radiosonde_auto_rx/demod/mod/lms6mod.c

985 wiersze
25 KiB
C

/*
* LMS6
* (403 MHz)
*
* sync header: correlation/matched filter
* files: lms6mod.c demod_mod.c demod_mod.h bch_ecc_mod.c bch_ecc_mod.h
* compile, either (a) or (b):
* (a)
* gcc -c demod_mod.c
* gcc -DINCLUDESTATIC lms6mod.c demod_mod.o -lm -o lms6mod
* (b)
* gcc -c demod_mod.c
* gcc -c bch_ecc_mod.c
* gcc lms6mod.c demod_mod.o bch_ecc_mod.o -lm -o lms6mod
*
* usage:
* ./lms6mod --vit --ecc <audio.wav>
* ( --vit recommended)
* author: zilog80
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
//typedef unsigned char ui8_t;
//typedef unsigned short ui16_t;
//typedef unsigned int ui32_t;
#include "demod_mod.h"
//#define INCLUDESTATIC 1
#ifdef INCLUDESTATIC
#include "bch_ecc_mod.c"
#else
#include "bch_ecc_mod.h"
#endif
typedef struct {
i8_t vbs; // verbose output
i8_t raw; // raw frames
i8_t crc; // CRC check output
i8_t ecc; // Reed-Solomon ECC
i8_t sat; // GPS sat data
i8_t ptu; // PTU: temperature
i8_t inv;
i8_t vit;
i8_t jsn; // JSON output (auto_rx)
} option_t;
/* -------------------------------------------------------------------------- */
#define BAUD_RATE 4800
#define BITS 8
#define HEADOFS 0 //16
#define HEADLEN ((4*16)-HEADOFS)
#define SYNC_LEN 5
#define FRM_LEN (223)
#define PAR_LEN (32)
#define FRMBUF_LEN (3*FRM_LEN)
#define BLOCKSTART (SYNC_LEN*BITS*2)
#define BLOCK_LEN (FRM_LEN+PAR_LEN+SYNC_LEN) // 255+5 = 260
#define RAWBITBLOCK_LEN ((BLOCK_LEN+1)*BITS*2) // (+1 tail)
#define FRAME_LEN (300) // 4800baud, 16bits/byte
#define BITFRAME_LEN (FRAME_LEN*BITS)
#define RAWBITFRAME_LEN (BITFRAME_LEN*2)
#define OVERLAP 64
#define OFS 4
static char rawheader[] = "0101011000001000""0001110010010111""0001101010100111""0011110100111110"; // (c0,inv(c1))
// (00) 58 f3 3f b8
// char header[] = "0000001101011101""0100100111000010""0100111111110010""0110100001101011"; // (c0,c1)
static ui8_t rs_sync[] = { 0x00, 0x58, 0xf3, 0x3f, 0xb8};
// 0x58f33fb8 little-endian <-> 0x1ACFFC1D big-endian bytes
// (00) 58 f3 3f b8
static char blk_syncbits[] = "0000000000000000""0000001101011101""0100100111000010""0100111111110010""0110100001101011";
static ui8_t frm_sync[] = { 0x24, 0x54, 0x00, 0x00};
#define L 7 // d_f=10
static char polyA[] = "1001111"; // 0x4f: x^6+x^3+x^2+x+1
static char polyB[] = "1101101"; // 0x6d: x^6+x^5+x^3+x^2+1
/*
// d_f=6
qA[] = "1110011"; // 0x73: x^6+x^5+x^4+x+1
qB[] = "0011110"; // 0x1e: x^4+x^3+x^2+x
pA[] = "10010101"; // 0x95: x^7+x^4+x^2+1 = (x+1)(x^6+x^5+x^4+x+1) = (x+1)qA
pB[] = "00100010"; // 0x22: x^5+x = (x+1)(x^4+x^3+x^2+x)=x(x+1)^3 = (x+1)qB
polyA = qA + x*qB
polyB = qA + qB
*/
#define N (1 << L)
#define M (1 << (L-1))
typedef struct {
ui8_t bIn;
ui8_t codeIn;
ui8_t prevState; // 0..M=64
int w; // > 255 : if (w>250): w=250 ?
