kopia lustrzana https://github.com/projecthorus/radiosonde_auto_rx
745 wiersze
20 KiB
C
745 wiersze
20 KiB
C
|
|
/*
|
|
* dfm09 (dfm06)
|
|
* sync header: correlation/matched filter
|
|
* files: dfm09dm.c demod.h demod.c
|
|
* compile:
|
|
* gcc -c demod.c
|
|
* gcc dfm09dm.c demod.o -lm -o dfm09dm
|
|
*
|
|
* author: zilog80
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#ifdef CYGWIN
|
|
#include <fcntl.h> // cygwin: _setmode()
|
|
#include <io.h>
|
|
#endif
|
|
|
|
|
|
typedef unsigned char ui8_t;
|
|
typedef unsigned int ui32_t;
|
|
|
|
//#include "demod.c"
|
|
#include "demod.h"
|
|
|
|
|
|
typedef struct {
|
|
int frnr;
|
|
int sonde_typ;
|
|
ui32_t SN6;
|
|
ui32_t SN9;
|
|
int week; int gpssec;
|
|
int jahr; int monat; int tag;
|
|
int std; int min; float sek;
|
|
double lat; double lon; double alt;
|
|
double dir; double horiV; double vertV;
|
|
float meas24[5];
|
|
float status[2];
|
|
} gpx_t;
|
|
|
|
gpx_t gpx;
|
|
|
|
char dat_str[9][13+1];
|
|
|
|
|
|
int option_verbose = 0, // ausfuehrliche Anzeige
|
|
option_raw = 0, // rohe Frames
|
|
option_inv = 0, // invertiert Signal
|
|
option_ecc = 0,
|
|
option_ptu = 0,
|
|
option_ths = 0,
|
|
wavloaded = 0;
|
|
|
|
int start = 0;
|
|
|
|
|
|
//#define HEADLEN 32
|
|
// DFM09: Manchester2: 01->1,10->0
|
|
char rawheader[] = "10011010100110010101101001010101"; //->"0100010111001111"; // 0x45CF (big endian)
|
|
|
|
#define BITFRAME_LEN 280
|
|
char frame_bits[BITFRAME_LEN+4] = "0100010111001111";
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
#define BAUD_RATE 2500
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
|
|
#define B 8 // codeword: 8 bit
|
|
#define S 4 // davon 4 bit data
|
|
|
|
#define HEAD 0 // 16 bit
|
|
#define CONF (16+0) // 56 bit
|
|
#define DAT1 (16+56) // 104 bit
|
|
#define DAT2 (16+160) // 104 bit
|
|
// frame: 280 bit
|
|
|
|
ui8_t H[4][8] = // Parity-Check
|
|
{{ 0, 1, 1, 1, 1, 0, 0, 0},
|
|
{ 1, 0, 1, 1, 0, 1, 0, 0},
|
|
{ 1, 1, 0, 1, 0, 0, 1, 0},
|
|
{ 1, 1, 1, 0, 0, 0, 0, 1}};
|
|
ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H:
|
|
// 1-bit-error-Syndrome
|
|
ui8_t hamming_conf[ 7*B]; // 7*8=56
|
|
ui8_t hamming_dat1[13*B]; // 13*8=104
|
|
ui8_t hamming_dat2[13*B];
|
|
|
|
ui8_t block_conf[ 7*S]; // 7*4=28
|
|
ui8_t block_dat1[13*S]; // 13*4=52
|
|
ui8_t block_dat2[13*S];
|
|
|
|
ui32_t bits2val(ui8_t *bits, int len) { // big endian
|
|
int j;
|
|
ui32_t val;
|
|
if ((len < 0) || (len > 32)) return -1; // = 0xFFFF
|
|
val = 0;
|
|
for (j = 0; j < len; j++) {
|
|
val |= (bits[j] << (len-1-j));
|
|
}
|
|
return val;
|
|
}
|
|
|
|
void deinterleave(char *str, int L, ui8_t *block) {
|
|
int i, j;
|
|
for (j = 0; j < B; j++) { // L = 7, 13
|
|
for (i = 0; i < L; i++) {
|
|
if (str[L*j+i] >= 0x30 && str[L*j+i] <= 0x31) {
|
|
block[B*i+j] = str[L*j+i] - 0x30; // ASCII -> bit
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int check(ui8_t code[8]) {
|
|
int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt,
|
|
ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser,
|
|
ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision.
