radiosonde_auto_rx/demod/rs41dm.c

1246 wiersze
34 KiB
C

/*
* rs41
* sync header: correlation/matched filter
* files: rs41dm.c bch_ecc.c demod.h demod.c
* compile:
* gcc -c demod.c
* gcc rs41dm.c demod.o -lm -o rs41dm
*
* author: zilog80
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef short i16_t;
typedef int i32_t;
//#include "demod.c"
#include "demod.h"
#include "bch_ecc.c" // RS/ecc/
typedef struct {
int typ;
int msglen;
int msgpos;
int parpos;
int hdrlen;
int frmlen;
} rscfg_t;
rscfg_t cfg_rs41 = { 41, (320-56)/2, 56, 8, 8, 320};
typedef struct {
int frnr;
char id[9];
int week; int gpssec;
int jahr; int monat; int tag;
int wday;
int std; int min; float sek;
double lat; double lon; double alt;
double vN; double vE; double vU;
double vH; double vD; double vD2;
float T;
ui32_t crc;
} gpx_t;
gpx_t gpx;
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_inv = 0, // invertiert Signal
option_res = 0, // genauere Bitmessung
option_crc = 0, // check CRC
option_ecc = 0, // Reed-Solomon ECC
option_sat = 0, // GPS sat data
option_ptu = 0,
option_ths = 0,
wavloaded = 0;
#define BITS 8
#define HEADLEN 64
#define FRAMESTART ((HEADLEN)/BITS)
/* 10 B6 CA 11 22 96 12 F8 */
char header[] = "0000100001101101010100111000100001000100011010010100100000011111";
#define NDATA_LEN 320 // std framelen 320
#define XDATA_LEN 198
#define FRAME_LEN (NDATA_LEN+XDATA_LEN) // max framelen 518
ui8_t //xframe[FRAME_LEN] = { 0x10, 0xB6, 0xCA, 0x11, 0x22, 0x96, 0x12, 0xF8}, = xorbyte( frame)
frame[FRAME_LEN] = { 0x86, 0x35, 0xf4, 0x40, 0x93, 0xdf, 0x1a, 0x60}; // = xorbyte(xframe)
float byteQ[FRAME_LEN];
#define MASK_LEN 64
ui8_t mask[MASK_LEN] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98,
0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26,
0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1,
0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1,
0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C,
0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61,
0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23,
0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1};
/* LFSR: ab i=8 (mod 64):
* m[16+i] = m[i] ^ m[i+2] ^ m[i+4] ^ m[i+6]
* ________________3205590EF944C6262160C2EA795D6DA15469470CDCE85CF1
* F776827F0799A22C937C3063F5102E61D0BCB4B606AAF423786E3BAEBF7B4CC196833E51B1490898
*/
/* ------------------------------------------------------------------------------------ */
#define BAUD_RATE 4800
/* ------------------------------------------------------------------------------------ */
int bits2byte(char bits[]) {
int i, byteval=0, d=1;
for (i = 0; i < 8; i++) { // little endian
/* for (i = 7; i >= 0; i--) { // big endian */
if (bits[i] == 1) byteval += d;
else if (bits[i] == 0) byteval += 0;
else return 0x100;
d <<= 1;
}
return byteval;
}
/*
ui8_t xorbyte(int pos) {
return xframe[pos] ^ mask[pos % MASK_LEN];
}
*/
ui8_t framebyte(int pos) {
return frame[pos];
}
/* ------------------------------------------------------------------------------------ */
/*
* Convert GPS Week and Seconds to Modified Julian Day.
* - Adapted from sci.astro FAQ.
* - Ignores UTC leap seconds.
