kopia lustrzana https://github.com/projecthorus/radiosonde_auto_rx
884 wiersze
21 KiB
C
884 wiersze
21 KiB
C
|
|
/*
|
|
* sync header: correlation/matched filter
|
|
* compile:
|
|
* gcc -c demod_iq.c
|
|
*
|
|
* author: zilog80
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
|
|
typedef unsigned char ui8_t;
|
|
typedef unsigned short ui16_t;
|
|
typedef unsigned int ui32_t;
|
|
typedef short i16_t;
|
|
typedef int i32_t;
|
|
|
|
#include "demod_iq.h"
|
|
|
|
|
|
static int sample_rate = 0, bits_sample = 0, channels = 0;
|
|
static float samples_per_bit = 0;
|
|
|
|
static unsigned int sample_in, sample_out, delay;
|
|
static int buffered = 0;
|
|
|
|
static int N, M;
|
|
|
|
static float *match = NULL,
|
|
*bufs = NULL;
|
|
|
|
static char *rawbits = NULL;
|
|
|
|
static int Nvar = 0; // < M
|
|
static double xsum=0, qsum=0;
|
|
static float *xs = NULL,
|
|
*qs = NULL;
|
|
|
|
|
|
static float dc_ofs = 0.0;
|
|
static float dc = 0.0;
|
|
|
|
static int option_iq = 0;
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
#include <complex.h>
|
|
|
|
static int LOG2N, N_DFT;
|
|
static int M_DFT;
|
|
|
|
static float complex *ew;
|
|
|
|
static float complex *Fm, *X, *Z, *cx;
|
|
static float *xn;
|
|
|
|
static float complex *Hann;
|
|
|
|
static int N_IQBUF;
|
|
static float complex *raw_iqbuf = NULL;
|
|
static float complex *rot_iqbuf = NULL;
|
|
|
|
static double df = 0.0;
|
|
static int len_sq = 0;
|
|
|
|
static unsigned int sample_posframe = 0;
|
|
static unsigned int sample_posnoise = 0;
|
|
|
|
static double V_noise = 0.0;
|
|
static double V_signal = 0.0;
|
|
static double SNRdB = 0.0;
|
|
|
|
|
|
static void cdft(float complex *Z) {
|
|
int s, l, l2, i, j, k;
|
|
float complex w1, w2, T;
|
|
|
|
j = 1;
|
|
for (i = 1; i < N_DFT; i++) {
|
|
if (i < j) {
|
|
T = Z[j-1];
|
|
Z[j-1] = Z[i-1];
|
|
Z[i-1] = T;
|
|
}
|
|
k = N_DFT/2;
|
|
while (k < j) {
|
|
j = j - k;
|
|
k = k/2;
|
|
}
|
|
j = j + k;
|
|
}
|
|
|
|
for (s = 0; s < LOG2N; s++) {
|
|
l2 = 1 << s;
|
|
l = l2 << 1;
|
|
w1 = (float complex)1.0;
|
|
w2 = ew[s]; // cexp(-I*M_PI/(float)l2)
|
|
for (j = 1; j <= l2; j++) {
|
|
for (i = j; i <= N_DFT; i += l) {
|
|
k = i + l2;
|
|
T = Z[k-1] * w1;
|
|
Z[k-1] = Z[i-1] - T;
|
|
Z[i-1] = Z[i-1] + T;
|
|
}
|
|
w1 = w1 * w2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rdft(float *x, float complex *Z) {
|
|
int i;
|
|
for (i = 0; i < N_DFT; i++) Z[i] = (float complex)x[i];
|
|
cdft(Z);
|
|
}
|
|
|
|
static void Nidft(float complex *Z, float complex *z) {
|
|
int i;
|
|
for (i = 0; i < N_DFT; i++) z[i] = conj(Z[i]);
|
|
cdft(z);
|
|
// idft():
|
|
// for (i = 0; i < N_DFT; i++) z[i] = conj(z[i])/(float)N_DFT; // hier: z reell
|
|
}
|
|
|
|
static float bin2freq(int k) {
|
|
float fq = sample_rate * k / N_DFT;
|
|
if (fq > sample_rate/2.0) fq -= sample_rate;
|
|
return fq;
|
|
}
|
|
|
|
static int max_bin(float complex *Z) {
|
|
int k, kmax;
|
|
double max;
|
|
|
|
max = 0; kmax = 0;
|
|
for (k = 0; k < N_DFT; k++) {
|
|
if (cabs(Z[k]) > max) {
|
|