|
|
int ret=0;
|
|
|
|
for (i = 0; i < 4; i++) { // S = 4
|
|
syndrom[i] = 0;
|
|
for (j = 0; j < 8; j++) { // B = 8
|
|
syndrom[i] ^= H[i][j] & code[j];
|
|
}
|
|
}
|
|
synval = bits2val(syndrom, 4);
|
|
if (synval) {
|
|
ret = -1;
|
|
for (j = 0; j < 8; j++) { // 1-bit-error
|
|
if (synval == He[j]) { // reicht auf databits zu pruefen, d.h.
|
|
ret = j+1; // (systematischer Code) He[0..3]
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else ret = 0;
|
|
if (ret > 0) code[ret-1] ^= 0x1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int hamming(ui8_t *ham, int L, ui8_t *sym) {
|
|
int i, j;
|
|
int ret = 0; // L = 7, 13
|
|
for (i = 0; i < L; i++) { // L * 2 nibble (data+parity)
|
|
if (option_ecc) ret |= check(ham+B*i);
|
|
for (j = 0; j < S; j++) { // systematic: bits 0..S-1 data
|
|
sym[S*i+j] = ham[B*i+j];
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
char nib2chr(ui8_t nib) {
|
|
char c = '_';
|
|
if (nib < 0x10) {
|
|
if (nib < 0xA) c = 0x30 + nib;
|
|
else c = 0x41 + nib-0xA;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
int dat_out(ui8_t *dat_bits) {
|
|
int i, ret = 0;
|
|
static int fr_id;
|
|
// int jahr = 0, monat = 0, tag = 0, std = 0, min = 0;
|
|
int frnr = 0;
|
|
int msek = 0;
|
|
int lat = 0, lon = 0, alt = 0;
|
|
int nib;
|
|
int dvv; // signed/unsigned 16bit
|
|
|
|
fr_id = bits2val(dat_bits+48, 4);
|
|
|
|
|
|
if (fr_id >= 0 && fr_id <= 8) {
|
|
for (i = 0; i < 13; i++) {
|
|
nib = bits2val(dat_bits+4*i, 4);
|
|
dat_str[fr_id][i] = nib2chr(nib);
|
|
}
|
|
dat_str[fr_id][13] = '\0';
|
|
}
|
|
|
|
if (fr_id == 0) {
|
|
start = 1;
|
|
frnr = bits2val(dat_bits+24, 8);
|
|
gpx.frnr = frnr;
|
|
}
|
|
|
|
if (fr_id == 1) {
|
|
// 00..31: ? GPS-Sats in Sicht?
|
|
msek = bits2val(dat_bits+32, 16);
|
|
gpx.sek = msek/1000.0;
|
|
}
|
|
|
|
if (fr_id == 2) {
|
|
lat = bits2val(dat_bits, 32);
|
|
gpx.lat = lat/1e7;
|
|
dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein
|
|
gpx.horiV = dvv/1e2;
|
|
}
|
|
|
|
if (fr_id == 3) {
|
|
lon = bits2val(dat_bits, 32);
|
|
gpx.lon = lon/1e7;
|
|
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
|
|
gpx.dir = dvv/1e2;
|
|
}
|
|
|
|
if (fr_id == 4) {
|
|
alt = bits2val(dat_bits, 32);
|
|
gpx.alt = alt/1e2;
|
|
dvv = (short)bits2val(dat_bits+32, 16); // signed
|
|
gpx.vertV = dvv/1e2;
|
|
}
|
|
|
|
if (fr_id == 5) {
|
|
}
|
|
|
|
if (fr_id == 6) {
|
|
}
|
|
|
|
if (fr_id == 7) {
|
|
}
|
|
|
|
if (fr_id == 8) {
|
|
gpx.jahr = bits2val(dat_bits, 12);
|
|
gpx.monat = bits2val(dat_bits+12, 4);
|
|
gpx.tag = bits2val(dat_bits+16, 5);
|
|