*/
void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) {
long GpsDays, Mjd;
long J, C, Y, M;
GpsDays = GpsWeek * 7 + (GpsSeconds / 86400);
Mjd = 44244 + GpsDays;
J = Mjd + 2468570;
C = 4 * J / 146097;
J = J - (146097 * C + 3) / 4;
Y = 4000 * (J + 1) / 1461001;
J = J - 1461 * Y / 4 + 31;
M = 80 * J / 2447;
*Day = J - 2447 * M / 80;
J = M / 11;
*Month = M + 2 - (12 * J);
*Year = 100 * (C - 49) + Y + J;
}
/* ------------------------------------------------------------------------------------ */
ui32_t u4(ui8_t *bytes) { // 32bit unsigned int
ui32_t val = 0;
memcpy(&val, bytes, 4);
return val;
}
ui32_t u3(ui8_t *bytes) { // 24bit unsigned int
int val24 = 0;
val24 = bytes[0] | (bytes[1]<<8) | (bytes[2]<<16);
// = memcpy(&val, bytes, 3), val &= 0x00FFFFFF;
return val24;
}
int i3(ui8_t *bytes) { // 24bit signed int
int val = 0,
val24 = 0;
val = bytes[0] | (bytes[1]<<8) | (bytes[2]<<16);
val24 = val & 0xFFFFFF; if (val24 & 0x800000) val24 = val24 - 0x1000000;
return val24;
}
ui32_t u2(ui8_t *bytes) { // 16bit unsigned int
return bytes[0] | (bytes[1]<<8);
}
/*
double r8(ui8_t *bytes) {
double val = 0;
memcpy(&val, bytes, 8);
return val;
}
float r4(ui8_t *bytes) {
float val = 0;
memcpy(&val, bytes, 4);
return val;
}
*/
/*
int crc16x(int start, int len) {
int crc16poly = 0x1021;
int rem = 0xFFFF, i, j;
int xbyte;
if (start+len+2 > FRAME_LEN) return -1;
for (i = 0; i < len; i++) {
xbyte = xorbyte(start+i);
rem = rem ^ (xbyte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
*/
int crc16(int start, int len) {
int crc16poly = 0x1021;
int rem = 0xFFFF, i, j;
int byte;
if (start+len+2 > FRAME_LEN) return -1;
for (i = 0; i < len; i++) {
byte = framebyte(start+i);
rem = rem ^ (byte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
int check_CRC(ui32_t pos, ui32_t pck) {
ui32_t crclen = 0,
crcdat = 0;
if (((pck>>8) & 0xFF) != frame[pos]) return -1;
crclen = frame[pos+1];
if (pos + crclen + 4 > FRAME_LEN) return -1;
crcdat = u2(frame+pos+2+crclen);
if ( crcdat != crc16(pos+2, crclen) ) {
return 1; // CRC NO
}
else return 0; // CRC OK
}
/*
Pos: SubHeader, 1+1 byte (ID+LEN)
0x039: 7928 FrameNumber+SondeID
+(0x050: 0732 CalFrames 0x00..0x32)
0x065: 7A2A PTU
0x093: 7C1E GPS1: RXM-RAW (0x02 0x10) Week, TOW, Sats
0x0B5: 7D59 GPS2: RXM-RAW (0x02 0x10) pseudorange, doppler
0x112: 7B15 GPS3: NAV-SOL (0x01 0x06) ECEF-POS, ECEF-VEL
0x12B: 7611 00
0x12B: 7Exx AUX-xdata
*/
#define crc_FRAME (1<<0)
#define xor_FRAME 0x1713 // ^0x6E3B=0x7928
#define pck_FRAME 0x7928
#define pos_FRAME 0x039
#define pos_FrameNb 0x03B // 2 byte
#define pos_SondeID 0x03D // 8 byte
#define pos_CalData 0x052 // 1 byte, counter 0x00..0x32
#define pos_Calfreq 0x055 // 2 byte, calfr 0x00
#define pos_Calburst 0x05E // 1 byte, calfr 0x02
// ? #define pos_Caltimer 0x05A // 2 byte, calfr 0x02 ?
#define pos_CalRSTyp 0x05B // 8 byte, calfr 0x21 (+2 byte in 0x22?)
// weitere chars in calfr 0x22/0x23; weitere ID
#define crc_PTU (1<<1)
#define xor_PTU 0xE388 // ^0x99A2=0x0x7A2A
#define pck_PTU 0x7A2A // PTU
#define pos_PTU 0x065
#define crc_GPS1 (1<<2)
#define xor_GPS1 0x9667 // ^0xEA79=0x7C1E
#define pck_GPS1 0x7C1E // RXM-RAW (0x02 0x10)
#define pos_GPS1 0x093
#define pos_GPSweek 0x095 // 2 byte
#define pos_GPSiTOW 0x097 // 4 byte
#define pos_satsN 0x09B // 12x2 byte (1: SV, 1: quality,strength)
#define crc_GPS2 (1<<3)
#define xor_GPS2 0xD7AD // ^0xAAF4=0x7D59
#define pck_GPS2 0x7D59 // RXM-RAW (0x02 0x10)
#define pos_GPS2 0x0B5
#define pos_minPR 0x0B7 // 4 byte
#define pos_FF 0x0BB // 1 byte
#define pos_dataSats 0x0BC // 12x(4+3) byte (4: pseudorange, 3: doppler)