//float sw;
} states_t;
typedef struct {
char rawbits[RAWBITFRAME_LEN+OVERLAP*BITS*2 +8];
states_t state[RAWBITFRAME_LEN+OVERLAP +8][M];
states_t d[N];
} VIT_t;
typedef struct {
int frnr;
int sn;
int week; int gpstow;
int jahr; int monat; int tag;
int wday;
int std; int min; float sek;
double lat; double lon; double alt;
double vH; double vD; double vV;
double vE; double vN; double vU;
char blk_rawbits[RAWBITBLOCK_LEN+SYNC_LEN*BITS*2 +8];
ui8_t frame[FRM_LEN]; // = { 0x24, 0x54, 0x00, 0x00}; // dataheader
int frm_pos; // ecc_blk <-> frm_blk
int sf;
option_t option;
RS_t RS;
VIT_t *vit;
} gpx_t;
// ------------------------------------------------------------------------
static ui8_t vit_code[N];
static vitCodes_init = 0;
static int vit_initCodes(gpx_t *gpx) {
int cA, cB;
int i, bits;
VIT_t *pv = calloc(1, sizeof(VIT_t));
if (pv == NULL) return -1;
gpx->vit = pv;
if ( vitCodes_init == 0 ) {
for (bits = 0; bits < N; bits++) {
cA = 0;
cB = 0;
for (i = 0; i < L; i++) {
cA ^= (polyA[L-1-i]&1) & ((bits >> i)&1);
cB ^= (polyB[L-1-i]&1) & ((bits >> i)&1);
}
vit_code[bits] = (cA<<1) | cB;
}
vitCodes_init = 1;
}
return 0;
}
static int vit_dist(int c, char *rc) {
return (((c>>1)^rc[0])&1) + ((c^rc[1])&1);
}
static int vit_start(VIT_t *vit, char *rc) {
int t, m, j, c, d;
t = L-1;
m = M;
while ( t > 0 ) { // t=0..L-2: nextState<M
for (j = 0; j < m; j++) {
vit->state[t][j].prevState = j/2;
}
t--;
m /= 2;
}
m = 2;
for (t = 1; t < L; t++) {
for (j = 0; j < m; j++) {
c = vit_code[j];
vit->state[t][j].bIn = j % 2;
vit->state[t][j].codeIn = c;
d = vit_dist( c, rc+2*(t-1) );
vit->state[t][j].w = vit->state[t-1][vit->state[t][j].prevState].w + d;
}
m *= 2;
}
return t;
}
static int vit_next(VIT_t *vit, int t, char *rc) {
int b, nstate;
int j, index;
for (j = 0; j < M; j++) {
for (b = 0; b < 2; b++) {
nstate = j*2 + b;
vit->d[nstate].bIn = b;
vit->d[nstate].codeIn = vit_code[nstate];
vit->d[nstate].prevState = j;
vit->d[nstate].w = vit->state[t][j].w + vit_dist( vit->d[nstate].codeIn, rc );
}
}
for (j = 0; j < M; j++) {
if ( vit->d[j].w <= vit->d[j+M].w ) index = j; else index = j+M;
vit->state[t+1][j] = vit->d[index];
}
return 0;
}
static int vit_path(VIT_t *vit, int j, int t) {
int c;
vit->rawbits[2*t] = '\0';
while (t > 0) {
c = vit->state[t][j].codeIn;
vit->rawbits[2*t -2] = 0x30 + ((c>>1) & 1);
vit->rawbits[2*t -1] = 0x30 + (c & 1);
j = vit->state[t][j].prevState;
t--;
}
return 0;
}