gpx.std = bits2val(dat_bits+21, 5);
|
|
gpx.min = bits2val(dat_bits+26, 6);
|
|
}
|
|
|
|
ret = fr_id;
|
|
return ret;
|
|
}
|
|
|
|
// DFM-06 (NXP8)
|
|
float fl20(int d) { // float20
|
|
int val, p;
|
|
float f;
|
|
p = (d>>16) & 0xF;
|
|
val = d & 0xFFFF;
|
|
f = val/(float)(1<<p);
|
|
return f;
|
|
}
|
|
/*
|
|
float flo20(int d) {
|
|
int m, e;
|
|
float f1, f;
|
|
m = d & 0xFFFF;
|
|
e = (d >> 16) & 0xF;
|
|
f = m / pow(2,e);
|
|
return f;
|
|
}
|
|
*/
|
|
|
|
// DFM-09 (STM32)
|
|
float fl24(int d) { // float24
|
|
int val, p;
|
|
float f;
|
|
p = (d>>20) & 0xF;
|
|
val = d & 0xFFFFF;
|
|
f = val/(float)(1<<p);
|
|
return f;
|
|
}
|
|
|
|
// temperature approximation
|
|
float get_Temp(float *meas) { // meas[0..4]
|
|
// NTC-Thermistor EPCOS B57540G0502
|
|
// R/T No 8402, R25=Ro=5k
|
|
// B0/100=3450
|
|
// 1/T = 1/To + 1/B log(r) , r=R/Ro
|
|
// GRAW calibration data -80C..+40C on EEPROM ?
|
|
// meas0 = g*(R + Rs)
|
|
// meas3 = g*Rs , Rs: dfm6:10k, dfm9:20k
|
|
// meas4 = g*Rf , Rf=220k
|
|
float B0 = 3260.0; // B/Kelvin, fit -55C..+40C
|
|
float T0 = 25 + 273.15; // t0=25C
|
|
float R0 = 5.0e3; // R0=R25=5k
|
|
float Rf = 220e3; // Rf = 220k
|
|
float g = meas[4]/Rf;
|
|
float R = (meas[0]-meas[3]) / g; // meas[0,3,4] > 0 ?
|
|
float T = 0; // T/Kelvin
|
|
if (meas[0]*meas[3]*meas[4] == 0) R = 0;
|
|
if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0));
|
|
return T - 273.15; // Celsius
|
|
// DFM-06: meas20 * 16 = meas24
|
|
// -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4]
|
|
}
|
|
float get_Temp2(float *meas) { // meas[0..4]
|
|
// NTC-Thermistor EPCOS B57540G0502
|
|
// R/T No 8402, R25=Ro=5k
|
|
// B0/100=3450
|
|
// 1/T = 1/To + 1/B log(r) , r=R/Ro
|
|
// GRAW calibration data -80C..+40C on EEPROM ?
|
|
// meas0 = g*(R+Rs)+ofs
|
|
// meas3 = g*Rs+ofs , Rs: dfm6:10k, dfm9:20k
|
|
// meas4 = g*Rf+ofs , Rf=220k
|
|
float f = meas[0],
|
|
f1 = meas[3],
|
|
f2 = meas[4];
|
|
float B0 = 3260.0; // B/Kelvin, fit -55C..+40C
|
|
float T0 = 25 + 273.15; // t0=25C
|
|
float R0 = 5.0e3; // R0=R25=5k
|
|
float Rf2 = 220e3; // Rf2 = Rf = 220k
|
|
float g_o = f2/Rf2; // approx gain
|
|
float Rs_o = f1/g_o; // = Rf2 * f1/f2;
|
|
float Rf1 = Rs_o; // Rf1 = Rs: dfm6:10k, dfm9:20k
|
|
float g = g_o; // gain
|
|
float Rb = 0.0; // offset
|
|
float R = 0; // thermistor
|
|
float T = 0; // T/Kelvin
|
|
|
|
if ( 8e3 < Rs_o && Rs_o < 12e3) Rf1 = 10e3; // dfm6
|
|
else if (18e3 < Rs_o && Rs_o < 22e3) Rf1 = 20e3; // dfm9
|
|
g = (f2 - f1) / (Rf2 - Rf1);
|
|
Rb = (f1*Rf2-f2*Rf1)/(f2-f1); // ofs/g
|
|
|
|
R = (f-f1)/g; // meas[0,3,4] > 0 ?