#define crc_GPS3 (1<<4)
#define xor_GPS3 0xB9FF // ^0xC2EA=0x7B15
#define pck_GPS3 0x7B15 // NAV-SOL (0x01 0x06)
#define pos_GPS3 0x112
#define pos_GPSecefX 0x114 // 4 byte
#define pos_GPSecefY 0x118 // 4 byte
#define pos_GPSecefZ 0x11C // 4 byte
#define pos_GPSecefV 0x120 // 3*2 byte
#define pos_numSats 0x126 // 1 byte
#define pos_sAcc 0x127 // 1 byte
#define pos_pDOP 0x128 // 1 byte
#define crc_AUX (1<<5)
#define pck_AUX 0x7E00 // LEN variable
#define pos_AUX 0x12B
#define crc_ZERO (1<<6) // LEN variable
#define pck_ZERO 0x7600
ui8_t calibytes[51*16];
ui8_t calfrchk[51];
float Rf1, // ref-resistor f1 (750 Ohm)
Rf2, // ref-resistor f2 (1100 Ohm)
co1[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT1[3], // calibration T1
co2[3], // { -243.911 , 0.187654 , 8.2e-06 }
calT2[3]; // calibration T2-Hum
double c = 299.792458e6;
double L1 = 1575.42e6;
int get_SatData() {
int i, n;
int sv;
ui32_t minPR;
int Nfix;
double pDOP, sAcc;
fprintf(stdout, "[%d]\n", u2(frame+pos_FrameNb));
fprintf(stdout, "iTOW: 0x%08X", u4(frame+pos_GPSiTOW));
fprintf(stdout, " week: 0x%04X", u2(frame+pos_GPSweek));
fprintf(stdout, "\n");
minPR = u4(frame+pos_minPR);
fprintf(stdout, "minPR: %d", minPR);
fprintf(stdout, "\n");
for (i = 0; i < 12; i++) {
n = i*7;
sv = frame[pos_satsN+2*i];
if (sv == 0xFF) break;
fprintf(stdout, " SV: %2d # ", sv);
fprintf(stdout, "prMes: %.1f", u4(frame+pos_dataSats+n)/100.0 + minPR);
fprintf(stdout, " ");
fprintf(stdout, "doMes: %.1f", -i3(frame+pos_dataSats+n+4)/100.0*L1/c);
fprintf(stdout, "\n");
}
fprintf(stdout, "ECEF-POS: (%d,%d,%d)\n",
(i32_t)u4(frame+pos_GPSecefX),
(i32_t)u4(frame+pos_GPSecefY),
(i32_t)u4(frame+pos_GPSecefZ));
fprintf(stdout, "ECEF-VEL: (%d,%d,%d)\n",
(i16_t)u2(frame+pos_GPSecefV+0),
(i16_t)u2(frame+pos_GPSecefV+2),
(i16_t)u2(frame+pos_GPSecefV+4));
Nfix = frame[pos_numSats];
sAcc = frame[pos_sAcc]/10.0;
pDOP = frame[pos_pDOP]/10.0;
fprintf(stdout, "numSatsFix: %2d sAcc: %.1f pDOP: %.1f\n", Nfix, sAcc, pDOP);
fprintf(stdout, "CRC: ");
fprintf(stdout, " %04X", pck_GPS1);
if (check_CRC(pos_GPS1, pck_GPS1)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]");
//fprintf(stdout, "[%+d]", check_CRC(pos_GPS1, pck_GPS1));
fprintf(stdout, " %04X", pck_GPS2);
if (check_CRC(pos_GPS2, pck_GPS2)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]");
//fprintf(stdout, "[%+d]", check_CRC(pos_GPS2, pck_GPS2));
fprintf(stdout, " %04X", pck_GPS3);
if (check_CRC(pos_GPS3, pck_GPS3)==0) fprintf(stdout, "[OK]"); else fprintf(stdout, "[NO]");
//fprintf(stdout, "[%+d]", check_CRC(pos_GPS3, pck_GPS3));
fprintf(stdout, "\n");
fprintf(stdout, "\n");
return 0;
}
int get_FrameNb() {
int i;
unsigned byte;
ui8_t frnr_bytes[2];
int frnr;
for (i = 0; i < 2; i++) {
byte = framebyte(pos_FrameNb + i);
frnr_bytes[i] = byte;
}
frnr = frnr_bytes[0] + (frnr_bytes[1] << 8);
gpx.frnr = frnr;
return 0;
}
int get_SondeID(int crc) {
int i;
unsigned byte;
char sondeid_bytes[9];
if (crc == 0) {
for (i = 0; i < 8; i++) {
byte = framebyte(pos_SondeID + i);
//if ((byte < 0x20) || (byte > 0x7E)) return -1;
sondeid_bytes[i] = byte;
}
sondeid_bytes[8] = '\0';
if ( strncmp(gpx.id, sondeid_bytes, 8) != 0 ) {
//for (i = 0; i < 51; i++) calfrchk[i] = 0;
memset(calfrchk, 0, 51);
memcpy(gpx.id, sondeid_bytes, 8);
gpx.id[8] = '\0';
}
}
return 0;
}
int get_FrameConf() {
int crc, err;
ui8_t calfr;
int i;
crc = check_CRC(pos_FRAME, pck_FRAME);
if (crc) gpx.crc |= crc_FRAME;
err = crc;
err |= get_FrameNb();
err |= get_SondeID(crc);
if (crc == 0) {
calfr = framebyte(pos_CalData);
if (calfrchk[calfr] == 0) // const?