static int viterbi(VIT_t *vit, char *rc) {
int t, tmax;
int j, j_min, w_min;
vit_start(vit, rc);
tmax = strlen(rc)/2;
for (t = L-1; t < tmax; t++)
{
vit_next(vit, t, rc+2*t);
}
w_min = -1;
for (j = 0; j < M; j++) {
if (w_min < 0) {
w_min = vit->state[tmax][j].w;
j_min = j;
}
if (vit->state[tmax][j].w < w_min) {
w_min = vit->state[tmax][j].w;
j_min = j;
}
}
vit_path(vit, j_min, tmax);
return 0;
}
// ------------------------------------------------------------------------
static int deconv(char* rawbits, char *bits) {
int j, n, bitA, bitB;
char *p;
int len;
int errors = 0;
int m = L-1;
len = strlen(rawbits);
for (j = 0; j < m; j++) bits[j] = '0';
n = 0;
while ( 2*(m+n) < len ) {
p = rawbits+2*(m+n);
bitA = bitB = 0;
for (j = 0; j < m; j++) {
bitA ^= (bits[n+j]&1) & (polyA[j]&1);
bitB ^= (bits[n+j]&1) & (polyB[j]&1);
}
if ( (bitA^(p[0]&1))==(polyA[m]&1) && (bitB^(p[1]&1))==(polyB[m]&1) ) bits[n+m] = '1';
else if ( (bitA^(p[0]&1))==0 && (bitB^(p[1]&1))==0 ) bits[n+m] = '0';
else {
if ( (bitA^(p[0]&1))!=(polyA[m]&1) && (bitB^(p[1]&1))==(polyB[m]&1) ) bits[n+m] = 0x39;
else bits[n+m] = 0x38;
errors = n;
break;
}
n += 1;
}
bits[n+m] = '\0';
return errors;
}
// ------------------------------------------------------------------------
static int crc16_0(ui8_t frame[], int len) {
int crc16poly = 0x1021;
int rem = 0x0, i, j;
int byte;
for (i = 0; i < len; i++) {
byte = frame[i];
rem = rem ^ (byte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
static int check_CRC(ui8_t frame[]) {
ui32_t crclen = 0,
crcdat = 0;
crclen = 221;
crcdat = (frame[crclen]<<8) | frame[crclen+1];
if ( crcdat != crc16_0(frame, crclen) ) {
return 1; // CRC NO
}
else return 0; // CRC OK
}
// ------------------------------------------------------------------------
static int bits2bytes(char *bitstr, ui8_t *bytes) {
int i, bit, d, byteval;
int len = strlen(bitstr)/8;
int bitpos, bytepos;
bitpos = 0;
bytepos = 0;
while (bytepos < len) {
byteval = 0;
d = 1;
for (i = 0; i < BITS; i++) {
bit=*(bitstr+bitpos+i); /* little endian */
//bit=*(bitstr+bitpos+7-i); /* big endian */
if ((bit == '1') || (bit == '9')) byteval += d;
else /*if ((bit == '0') || (bit == '8'))*/ byteval += 0;
d <<= 1;
}
bitpos += BITS;
bytes[bytepos++] = byteval & 0xFF;
}
//while (bytepos < FRAME_LEN+OVERLAP) bytes[bytepos++] = 0;
return bytepos;
}
/* -------------------------------------------------------------------------- */
#define pos_SondeSN (OFS+0x00) // ?4 byte 00 7A....