|
|
if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0));
|
|
|
|
if (option_ptu && option_verbose == 2) {
|
|
printf(" (Rso: %.1f , Rb: %.1f)", Rs_o/1e3, Rb/1e3);
|
|
}
|
|
|
|
return T - 273.15;
|
|
// DFM-06: meas20 * 16 = meas24
|
|
}
|
|
float get_Temp4(float *meas) { // meas[0..4]
|
|
// NTC-Thermistor EPCOS B57540G0502
|
|
// [ T/C , R/R25 , alpha ] :
|
|
// [ -55.0 , 51.991 , 6.4 ]
|
|
// [ -50.0 , 37.989 , 6.2 ]
|
|
// [ -45.0 , 28.07 , 5.9 ]
|
|
// [ -40.0 , 20.96 , 5.7 ]
|
|
// [ -35.0 , 15.809 , 5.5 ]
|
|
// [ -30.0 , 12.037 , 5.4 ]
|
|
// [ -25.0 , 9.2484 , 5.2 ]
|
|
// [ -20.0 , 7.1668 , 5.0 ]
|
|
// [ -15.0 , 5.5993 , 4.9 ]
|
|
// [ -10.0 , 4.4087 , 4.7 ]
|
|
// [ -5.0 , 3.4971 , 4.6 ]
|
|
// [ 0.0 , 2.7936 , 4.4 ]
|
|
// [ 5.0 , 2.2468 , 4.3 ]
|
|
// [ 10.0 , 1.8187 , 4.2 ]
|
|
// [ 15.0 , 1.4813 , 4.0 ]
|
|
// [ 20.0 , 1.2136 , 3.9 ]
|
|
// [ 25.0 , 1.0000 , 3.8 ]
|
|
// [ 30.0 , 0.82845 , 3.7 ]
|
|
// [ 35.0 , 0.68991 , 3.6 ]
|
|
// [ 40.0 , 0.57742 , 3.5 ]
|
|
// -> Steinhart–Hart coefficients (polyfit):
|
|
float p0 = 1.09698417e-03,
|
|
p1 = 2.39564629e-04,
|
|
p2 = 2.48821437e-06,
|
|
p3 = 5.84354921e-08;
|
|
// T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 )
|
|
float Rf = 220e3; // Rf = 220k
|
|
float g = meas[4]/Rf;
|
|
float R = (meas[0]-meas[3]) / g; // meas[0,3,4] > 0 ?
|
|
float T = 0; // T/Kelvin
|
|
if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) );
|
|
return T - 273.15; // Celsius
|
|
// DFM-06: meas20 * 16 = meas24
|
|
// -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4]
|
|
}
|
|
|
|
|
|
#define SNbit 0x0100
|
|
int conf_out(ui8_t *conf_bits) {
|
|
int conf_id;
|
|
int ret = 0;
|
|
int val, hl;
|
|
static int chAbit, chA[2];
|
|
ui32_t SN6, SN9;
|
|
|
|
conf_id = bits2val(conf_bits, 4);
|
|
|
|
//if (conf_id > 6) gpx.SN6 = 0; //// gpx.sonde_typ & 0xF = 9; // SNbit?