{
for (i = 0; i < 16; i++) {
calibytes[calfr*16 + i] = framebyte(pos_CalData+1+i);
}
calfrchk[calfr] = 1;
}
}
return err;
}
int get_CalData() {
memcpy(&Rf1, calibytes+61, 4); // 0x03*0x10+13
memcpy(&Rf2, calibytes+65, 4); // 0x04*0x10+ 1
memcpy(co1+0, calibytes+77, 4); // 0x04*0x10+13
memcpy(co1+1, calibytes+81, 4); // 0x05*0x10+ 1
memcpy(co1+2, calibytes+85, 4); // 0x05*0x10+ 5
memcpy(calT1+0, calibytes+89, 4); // 0x05*0x10+ 9
memcpy(calT1+1, calibytes+93, 4); // 0x05*0x10+13
memcpy(calT1+2, calibytes+97, 4); // 0x06*0x10+ 1
memcpy(co2+0, calibytes+293, 4); // 0x12*0x10+ 5
memcpy(co2+1, calibytes+297, 4); // 0x12*0x10+ 9
memcpy(co2+2, calibytes+301, 4); // 0x12*0x10+13
memcpy(calT2+0, calibytes+305, 4); // 0x13*0x10+ 1
memcpy(calT2+1, calibytes+309, 4); // 0x13*0x10+ 5
memcpy(calT2+2, calibytes+313, 4); // 0x13*0x10+ 9
return 0;
}
float get_Tc0(ui32_t f, ui32_t f1, ui32_t f2) {
// y = (f - f1) / (f2 - f1);
// y1 = (f - f1) / f2; // = (1 - f1/f2)*y
float a = 3.9083e-3, // Pt1000 platinum resistance
b = -5.775e-7,
c = -4.183e-12; // below 0C, else C=0
float *cal = calT1;
float Rb = (f1*Rf2-f2*Rf1)/(f2-f1), // ofs
Ra = f * (Rf2-Rf1)/(f2-f1) - Rb,
raw = Ra/1000.0,
g_r = 0.8024*cal[0] + 0.0176, // empirisch
r_o = 0.0705*cal[1] + 0.0011, // empirisch
r = raw * g_r + r_o,
t = (-a + sqrt(a*a + 4*b*(r-1)))/(2*b); // t>0: c=0
// R/R0 = 1 + at + bt^2 + c(t-100)t^3 , R0 = 1000 Ohm, t/Celsius
return t;
}
float get_Tc(ui32_t f, ui32_t f1, ui32_t f2) {
float *p = co1;
float *c = calT1;
float g = (float)(f2-f1)/(Rf2-Rf1), // gain
Rb = (f1*Rf2-f2*Rf1)/(float)(f2-f1), // ofs
Rc = f/g - Rb,
//R = (Rc + c[1]) * c[0],
//T = p[0] + p[1]*R + p[2]*R*R;
R = Rc * c[0],
T = (p[0] + p[1]*R + p[2]*R*R + c[1])*(1.0 + c[2]);
return T;
}
int get_PTU() {
int err=0, i;
int bR, bc1, bT1,
bc2, bT2;
ui32_t meas[12];
float Tc = -273.15;
float Tc0 = -273.15;
get_CalData();
err = check_CRC(pos_PTU, pck_PTU);
if (err) gpx.crc |= crc_PTU;
if (err == 0)
{
for (i = 0; i < 12; i++) {
meas[i] = u3(frame+pos_PTU+2+3*i);
}
bR = calfrchk[0x03] && calfrchk[0x04];
bc1 = calfrchk[0x04] && calfrchk[0x05];
bT1 = calfrchk[0x05] && calfrchk[0x06];
bc2 = calfrchk[0x12] && calfrchk[0x13];
bT2 = calfrchk[0x13];
if (bR && bc1 && bT1) {
Tc = get_Tc(meas[0], meas[1], meas[2]);
Tc0 = get_Tc0(meas[0], meas[1], meas[2]);
}
gpx.T = Tc;
if (option_verbose == 3)
{
printf(" h: %8.2f # ", gpx.alt); // crc_GPS3 ?