#define pos_FrameNb (OFS+0x04) // 2 byte
//GPS Position
#define pos_GPSTOW (OFS+0x06) // 4 byte
#define pos_GPSlat (OFS+0x0E) // 4 byte
#define pos_GPSlon (OFS+0x12) // 4 byte
#define pos_GPSalt (OFS+0x16) // 4 byte
//GPS Velocity East-North-Up (ENU)
#define pos_GPSvO (OFS+0x1A) // 3 byte
#define pos_GPSvN (OFS+0x1D) // 3 byte
#define pos_GPSvV (OFS+0x20) // 3 byte
static int get_SondeSN(gpx_t *gpx) {
unsigned byte;
byte = (gpx->frame[pos_SondeSN]<<24) | (gpx->frame[pos_SondeSN+1]<<16)
| (gpx->frame[pos_SondeSN+2]<<8) | gpx->frame[pos_SondeSN+3];
gpx->sn = byte & 0xFFFFFF;
return 0;
}
static int get_FrameNb(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t frnr_bytes[2];
int frnr;
for (i = 0; i < 2; i++) {
byte = gpx->frame[pos_FrameNb + i];
frnr_bytes[i] = byte;
}
frnr = (frnr_bytes[0] << 8) + frnr_bytes[1] ;
gpx->frnr = frnr;
return 0;
}
//char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
static char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
static int get_GPStime(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpstime_bytes[4];
int gpstime = 0, // 32bit
day;
float ms;
for (i = 0; i < 4; i++) {
byte = gpx->frame[pos_GPSTOW + i];
gpstime_bytes[i] = byte;
}
gpstime = 0;
for (i = 0; i < 4; i++) {
gpstime |= gpstime_bytes[i] << (8*(3-i));
}
gpx->gpstow = gpstime;
ms = gpstime % 1000;
gpstime /= 1000;
day = gpstime / (24 * 3600);
gpstime %= (24*3600);
if ((day < 0) || (day > 6)) return -1;
gpx->wday = day;
gpx->std = gpstime / 3600;
gpx->min = (gpstime % 3600) / 60;
gpx->sek = gpstime % 60 + ms/1000.0;
return 0;
}
static double B60B60 = (1<<30)/90.0; // 2^32/360 = 2^30/90 = 0xB60B60.711x
static int get_GPSlat(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpslat_bytes[4];
int gpslat;
double lat;
for (i = 0; i < 4; i++) {
byte = gpx->frame[pos_GPSlat + i];
gpslat_bytes[i] = byte;
}
gpslat = 0;
for (i = 0; i < 4; i++) {
gpslat |= gpslat_bytes[i] << (8*(3-i));
}
lat = gpslat / B60B60;
gpx->lat = lat;
return 0;
}
static int get_GPSlon(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpslon_bytes[4];
int gpslon;
double lon;
for (i = 0; i < 4; i++) {
byte = gpx->frame[pos_GPSlon + i];
gpslon_bytes[i] = byte;
}
gpslon = 0;
for (i = 0; i < 4; i++) {
gpslon |= gpslon_bytes[i] << (8*(3-i));
}
lon = gpslon / B60B60;
gpx->lon = lon;
return 0;
}
static int get_GPSalt(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpsheight_bytes[4];
int gpsheight;
double height;
for (i = 0; i < 4; i++) {
byte = gpx->frame[pos_GPSalt + i];
gpsheight_bytes[i] = byte;
}
gpsheight = 0;
for (i = 0; i < 4; i++) {
gpsheight |= gpsheight_bytes[i] << (8*(3-i));
}
height = gpsheight / 1000.0;
gpx->alt = height;
if (height < -200 || height > 60000) return -1;
return 0;
}
static int get_GPSvel24(gpx_t *gpx) {
int i;
unsigned byte;
ui8_t gpsVel_bytes[3];
int vel24;
double vx, vy, vz, dir; //, alpha;
for (i = 0; i < 3; i++) {
byte = gpx->frame[pos_GPSvO + i];
gpsVel_bytes[i] = byte;
}
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vx = vel24 / 1e3; // ost
for (i = 0; i < 3; i++) {
byte = gpx->frame[pos_GPSvN + i];
gpsVel_bytes[i] = byte;
}
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vy= vel24 / 1e3; // nord
for (i = 0; i < 3; i++) {
byte = gpx->frame[pos_GPSvV + i];
gpsVel_bytes[i] = byte;
}
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vz = vel24 / 1e3; // hoch
gpx->vE = vx;
gpx->vN = vy;
gpx->vU = vz;
gpx->vH = sqrt(vx*vx+vy*vy);
/*
alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
gpx->vD2 = dir;
*/
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx->vD = dir;
gpx->vV = vz;
return 0;
}
// RS(255,223)-CCSDS
#define rs_N 255
#define rs_K 223
#define rs_R (rs_N-rs_K) // 32
static int lms6_ecc(gpx_t *gpx, ui8_t *cw) {
int errors;
ui8_t err_pos[rs_R],
err_val[rs_R];
errors = rs_decode(&gpx->RS, cw, err_pos, err_val);
return errors;
}
static void print_frame(gpx_t *gpx, int crc_err, int len) {
int err=0;
if (gpx->frame[0] != 0)
{
//if ((gpx->frame[pos_SondeSN+1] & 0xF0) == 0x70) // ? beginnen alle SNs mit 0x7A.... bzw 80..... ?