|
|
|
|
if ((gpx.sonde_typ & 0xFF) < 9 && conf_id == 6) {
|
|
SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6
|
|
if ( SN6 == gpx.SN6 ) { // nur Nibble-Werte 0..9
|
|
gpx.sonde_typ = SNbit | 6;
|
|
ret = 6;
|
|
}
|
|
else {
|
|
gpx.sonde_typ = 0;
|
|
}
|
|
gpx.SN6 = SN6;
|
|
}
|
|
if (conf_id == 0xA) { // 0xACxxxxy
|
|
val = bits2val(conf_bits+8, 4*5);
|
|
hl = (val & 1) == 0;
|
|
chA[hl] = (val >> 4) & 0xFFFF;
|
|
chAbit |= 1 << hl;
|
|
if (chAbit == 3) { // DFM-09: Kanal A
|
|
SN9 = (chA[1] << 16) | chA[0];
|
|
if ( SN9 == gpx.SN9 ) {
|
|
gpx.sonde_typ = SNbit | 9;
|
|
ret = 9;
|
|
}
|
|
else {
|
|
gpx.sonde_typ = 0;
|
|
}
|
|
gpx.SN9 = SN9;
|
|
chAbit = 0;
|
|
}
|
|
}
|
|
|
|
if (conf_id >= 0 && conf_id <= 4) {
|
|
val = bits2val(conf_bits+4, 4*6);
|
|
gpx.meas24[conf_id] = fl24(val);
|
|
// DFM-09 (STM32): 24bit 0exxxxx
|
|
// DFM-06 (NXP8): 20bit 0exxxx0
|
|
// fl20(bits2val(conf_bits+4, 4*5))
|
|
// = fl20(exxxx)
|
|
// = fl24(exxxx0)/2^4
|
|
// meas20 * 16 = meas24
|
|
}
|
|
|
|
// STM32-status: Bat, MCU-Temp
|
|
if ((gpx.sonde_typ & 0xFF) == 9) { // DFM-09 (STM32)
|
|
if (conf_id == 0x5) { // voltage
|
|
val = bits2val(conf_bits+8, 4*4);
|
|
gpx.status[0] = val/1000.0;
|
|
}
|
|
if (conf_id == 0x6) { // T-intern (STM32)
|
|
val = bits2val(conf_bits+8, 4*4);
|
|
gpx.status[1] = val/100.0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void print_gpx() {
|
|
int i, j;
|
|
|
|
if (start) {
|
|
|
|
if (option_raw == 2) {
|
|
for (i = 0; i < 9; i++) {
|
|
printf(" %s", dat_str[i]);
|
|
}
|
|
for (i = 0; i < 9; i++) {
|
|
for (j = 0; j < 13; j++) dat_str[i][j] = ' ';
|
|
}
|
|
}
|
|
else {
|
|
//if (option_auto && option_verbose) printf("[%c] ", option_inv?'-':'+');
|
|
printf("[%3d] ", gpx.frnr);
|
|
printf("%4d-%02d-%02d ", gpx.jahr, gpx.monat, gpx.tag);
|
|
printf("%02d:%02d:%04.1f ", gpx.std, gpx.min, gpx.sek);
|
|
printf(" ");
|
|
printf("lat: %.6f ", gpx.lat);
|
|
printf("lon: %.6f ", gpx.lon);
|
|
printf("alt: %.1f ", gpx.alt);
|
|
printf(" vH: %5.2f ", gpx.horiV);
|
|
printf(" D: %5.1f ", gpx.dir);
|
|
printf(" vV: %5.2f ", gpx.vertV);
|
|
if (option_ptu) {
|
|
float t = get_Temp(gpx.meas24);
|
|
if (t > -270.0) printf(" T=%.1fC ", t);
|
|
if (option_verbose == 2) {
|
|
float t2 = get_Temp2(gpx.meas24);
|
|
float t4 = get_Temp4(gpx.meas24);
|
|
if (t2 > -270.0) printf(" T2=%.1fC ", t2);
|
|
if (t4 > -270.0) printf(" T4=%.1fC ", t4);
|
|
printf(" f0: %.2f ", gpx.meas24[0]);
|
|
printf(" f3: %.2f ", gpx.meas24[3]);
|
|
printf(" f4: %.2f ", gpx.meas24[4]);
|
|
}
|
|
}
|
|
if (option_verbose == 2 && (gpx.sonde_typ & 0xFF) == 9) {
|
|
printf(" U: %.2fV ", gpx.status[0]);
|
|
printf(" Ti: %.1fK ", gpx.status[1]);
|
|
}
|
|
if (option_verbose && (gpx.sonde_typ & SNbit))
|
|
{
|
|
if ((gpx.sonde_typ & 0xFF) == 6) {
|
|
printf(" (ID%1d:%06X) ", gpx.sonde_typ & 0xF, gpx.SN6);
|
|
}
|
|
if ((gpx.sonde_typ & 0xFF) == 9) {