printf("1: %8d %8d %8d", meas[0], meas[1], meas[2]);
printf(" # ");
printf("2: %8d %8d %8d", meas[3], meas[4], meas[5]);
printf(" # ");
printf("3: %8d %8d %8d", meas[6], meas[7], meas[8]);
printf(" # ");
if (Tc > -273.0) {
printf(" T: %8.4f , T0: %8.4f ", Tc, Tc0);
}
printf("\n");
if (gpx.alt > -100.0) {
printf(" %9.2f ; %6.1f ; %6.1f ", gpx.alt, Rf1, Rf2);
printf("; %10.6f ; %10.6f ; %10.6f ;", calT1[0], calT1[1], calT1[2]);
printf(" %8d ; %8d ; %8d ", meas[0], meas[1], meas[2]);
printf("; %10.6f ; %10.6f ; %10.6f ;", calT2[0], calT2[1], calT2[2]);
printf(" %8d ; %8d ; %8d" , meas[6], meas[7], meas[8]);
printf("\n");
}
}
}
return err;
}
int get_GPSweek() {
int i;
unsigned byte;
ui8_t gpsweek_bytes[2];
int gpsweek;
for (i = 0; i < 2; i++) {
byte = framebyte(pos_GPSweek + i);
gpsweek_bytes[i] = byte;
}
gpsweek = gpsweek_bytes[0] + (gpsweek_bytes[1] << 8);
//if (gpsweek < 0) { gpx.week = -1; return -1; } // (short int)
gpx.week = gpsweek;
return 0;
}
char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
int get_GPStime() {
int i;
unsigned byte;
ui8_t gpstime_bytes[4];
int gpstime = 0, // 32bit
day;
int ms;
for (i = 0; i < 4; i++) {
byte = framebyte(pos_GPSiTOW + i);
gpstime_bytes[i] = byte;
}
memcpy(&gpstime, gpstime_bytes, 4);
ms = gpstime % 1000;
gpstime /= 1000;
gpx.gpssec = gpstime;
day = (gpstime / (24 * 3600)) % 7;
//if ((day < 0) || (day > 6)) return -1; // besser CRC-check
gpstime %= (24*3600);
gpx.wday = day;
gpx.std = gpstime / 3600;
gpx.min = (gpstime % 3600) / 60;
gpx.sek = gpstime % 60 + ms/1000.0;
return 0;
}
int get_GPS1() {
int err=0;
// ((framebyte(pos_GPS1)<<8) | framebyte(pos_GPS1+1)) != pck_GPS1 ?
if ( framebyte(pos_GPS1) != ((pck_GPS1>>8) & 0xFF) ) {
gpx.crc |= crc_GPS1;
return -1;
}
err = check_CRC(pos_GPS1, pck_GPS1);
if (err) gpx.crc |= crc_GPS1;
//err = 0;
err |= get_GPSweek();
err |= get_GPStime();
return err;
}
int get_GPS2() {
int err=0;
err = check_CRC(pos_GPS2, pck_GPS2);
if (err) gpx.crc |= crc_GPS2;
return err;
}
#define EARTH_a 6378137.0
#define EARTH_b 6356752.31424518
#define EARTH_a2_b2 (EARTH_a*EARTH_a - EARTH_b*EARTH_b)
double a = EARTH_a,
b = EARTH_b,
a_b = EARTH_a2_b2,
e2 = EARTH_a2_b2 / (EARTH_a*EARTH_a),
ee2 = EARTH_a2_b2 / (EARTH_b*EARTH_b);
void ecef2elli(double X[], double *lat, double *lon, double *alt) {
double phi, lam, R, p, t;
lam = atan2( X[1] , X[0] );
p = sqrt( X[0]*X[0] + X[1]*X[1] );
t = atan2( X[2]*a , p*b );
phi = atan2( X[2] + ee2 * b * sin(t)*sin(t)*sin(t) ,
p - e2 * a * cos(t)*cos(t)*cos(t) );
R = a / sqrt( 1 - e2*sin(phi)*sin(phi) );
*alt = p / cos(phi) - R;
*lat = phi*180/M_PI;
*lon = lam*180/M_PI;
}
int get_GPSkoord() {
int i, k;
unsigned byte;
ui8_t XYZ_bytes[4];
int XYZ; // 32bit
double X[3], lat, lon, alt;
ui8_t gpsVel_bytes[2];
short vel16; // 16bit
double V[3], phi, lam, dir;
for (k = 0; k < 3; k++) {
for (i = 0; i < 4; i++) {
byte = frame[pos_GPSecefX + 4*k + i];
XYZ_bytes[i] = byte;
}
memcpy(&XYZ, XYZ_bytes, 4);
X[k] = XYZ / 100.0;
for (i = 0; i < 2; i++) {
byte = frame[pos_GPSecefV + 2*k + i];
gpsVel_bytes[i] = byte;
}
vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8;
V[k] = vel16 / 100.0;
}
// ECEF-Position
ecef2elli(X, &lat, &lon, &alt);
gpx.lat = lat;
gpx.lon = lon;
gpx.alt = alt;
if ((alt < -1000) || (alt > 80000)) return -3;
// ECEF-Velocities
// ECEF-Vel -> NorthEastUp
phi = lat*M_PI/180.0;
lam = lon*M_PI/180.0;
gpx.vN = -V[0]*sin(phi)*cos(lam) - V[1]*sin(phi)*sin(lam) + V[2]*cos(phi);
gpx.vE = -V[0]*sin(lam) + V[1]*cos(lam);
gpx.vU = V[0]*cos(phi)*cos(lam) + V[1]*cos(phi)*sin(lam) + V[2]*sin(phi);
// NEU -> HorDirVer
gpx.vH = sqrt(gpx.vN*gpx.vN+gpx.vE*gpx.vE);
/*
double alpha;
alpha = atan2(gpx.vN, gpx.vE)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
gpx.vD2 = dir;
*/
dir = atan2(gpx.vE, gpx.vN) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx.vD = dir;
return 0;
}
int get_GPS3() {
int err=0;
// ((framebyte(pos_GPS3)<<8) | framebyte(pos_GPS3+1)) != pck_GPS3 ?