max = cabs(Z[k]);
|
|
kmax = k;
|
|
}
|
|
}
|
|
|
|
return kmax;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
int getCorrDFT(int abs, int K, unsigned int pos, float *maxv, unsigned int *maxvpos) {
|
|
int i;
|
|
int mp = -1;
|
|
float mx = 0.0;
|
|
float xnorm = 1;
|
|
unsigned int mpos = 0;
|
|
|
|
dc = 0.0;
|
|
|
|
if (N + K > N_DFT/2 - 2) return -1;
|
|
if (sample_in < delay+N+K) return -2;
|
|
|
|
if (pos == 0) pos = sample_out;
|
|
|
|
|
|
for (i = 0; i < N+K; i++) xn[i] = bufs[(pos+M -(N+K-1) + i) % M];
|
|
while (i < N_DFT) xn[i++] = 0.0;
|
|
|
|
rdft(xn, X);
|
|
|
|
dc = get_bufmu(pos-sample_out); //oder: dc = creal(X[0])/N_DFT;
|
|
|
|
for (i = 0; i < N_DFT; i++) Z[i] = X[i]*Fm[i];
|
|
|
|
Nidft(Z, cx);
|
|
|
|
|
|
if (abs) {
|
|
for (i = N; i < N+K; i++) {
|
|
if (fabs(creal(cx[i])) > fabs(mx)) { // imag(cx)=0
|
|
mx = creal(cx[i]);
|
|
mp = i;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = N; i < N+K; i++) {
|
|
if (creal(cx[i]) > mx) { // imag(cx)=0
|
|
mx = creal(cx[i]);
|
|
mp = i;
|
|
}
|
|
}
|
|
}
|
|
if (mp == N || mp == N+K-1) return -4; // Randwert
|
|
|
|
mpos = pos - ( N+K-1 - mp );
|
|
xnorm = sqrt(qs[(mpos + 2*M) % M]);
|
|
mx /= xnorm*N_DFT;
|
|
|
|
*maxv = mx;
|
|
*maxvpos = mpos;
|
|
|
|
if (pos == sample_out) buffered = sample_out-mpos;
|
|
|
|
return mp;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
static int wav_ch = 0; // 0: links bzw. mono; 1: rechts
|
|
|
|
static int findstr(char *buff, char *str, int pos) {
|
|
int i;
|
|
for (i = 0; i < 4; i++) {
|
|
if (buff[(pos+i)%4] != str[i]) break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
float read_wav_header(FILE *fp, float baudrate, int wav_channel) {
|
|
char txt[4+1] = "\0\0\0\0";
|
|
unsigned char dat[4];
|
|
int byte, p=0;
|
|
|
|
if (fread(txt, 1, 4, fp) < 4) return -1;
|
|
if (strncmp(txt, "RIFF", 4)) return -1;
|
|
if (fread(txt, 1, 4, fp) < 4) return -1;
|
|
// pos_WAVE = 8L
|
|
if (fread(txt, 1, 4, fp) < 4) return -1;
|
|
if (strncmp(txt, "WAVE", 4)) return -1;
|
|
// pos_fmt = 12L
|
|
for ( ; ; ) {
|
|
if ( (byte=fgetc(fp)) == EOF ) return -1;
|
|
txt[p % 4] = byte;
|
|
p++; if (p==4) p=0;
|
|
if (findstr(txt, "fmt ", p) == 4) break;
|
|
}
|
|
if (fread(dat, 1, 4, fp) < 4) return -1;
|
|
if (fread(dat, 1, 2, fp) < 2) return -1;
|
|
|
|
if (fread(dat, 1, 2, fp) < 2) return -1;
|
|
channels = dat[0] + (dat[1] << 8);
|
|
|
|
if (fread(dat, 1, 4, fp) < 4) return -1;
|
|
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
|
|
|
|
if (fread(dat, 1, 4, fp) < 4) return -1;
|
|
if (fread(dat, 1, 2, fp) < 2) return -1;
|
|
//byte = dat[0] + (dat[1] << 8);
|
|
|
|
if (fread(dat, 1, 2, fp) < 2) return -1;
|
|
bits_sample = dat[0] + (dat[1] << 8);
|
|
|
|
// pos_dat = 36L + info
|
|
for ( ; ; ) {
|
|
if ( (byte=fgetc(fp)) == EOF ) return -1;
|
|
txt[p % 4] = byte;
|
|
p++; if (p==4) p=0;
|
|
if (findstr(txt, "data", p) == 4) break;
|
|
}
|
|
if (fread(dat, 1, 4, fp) < 4) return -1;
|
|
|
|
|
|
fprintf(stderr, "sample_rate: %d\n", sample_rate);
|
|