|
|
printf(" (ID%1d:%06u) ", gpx.sonde_typ & 0xF, gpx.SN9);
|
|
}
|
|
gpx.sonde_typ ^= SNbit;
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
}
|
|
}
|
|
|
|
int print_frame() {
|
|
int i;
|
|
int nib = 0;
|
|
int frid = -1;
|
|
int ret0, ret1, ret2;
|
|
int ret = 0;
|
|
|
|
|
|
deinterleave(frame_bits+CONF, 7, hamming_conf);
|
|
deinterleave(frame_bits+DAT1, 13, hamming_dat1);
|
|
deinterleave(frame_bits+DAT2, 13, hamming_dat2);
|
|
|
|
ret0 = hamming(hamming_conf, 7, block_conf);
|
|
ret1 = hamming(hamming_dat1, 13, block_dat1);
|
|
ret2 = hamming(hamming_dat2, 13, block_dat2);
|
|
ret = ret0 | ret1 | ret2;
|
|
|
|
if (option_raw == 1) {
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
nib = bits2val(block_conf+S*i, S);
|
|
printf("%01X", nib & 0xFF);
|
|
}
|
|
if (option_ecc) {
|
|
if (ret0 == 0) printf(" [OK] ");
|
|
else if (ret0 > 0) printf(" [KO] ");
|
|
else printf(" [NO] ");
|
|
}
|
|
printf(" ");
|
|
for (i = 0; i < 13; i++) {
|
|
nib = bits2val(block_dat1+S*i, S);
|
|
printf("%01X", nib & 0xFF);
|
|
}
|
|
if (option_ecc) {
|
|
if (ret1 == 0) printf(" [OK] ");
|
|
else if (ret1 > 0) printf(" [KO] ");
|
|
else printf(" [NO] ");
|
|
}
|
|
printf(" ");
|
|
for (i = 0; i < 13; i++) {
|
|
nib = bits2val(block_dat2+S*i, S);
|
|
printf("%01X", nib & 0xFF);
|
|
}
|
|
if (option_ecc) {
|
|
if (ret2 == 0) printf(" [OK] ");
|
|
else if (ret2 > 0) printf(" [KO] ");
|
|
else printf(" [NO] ");
|
|
}
|
|
printf("\n");
|
|
|
|
}
|
|
else if (option_ecc) {
|
|
|
|
if (ret0 == 0 || ret0 > 0) {
|
|
conf_out(block_conf);
|
|
}
|
|
if (ret1 == 0 || ret1 > 0) {
|
|
frid = dat_out(block_dat1);
|
|
if (frid == 8) print_gpx();
|
|
}
|
|
if (ret2 == 0 || ret2 > 0) {
|
|
frid = dat_out(block_dat2);
|
|
if (frid == 8) print_gpx();
|
|
}
|
|
|
|
}
|
|
else {
|
|
|
|
conf_out(block_conf);
|
|
frid = dat_out(block_dat1);
|
|
if (frid == 8) print_gpx();
|
|
frid = dat_out(block_dat2);
|
|
if (frid == 8) print_gpx();
|
|
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
FILE *fp = NULL;
|
|
char *fpname = NULL;
|
|
float spb = 0.0;
|
|
int header_found = 0;
|
|
int ret = 0;
|
|
|
|
int bit;
|
|
int bitpos = 0;
|
|
int bitQ;
|
|
int pos;
|
|
int herrs, herr1;
|
|
int headerlen = 0;
|
|
int frm = 0, nfrms = 8; // nfrms=1,2,4,8
|
|
|
|
float mv;
|
|
unsigned int mv_pos, mv0_pos;
|
|
|
|
float thres = 0.6;
|
|
|
|
int bitofs = 0, dif = 0;
|
|
int symlen = 2;
|
|
|
|
|
|
#ifdef CYGWIN
|
|
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
|
|
#endif
|
|
setbuf(stdout, NULL);
|
|
|
|
fpname = argv[0];
|
|
++argv;
|
|
while ((*argv) && (!wavloaded)) {
|
|
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
|
|
fprintf(stderr, "%s [options] audio.wav\n", fpname);
|
|
fprintf(stderr, " options:\n");
|
|
fprintf(stderr, " -v, -vv\n");
|
|
fprintf(stderr, " -r, --raw\n");
|
|
fprintf(stderr, " -i, --invert\n");
|
|