if ( framebyte(pos_GPS3) != ((pck_GPS3>>8) & 0xFF) ) {
gpx.crc |= crc_GPS3;
return -1;
}
err = check_CRC(pos_GPS3, pck_GPS3);
if (err) gpx.crc |= crc_GPS3;
err |= get_GPSkoord();
return err;
}
int get_Aux() {
//
// "Ozone Sounding with Vaisala Radiosonde RS41" user's guide
//
int i, auxlen, auxcrc, count7E, pos7E;
count7E = 0;
pos7E = pos_AUX;
// 7Exx: xdata
while ( pos7E < FRAME_LEN && framebyte(pos7E) == 0x7E ) {
auxlen = framebyte(pos7E+1);
auxcrc = framebyte(pos7E+2+auxlen) | (framebyte(pos7E+2+auxlen+1)<<8);
if (count7E == 0) fprintf(stdout, "\n # xdata = ");
else fprintf(stdout, " # ");
if ( auxcrc == crc16(pos7E+2, auxlen) ) {
//fprintf(stdout, " # %02x : ", framebyte(pos7E+2));
for (i = 1; i < auxlen; i++) {
fprintf(stdout, "%c", framebyte(pos7E+2+i));
}
count7E++;
pos7E += 2+auxlen+2;
}
else {
pos7E = FRAME_LEN;
gpx.crc |= crc_AUX;
}
}
i = check_CRC(pos7E, 0x7600); // 0x76xx: 00-padding block
if (i) gpx.crc |= crc_ZERO;
return count7E;
}
int get_Calconf(int out) {
int i;
unsigned byte;
ui8_t calfr = 0;
ui8_t burst = 0;
ui16_t fw = 0;
int freq = 0, f0 = 0, f1 = 0;
char sondetyp[9];
byte = framebyte(pos_CalData);
calfr = byte;
if (option_verbose == 3) {
fprintf(stdout, "\n"); // fflush(stdout);
fprintf(stdout, "[%5d] ", gpx.frnr);
fprintf(stdout, " 0x%02x: ", calfr);
for (i = 0; i < 16; i++) {
byte = framebyte(pos_CalData+1+i);
fprintf(stdout, "%02x ", byte);
}
if (check_CRC(pos_FRAME, pck_FRAME)==0) fprintf(stdout, "[OK]");
else fprintf(stdout, "[NO]");
fprintf(stdout, " ");
}
if (out)
{
if (calfr == 0x01 && option_verbose /*== 2*/) {
fw = framebyte(pos_CalData+6) | (framebyte(pos_CalData+7)<<8);
fprintf(stdout, ": fw 0x%04x ", fw);
}
if (calfr == 0x02 && option_verbose /*== 2*/) {
byte = framebyte(pos_Calburst);
burst = byte; // fw >= 0x4ef5, BK irrelevant? (killtimer in 0x31?)
fprintf(stdout, ": BK %02X ", burst);
}
if (calfr == 0x00 && option_verbose) {
byte = framebyte(pos_Calfreq) & 0xC0; // erstmal nur oberste beiden bits
f0 = (byte * 10) / 64; // 0x80 -> 1/2, 0x40 -> 1/4 ; dann mal 40
byte = framebyte(pos_Calfreq+1);
f1 = 40 * byte;
freq = 400000 + f1+f0; // kHz;
fprintf(stdout, ": fq %d ", freq);
}
if (calfr == 0x21 && option_verbose /*== 2*/) { // eventuell noch zwei bytes in 0x22
for (i = 0; i < 9; i++) sondetyp[i] = 0;
for (i = 0; i < 8; i++) {
byte = framebyte(pos_CalRSTyp + i);
if ((byte >= 0x20) && (byte < 0x7F)) sondetyp[i] = byte;
else if (byte == 0x00) sondetyp[i] = '\0';
}
fprintf(stdout, ": %s ", sondetyp);
}
}
return 0;
}
/* ------------------------------------------------------------------------------------ */
/*
(uses fec-lib by KA9Q)
ka9q-fec:
gcc -c init_rs_char.c
gcc -c decode_rs_char.c
#include "fec.h" // ka9q-fec
void *rs;
unsigned char codeword1[rs_N], codeword2[rs_N];
rs = init_rs_char( 8, 0x11d, 0, 1, rs_R, 0);
// ka9q-fec301: p(x) = p[0]x^(N-1) + ... + p[N-2]x + p[N-1]
// -> cw[i] = codeword[RS.N-1-i]
*/
#define rs_N 255
#define rs_R 24
#define rs_K (rs_N-rs_R)
ui8_t cw1[rs_N], cw2[rs_N];
int rs41_ecc(int frmlen) {
// richtige framelen wichtig fuer 0-padding
int i, leak, ret = 0;
int errors1, errors2;
ui8_t err_pos1[rs_R], err_pos2[rs_R],
err_val1[rs_R], err_val2[rs_R];
if (frmlen > FRAME_LEN) frmlen = FRAME_LEN;
cfg_rs41.frmlen = frmlen;
cfg_rs41.msglen = (frmlen-56)/2; // msgpos=56;
leak = frmlen % 2;
for (i = frmlen; i < FRAME_LEN; i++) frame[i] = 0; // FRAME_LEN-HDR = 510 = 2*255
for (i = 0; i < rs_R; i++) cw1[i] = frame[cfg_rs41.parpos+i ];
for (i = 0; i < rs_R; i++) cw2[i] = frame[cfg_rs41.parpos+i+rs_R];
for (i = 0; i < rs_K; i++) cw1[rs_R+i] = frame[cfg_rs41.msgpos+2*i ];
for (i = 0; i < rs_K; i++) cw2[rs_R+i] = frame[cfg_rs41.msgpos+2*i+1];
errors1 = rs_decode(cw1, err_pos1, err_val1);
errors2 = rs_decode(cw2, err_pos2, err_val2);
// Wenn Fehler im 00-padding korrigiert wurden,
// war entweder der frame zu kurz, oder
// Fehler wurden falsch korrigiert;
// allerdings ist bei t=12 die Wahrscheinlichkeit,
// dass falsch korrigiert wurde mit 1/t! sehr gering.