fprintf(stderr, "bits : %d\n", bits_sample);
|
|
fprintf(stderr, "channels : %d\n", channels);
|
|
|
|
if (wav_channel >= 0 && wav_channel < channels) wav_ch = wav_channel;
|
|
else wav_ch = 0;
|
|
fprintf(stderr, "channel-In : %d\n", wav_ch+1);
|
|
|
|
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
|
|
|
|
samples_per_bit = sample_rate/baudrate;
|
|
|
|
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
|
|
|
|
return samples_per_bit;
|
|
}
|
|
|
|
static int f32read_sample(FILE *fp, float *s) {
|
|
int i;
|
|
short b = 0;
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
|
|
if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF;
|
|
|
|
if (i == wav_ch) { // i = 0: links bzw. mono
|
|
//if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128
|
|
//if (bits_sample == 16) sint = (short)b;
|
|
|
|
if (bits_sample == 8) { b -= 128; }
|
|
*s = b/128.0;
|
|
if (bits_sample == 16) { *s /= 256.0; }
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int f32read_csample(FILE *fp, float complex *z) {
|
|
short x = 0, y = 0;
|
|
|
|
if (fread( &x, bits_sample/8, 1, fp) != 1) return EOF;
|
|
if (fread( &y, bits_sample/8, 1, fp) != 1) return EOF;
|
|
|
|
*z = x + I*y;
|
|
|
|
if (bits_sample == 8) { *z -= 128 + I*128; }
|
|
*z /= 128.0;
|
|
if (bits_sample == 16) { *z /= 256.0; }
|
|
|
|
return 0;
|
|
}
|
|
|
|
float get_bufvar(int ofs) {
|
|
float mu = xs[(sample_out+M + ofs) % M]/Nvar;
|
|
float var = qs[(sample_out+M + ofs) % M]/Nvar - mu*mu;
|
|
return var;
|
|
}
|
|
|
|
float get_bufmu(int ofs) {
|
|
float mu = xs[(sample_out+M + ofs) % M]/Nvar;
|
|
return mu;
|
|
}
|
|
|
|
int f32buf_sample(FILE *fp, int inv, int cm) {
|
|
float s = 0.0;
|
|
float xneu, xalt;
|
|
|
|
float complex z, w;
|
|
static float complex z0; //= 1.0;
|
|
double gain = 1.0;
|
|
|
|
double t = sample_in / (double)sample_rate;
|
|
|
|
|
|
if (option_iq) {
|
|
|
|
if ( f32read_csample(fp, &z) == EOF ) return EOF;
|
|
raw_iqbuf[sample_in % N_IQBUF] = z;
|
|
|
|
z *= cexp(-t*2*M_PI*df*I);
|
|
w = z * conj(z0);
|
|
s = gain * carg(w)/M_PI;
|
|
z0 = z;
|
|
rot_iqbuf[sample_in % N_IQBUF] = z;
|
|
|
|
if (sample_posnoise > 0)
|
|
{
|
|
if (sample_out >= sample_posframe && sample_out < sample_posframe+len_sq) {
|
|
if (sample_out == sample_posframe) V_signal = 0.0;
|
|
V_signal += cabs(rot_iqbuf[sample_out % N_IQBUF]);
|
|
}
|
|
if (sample_out == sample_posframe+len_sq) V_signal /= (double)len_sq;
|
|
|
|
if (sample_out >= sample_posnoise && sample_out < sample_posnoise+len_sq) {
|
|
if (sample_out == sample_posnoise) V_noise = 0.0;
|
|
V_noise += cabs(rot_iqbuf[sample_out % N_IQBUF]);
|
|
}
|
|
if (sample_out == sample_posnoise+len_sq) {
|
|
V_noise /= (double)len_sq;
|
|
if (V_signal > 0 && V_noise > 0) {
|
|
// iq-samples/V [-1..1]
|
|
// dBw = 2*dBv, P=c*U*U
|
|
// dBw = 2*10*log10(V/V0)
|
|
SNRdB = 20.0 * log10(V_signal/V_noise+1e-20);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (option_iq >= 2)
|
|
{
|
|
double xbit = 0.0;
|
|
double h = 1.0; // modulation index, GFSK; h(rs41)=0.8? // rs-depend...