if ( gpx->frame[pos_SondeSN+1] )
{
get_SondeSN(gpx);
get_FrameNb(gpx);
printf(" (%7d) ", gpx->sn);
printf(" [%5d] ", gpx->frnr);
err = get_GPStime(gpx);
if (!err) printf("%s ", weekday[gpx->wday]);
printf("%02d:%02d:%06.3f ", gpx->std, gpx->min, gpx->sek); // falls Rundung auf 60s: Ueberlauf
get_GPSlat(gpx);
get_GPSlon(gpx);
err = get_GPSalt(gpx);
if (!err) {
printf(" lat: %.5f ", gpx->lat);
printf(" lon: %.5f ", gpx->lon);
printf(" alt: %.2fm ", gpx->alt);
get_GPSvel24(gpx);
//if (gpx->option.vbs == 2) printf(" (%.1f ,%.1f,%.1f) ", gpx->vE, gpx->vN, gpx->vU);
printf(" vH: %.1fm/s D: %.1f vV: %.1fm/s ", gpx->vH, gpx->vD, gpx->vV);
}
if (crc_err==0) printf(" [OK]"); else printf(" [NO]");
printf("\n");
if (gpx->option.jsn) {
// Print JSON output required by auto_rx.
if (crc_err==0) { // CRC-OK
// UTC oder GPS?
printf("{ \"frame\": %d, \"id\": \"LMS6-%d\", \"datetime\": \"%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f }\n",
gpx->frnr, gpx->sn, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt, gpx->vH, gpx->vD, gpx->vV );
printf("\n");
}
}
}
}
}
static void proc_frame(gpx_t *gpx, int len) {
int blk_pos = SYNC_LEN;
ui8_t block_bytes[BLOCK_LEN+8];
ui8_t rs_cw[rs_N];
char frame_bits[BITFRAME_LEN+OVERLAP*BITS +8]; // init L-1 bits mit 0
char *rawbits = NULL;
int i, j;
int err = 0;
int errs = 0;
int crc_err = 0;
int flen, blen;
if ((len % 8) > 4) {
while (len % 8) gpx->blk_rawbits[len++] = '0';
}
gpx->blk_rawbits[len] = '\0';
flen = len / (2*BITS);
if (gpx->option.vit == 1) {
viterbi(gpx->vit, gpx->blk_rawbits);
rawbits = gpx->vit->rawbits;
}
else rawbits = gpx->blk_rawbits;
err = deconv(rawbits, frame_bits);
if (err) { for (i=err; i < RAWBITBLOCK_LEN/2; i++) frame_bits[i] = 0; }
blen = bits2bytes(frame_bits, block_bytes);
for (j = blen; j < BLOCK_LEN+8; j++) block_bytes[j] = 0;
if (gpx->option.ecc) {
for (j = 0; j < rs_N; j++) rs_cw[rs_N-1-j] = block_bytes[SYNC_LEN+j];
