _alt[_data_limit], label='Speed (kt)', color='g')
|
|
plt.plot(_direction[_data_limit], _alt[_data_limit], label='Direction (deg/10)', color='m')
|
|
plt.plot(_temp[_data_limit], _alt[_data_limit], label='Temp (deg C)', color='b')
|
|
plt.plot(_dp[_data_limit], _alt[_data_limit], label='DP (deg C)', color='r')
|
|
|
|
if args.metric:
|
|
plt.ylabel("Altitude (metres)")
|
|
else:
|
|
plt.ylabel("Altitude (feet)")
|
|
|
|
# Determine and set plot axis limits
|
|
_axes = plt.gca()
|
|
# Y limit is either a default value, or a user specified altitude.
|
|
_axes.set_ylim(top=args.alt_limit, bottom=0)
|
|
|
|
# X limits are based on a combination of data.
|
|
# The upper limit is based on the maximum speed within our altitude window
|
|
if args.temp_limit == None:
|
|
_temp_in_range= _temp[_data_limit]
|
|
_dp_in_range= _dp[_data_limit]
|
|
_min_temp = np.min(_temp_in_range[~np.isnan(_temp_in_range)])
|
|
_min_dp = np.min(_dp_in_range[~np.isnan(_dp_in_range)])
|
|
_axes.set_xlim(left=min(_min_temp, _min_dp))
|
|
else:
|
|
_axes.set_xlim(left=args.temp_limit)
|
|
|
|
plt.title("Sounding File: %s" % os.path.basename(args.filename))
|
|
plt.grid(which='both')
|
|
plt.legend(loc='upper right')
|
|
plt.show()
|
|
|
|
|
|
|
|
|