fprintf(stderr, " --ecc (Hamming ECC)\n");
|
|
fprintf(stderr, " --ths <x> (peak threshold; default=%.1f)\n", thres);
|
|
return 0;
|
|
}
|
|
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
|
|
option_verbose = 1;
|
|
}
|
|
else if ( (strcmp(*argv, "-vv") == 0) ) { option_verbose = 2; }
|
|
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
|
|
option_raw = 1;
|
|
}
|
|
else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) {
|
|
option_raw = 2;
|
|
}
|
|
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
|
|
option_inv = 0x1;
|
|
}
|
|
else if ( (strcmp(*argv, "--ecc") == 0) ) { option_ecc = 1; }
|
|
else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; }
|
|
else if ( (strcmp(*argv, "--ths") == 0) ) {
|
|
++argv;
|
|
if (*argv) {
|
|
thres = atof(*argv);
|
|
}
|
|
else return -1;
|
|
}
|
|
else {
|
|
fp = fopen(*argv, "rb");
|
|
if (fp == NULL) {
|
|
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
|
|
return -1;
|
|
}
|
|
wavloaded = 1;
|
|
}
|
|
++argv;
|
|
}
|
|
if (!wavloaded) fp = stdin;
|
|
|
|
|
|
spb = read_wav_header(fp, (float)BAUD_RATE);
|
|
if ( spb < 0 ) {
|
|
fclose(fp);
|
|
fprintf(stderr, "error: wav header\n");
|
|
return -1;
|
|
}
|
|
if ( spb < 8 ) {
|
|
fprintf(stderr, "note: sample rate low\n");
|
|
}
|
|
|
|
|
|
symlen = 2;
|
|
headerlen = strlen(rawheader);
|
|
bitofs = 2; // +1 .. +2
|
|
if (init_buffers(rawheader, headerlen, 0) < 0) { // shape=0 (alt. shape=1)
|
|
fprintf(stderr, "error: init buffers\n");
|
|
return -1;
|
|
};
|
|
|
|
|
|
mv = -1; mv_pos = 0;
|
|
|
|
while ( f32buf_sample(fp, option_inv, 1) != EOF ) {
|
|
|
|
mv0_pos = mv_pos;
|
|
dif = getmaxCorr(&mv, &mv_pos, headerlen+headerlen/2);
|
|
|
|
if (mv > thres) {
|
|
if (mv_pos > mv0_pos) {
|
|
|
|
header_found = 0;
|
|
herrs = headcmp(symlen, rawheader, headerlen, mv_pos); // symlen=2
|
|
herr1 = 0;
|
|
if (herrs <= 3 && herrs > 0) {
|
|
herr1 = headcmp(symlen, rawheader, headerlen, mv_pos+1);
|
|
if (herr1 < herrs) {
|
|
herrs = herr1;
|
|
herr1 = 1;
|
|
}
|
|
}
|
|
if (herrs <= 1) header_found = 1; // herrs <= 1 bitfehler in header
|
|
|
|
if (header_found) {
|
|
|
|
bitpos = 0;
|
|
pos = headerlen;
|
|
pos /= 2;
|
|
|
|
frm = 0;
|
|
while ( frm < nfrms ) { // nfrms=1,2,4,8
|
|
while ( pos < BITFRAME_LEN ) {
|
|
header_found = !(frm==nfrms-1 && pos>=BITFRAME_LEN-10);
|
|
bitQ = read_sbit(fp, symlen, &bit, option_inv, bitofs, bitpos==0, !header_found); // symlen=2, return: zeroX/bit
|
|
if (bitQ == EOF) { frm = nfrms; break; }
|
|
frame_bits[pos] = 0x30 + bit;
|
|
pos++;
|
|
bitpos += 1;
|
|
}
|
|
frame_bits[pos] = '\0';
|
|
ret = print_frame();
|
|
if (pos < BITFRAME_LEN) break;
|
|
pos = 0;
|
|
frm += 1;
|
|
//if (ret < 0) frms += 1;
|
|
}
|
|
|
|
header_found = 0;
|
|
pos = headerlen;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
free_buffers();
|
|
|
|
fclose(fp);
|
|
|
|
return 0;
|
|
}
|
|
|