// check CRC32
// CRC32 OK:
//for (i = 0; i < cfg_rs41.hdrlen; i++) frame[i] = data[i];
for (i = 0; i < rs_R; i++) {
frame[cfg_rs41.parpos+ i] = cw1[i];
frame[cfg_rs41.parpos+rs_R+i] = cw2[i];
}
for (i = 0; i < rs_K; i++) { // cfg_rs41.msglen <= rs_K
frame[cfg_rs41.msgpos+ 2*i] = cw1[rs_R+i];
frame[cfg_rs41.msgpos+1+2*i] = cw2[rs_R+i];
}
if (leak) {
frame[cfg_rs41.msgpos+2*i] = cw1[rs_R+i];
}
ret = errors1 + errors2;
if (errors1 < 0 || errors2 < 0) ret = -1;
return ret;
}
/* ------------------------------------------------------------------------------------ */
int print_position() {
int i;
int err, err0, err1, err2, err3;
int output, out_mask;
err = get_FrameConf();
err1 = get_GPS1();
err2 = get_GPS2();
err3 = get_GPS3();
err0 = get_PTU();
out_mask = crc_FRAME|crc_GPS1|crc_GPS3;
output = ((gpx.crc & out_mask) != out_mask); // (!err || !err1 || !err3);
if (output) {
if (!err) {
fprintf(stdout, "[%5d] ", gpx.frnr);
fprintf(stdout, "(%s) ", gpx.id);
}
if (!err1) {
Gps2Date(gpx.week, gpx.gpssec, &gpx.jahr, &gpx.monat, &gpx.tag);
fprintf(stdout, "%s ", weekday[gpx.wday]);
fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%06.3f",
gpx.jahr, gpx.monat, gpx.tag, gpx.std, gpx.min, gpx.sek);
if (option_verbose == 3) fprintf(stdout, " (W %d)", gpx.week);
}
if (!err3) {
fprintf(stdout, " ");
fprintf(stdout, " lat: %.5f ", gpx.lat);
fprintf(stdout, " lon: %.5f ", gpx.lon);
fprintf(stdout, " alt: %.2f ", gpx.alt);
//if (option_verbose)
{
//fprintf(stdout, " (%.1f %.1f %.1f) ", gpx.vN, gpx.vE, gpx.vU);
fprintf(stdout," vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU);
}
}
if (option_ptu && !err0) {
if (gpx.T > -273.0) printf(" T=%.1fC ", gpx.T);
}
if (output)
{
if (option_crc) {
fprintf(stdout, " # [");
for (i=0; i<5; i++) fprintf(stdout, "%d", (gpx.crc>>i)&1);
fprintf(stdout, "]");
}
}
get_Calconf(output);
//if (output)
{
if (option_verbose > 1) get_Aux();
fprintf(stdout, "\n"); // fflush(stdout);
}
}
err |= err1 | err3;
return err;
}
void print_frame(int len) {
int i, ret = 0;
gpx.crc = 0;
for (i = len; i < FRAME_LEN; i++) {
//xframe[i] = 0;
frame[i] = 0;
}
if (option_ecc) {
ret = rs41_ecc(len);
}
if (option_raw) {
for (i = 0; i < len; i++) {
fprintf(stdout, "%02x", frame[i]);
}
if (option_ecc) {
if (ret >= 0) fprintf(stdout, " [OK]"); else fprintf(stdout, " [NO]");
if (option_ecc == 2 && ret > 0) fprintf(stdout, " (%d)", ret);
}
fprintf(stdout, "\n");
}
else if (option_sat) {
get_SatData();
}
else {
print_position();
}
}
int main(int argc, char *argv[]) {
FILE *fp;
char *fpname = NULL;
float spb = 0.0;
char bitbuf[8];
int bit_count = 0,
bitpos = 0,
byte_count = FRAMESTART,
header_found = 0;
int bit, byte;
int frmlen = FRAME_LEN;
int headerlen;
int herrs, herr1;
int bitQ, Qerror_count;
float mv;
unsigned int mv_pos, mv0_pos;
float thres = 0.7;
int bitofs = 0, dif = 0;
int symlen = 1;
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _fileno(stdin)
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, -vx, -vv (info, aux, info/conf)\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -i, --invert\n");
fprintf(stderr, " --crc (check CRC)\n");