errs = lms6_ecc(gpx, rs_cw);
for (j = 0; j < rs_N; j++) block_bytes[SYNC_LEN+j] = rs_cw[rs_N-1-j];
}
if (gpx->option.raw == 2) {
for (i = 0; i < flen; i++) printf("%02x ", block_bytes[i]);
if (gpx->option.ecc) printf("(%d)", errs);
printf("\n");
}
else if (gpx->option.raw == 4 && gpx->option.ecc) {
for (i = 0; i < rs_N; i++) printf("%02x", block_bytes[SYNC_LEN+i]);
printf(" (%d)", errs);
printf("\n");
}
else if (gpx->option.raw == 8) {
if (gpx->option.vit == 1) {
for (i = 0; i < len; i++) printf("%c", gpx->vit->rawbits[i]); printf("\n");
}
else {
for (i = 0; i < len; i++) printf("%c", gpx->blk_rawbits[i]); printf("\n");
}
}
blk_pos = SYNC_LEN;
while ( blk_pos-SYNC_LEN < FRM_LEN ) {
if (gpx->sf == 0) {
while ( blk_pos-SYNC_LEN < FRM_LEN ) {
gpx->sf = 0;
for (j = 0; j < 4; j++) gpx->sf += (block_bytes[blk_pos+j] == frm_sync[j]);
if (gpx->sf == 4) {
gpx->frm_pos = 0;
break;
}
blk_pos++;
}
}
if ( gpx->sf && gpx->frm_pos < FRM_LEN ) {
gpx->frame[gpx->frm_pos] = block_bytes[blk_pos];
gpx->frm_pos++;
blk_pos++;
}
if (gpx->frm_pos == FRM_LEN) {
crc_err = check_CRC(gpx->frame);
if (gpx->option.raw == 1) {
for (i = 0; i < FRM_LEN; i++) printf("%02x ", gpx->frame[i]);
if (crc_err==0) printf(" [OK]"); else printf(" [NO]");
printf("\n");
}
if (gpx->option.raw == 0) print_frame(gpx, crc_err, len);
gpx->frm_pos = 0;
gpx->sf = 0;
}
}
}
int main(int argc, char **argv) {
int option_inv = 0; // invertiert Signal
int option_iq = 0;
int option_dc = 0;
int wavloaded = 0;
int sel_wavch = 0; // audio channel: left
FILE *fp = NULL;
char *fpname = NULL;
int k;
int bit, rbit;
int bitpos = 0;
int bitQ;
int pos;
//int headerlen = 0;
int header_found = 0;
float thres = 0.76;
float _mv = 0.0;
int symlen = 1;
int bitofs = 1; // +1 .. +2
int shift = 0;
unsigned int bc = 0;
pcm_t pcm = {0};
dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp));
/*
// gpx_t _gpx = {0}; gpx_t *gpx = &_gpx; // stack size ...