fprintf(stderr, " --ecc (Reed-Solomon)\n");
fprintf(stderr, " --std (std framelen)\n");
fprintf(stderr, " --ths <x> (peak threshold; default=%.1f)\n", thres);
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if (strcmp(*argv, "-vx") == 0) { option_verbose = 2; }
else if (strcmp(*argv, "-vv") == 0) { option_verbose = 3; }
else if (strcmp(*argv, "--crc") == 0) { option_crc = 1; }
else if (strcmp(*argv, "--res") == 0) { option_res = 1; }
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1;
}
else if (strcmp(*argv, "--ecc" ) == 0) { option_ecc = 1; }
else if (strcmp(*argv, "--ecc2") == 0) { option_ecc = 2; }
else if (strcmp(*argv, "--std" ) == 0) { frmlen = 320; } // NDATA_LEN
else if (strcmp(*argv, "--std2") == 0) { frmlen = 518; } // NDATA_LEN+XDATA_LEN
else if (strcmp(*argv, "--sat") == 0) { option_sat = 1; }
else if (strcmp(*argv, "--ptu") == 0) { option_ptu = 1; }
else if (strcmp(*argv, "--ths") == 0) {
++argv;
if (*argv) {
thres = atof(*argv);
}
else return -1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
spb = read_wav_header(fp, (float)BAUD_RATE);
if ( spb < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
if ( spb < 8 ) {
fprintf(stderr, "note: sample rate low\n");
}
if (option_ecc) {
rs_init_RS255();
}
symlen = 1;
headerlen = strlen(header);
bitofs = 2; // +1 .. +2
if (init_buffers(header, headerlen, 2) < 0) { // shape=2
fprintf(stderr, "error: init buffers\n");
return -1;
};
mv = -1; mv_pos = 0;
while ( f32buf_sample(fp, option_inv, 1) != EOF ) {
mv0_pos = mv_pos;
dif = getmaxCorr(&mv, &mv_pos, headerlen+headerlen/2);
if (mv > thres) {
if (mv_pos > mv0_pos) {
header_found = 0;
herrs = headcmp(symlen, header, headerlen, mv_pos); // symlen=1
herr1 = 0;
if (herrs <= 3 && herrs > 0) {
herr1 = headcmp(symlen, header, headerlen, mv_pos+1);
if (herr1 < herrs) {
herrs = herr1;
herr1 = 1;
}
}
if (herrs <= 2) header_found = 1; // herrs <= 2 bitfehler in header
if (header_found) {
byte_count = FRAMESTART;
bit_count = 0; // byte_count*8-HEADLEN
bitpos = 0;
Qerror_count = 0;
while ( byte_count < frmlen ) {
bitQ = read_sbit(fp, symlen, &bit, option_inv, bitofs, bit_count==0, 0); // symlen=1, return: zeroX/bit
if ( bitQ == EOF) break;
bit_count += 1;
bitbuf[bitpos] = bit;
bitpos++;
if (bitpos == BITS) {
bitpos = 0;
byte = bits2byte(bitbuf);
frame[byte_count] = byte ^ mask[byte_count % MASK_LEN];
byteQ[byte_count] = get_bufvar(0);
if (byte_count > NDATA_LEN) { // Fehler erst ab minimaler framelen Zaehlen
if (byteQ[byte_count]*2 > byteQ[byte_count-300]*3) { // Var(frame)/Var(noise) ca. 1:2
Qerror_count += 1;
}
}
byte_count++;
}
if (Qerror_count > 4) { // ab byte 320 entscheiden, ob framelen = 320 oder 518
if (byte_count > NDATA_LEN && byte_count < NDATA_LEN+XDATA_LEN-10) {
byte_count = NDATA_LEN;
} // in print_frame() wird ab byte_count mit 00 aufgefuellt fuer Fehlerkorrektur
break;
}
}
header_found = 0;
print_frame(byte_count);
while ( bit_count < BITS*FRAME_LEN ) {
bitQ = read_sbit(fp, symlen, &bit, option_inv, bitofs, bit_count==0, 0); // symlen=1, return: zeroX/bit
if ( bitQ == EOF) break;
bit_count++;
}
byte_count = FRAMESTART;
}
}
}
}
free_buffers();
fclose(fp);
return 0;
}