gpx_t *gpx = NULL;
gpx = calloc(1, sizeof(gpx_t));
//memset(gpx, 0, sizeof(gpx_t));
*/
gpx_t _gpx = {0}; gpx_t *gpx = &_gpx;
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " --vit (Viterbi)\n");
fprintf(stderr, " --ecc (Reed-Solomon)\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
gpx->option.vbs = 1;
}
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
gpx->option.raw = 1; // bytes - rs_ecc_codewords
}
else if ( (strcmp(*argv, "-r0") == 0) || (strcmp(*argv, "--raw0") == 0) ) {
gpx->option.raw = 2; // bytes: sync + codewords
}
else if ( (strcmp(*argv, "-rc") == 0) || (strcmp(*argv, "--rawecc") == 0) ) {
gpx->option.raw = 4; // rs_ecc_codewords
}
else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) {
gpx->option.raw = 8; // rawbits
}
else if (strcmp(*argv, "--ecc" ) == 0) { gpx->option.ecc = 1; } // RS-ECC
else if (strcmp(*argv, "--vit" ) == 0) { gpx->option.vit = 1; } // viterbi
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1; // nicht noetig
}
else if ( (strcmp(*argv, "--dc") == 0) ) {
option_dc = 1;
}
else if ( (strcmp(*argv, "--ch2") == 0) ) { sel_wavch = 1; } // right channel (default: 0=left)
else if ( (strcmp(*argv, "--ths") == 0) ) {
++argv;
if (*argv) {
thres = atof(*argv);
}
else return -1;
}
else if ( (strcmp(*argv, "-d") == 0) ) {
++argv;
if (*argv) {
shift = atoi(*argv);
if (shift > 4) shift = 4;
if (shift < -4) shift = -4;
}
else return -1;
}
else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod
else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; }
else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3
else if (strcmp(*argv, "--json") == 0) {
gpx->option.jsn = 1;
gpx->option.ecc = 1;
gpx->option.vit = 1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
if (gpx->option.raw == 4) gpx->option.ecc = 1;
// init gpx
memcpy(gpx->blk_rawbits, blk_syncbits, sizeof(blk_syncbits));
memcpy(gpx->frame, frm_sync, sizeof(frm_sync));
gpx->frm_pos = 0; // ecc_blk <-> frm_blk
gpx->sf = 0;
gpx->option.inv = option_inv; // irrelevant
if (option_iq) sel_wavch = 0;
pcm.sel_ch = sel_wavch;
k = read_wav_header(&pcm, fp);
if ( k < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
symlen = 1;
// init dsp
//
dsp.fp = fp;
dsp.sr = pcm.sr;
dsp.bps = pcm.bps;
dsp.nch = pcm.nch;
dsp.ch = pcm.sel_ch;
dsp.br = (float)BAUD_RATE;
dsp.sps = (float)dsp.sr/dsp.br;
dsp.symlen = symlen;
dsp.symhd = 1;
dsp._spb = dsp.sps*symlen;
dsp.hdr = rawheader;
dsp.hdrlen = strlen(rawheader);
dsp.BT = 1.5; // bw/time (ISI) // 1.0..2.0
dsp.h = 0.9; // 1.0 modulation index
dsp.opt_iq = option_iq;
if ( dsp.sps < 8 ) {
fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps);
}
//headerlen = dsp.hdrlen;
k = init_buffers(&dsp);
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");
return -1;
};
if (gpx->option.vit) {
k = vit_initCodes(gpx);
if (k < 0) return -1;
}
if (gpx->option.ecc) {
rs_init_RS255ccsds(&gpx->RS); // bch_ecc.c
}
bitofs += shift;
while ( 1 )
{
header_found = find_header(&dsp, thres, 3, bitofs, option_dc);
_mv = dsp.mv;
if (header_found == EOF) break;
// mv == correlation score
if (_mv*(0.5-gpx->option.inv) < 0) {
gpx->option.inv ^= 0x1; // LMS6: irrelevant
}
if (header_found) {
bitpos = 0;
pos = BLOCKSTART;
if (_mv > 0) bc = 0; else bc = 1;
while ( pos < RAWBITBLOCK_LEN ) {
bitQ = read_slbit(&dsp, &rbit, 0, bitofs, bitpos, -1, 0); // symlen=1
if (bitQ == EOF) { break; }
bit = rbit ^ (bc%2); // (c0,inv(c1))
gpx->blk_rawbits[pos] = 0x30 + bit;
bc++;
pos++;
bitpos += 1;
}
gpx->blk_rawbits[pos] = '\0';
proc_frame(gpx, pos);
if (pos < RAWBITBLOCK_LEN) break;
pos = BLOCKSTART;
header_found = 0;
}
}
free_buffers(&dsp);
if (gpx->vit) { free(gpx->vit); gpx->vit = NULL; }
fclose(fp);
return 0;
}