|
|
//float complex xi = cexp(+I*M_PI*h/samples_per_bit);
|
|
double f1 = -h*sample_rate/(2*samples_per_bit);
|
|
double f2 = -f1;
|
|
|
|
float complex X1 = 0;
|
|
float complex X2 = 0;
|
|
|
|
int n = samples_per_bit;
|
|
while (n > 0) {
|
|
n--;
|
|
t = -n / (double)sample_rate;
|
|
z = rot_iqbuf[(sample_in - n + N_IQBUF) % N_IQBUF]; // +1
|
|
X1 += z*cexp(-t*2*M_PI*f1*I);
|
|
X2 += z*cexp(-t*2*M_PI*f2*I);
|
|
}
|
|
|
|
xbit = cabs(X2) - cabs(X1);
|
|
|
|
s = xbit / samples_per_bit;
|
|
}
|
|
}
|
|
else {
|
|
if (f32read_sample(fp, &s) == EOF) return EOF;
|
|
}
|
|
|
|
if (inv) s = -s; // swap IQ?
|
|
bufs[sample_in % M] = s - dc_ofs;
|
|
|
|
xneu = bufs[(sample_in ) % M];
|
|
xalt = bufs[(sample_in+M - Nvar) % M];
|
|
xsum += xneu - xalt; // + xneu - xalt
|
|
qsum += (xneu - xalt)*(xneu + xalt); // + xneu*xneu - xalt*xalt
|
|
xs[sample_in % M] = xsum;
|
|
qs[sample_in % M] = qsum;
|
|
|
|
|
|
if (0 && cm) {
|
|
// direct correlation
|
|
}
|
|
|
|
|
|
sample_out = sample_in - delay;
|
|
|
|
sample_in += 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_bufbit(int symlen, char *bits, unsigned int mvp, int reset) {
|
|
// symlen==2: manchester2 0->10,1->01->1: 2.bit
|
|
|
|
static unsigned int rcount;
|
|
static float rbitgrenze;
|
|
|
|
double sum = 0.0;
|
|
|
|
if (reset) {
|
|
rcount = 0;
|
|
rbitgrenze = 0;
|
|
}
|
|
|
|
|
|
rbitgrenze += samples_per_bit;
|
|
do {
|
|
sum += bufs[(rcount + mvp + M) % M];
|
|
rcount++;
|
|
} while (rcount < rbitgrenze); // n < samples_per_bit
|
|
|
|
if (symlen == 2) {
|
|
rbitgrenze += samples_per_bit;
|
|
do {
|
|
sum -= bufs[(rcount + mvp + M) % M];
|
|
rcount++;
|
|
} while (rcount < rbitgrenze); // n < samples_per_bit
|
|
}
|
|
|
|
|
|
if (symlen != 2) {
|
|
if (sum >= 0) *bits = '1';
|
|
else *bits = '0';
|
|
}
|
|
else {
|
|
if (sum >= 0) strncpy(bits, "10", 2);
|
|
else strncpy(bits, "01", 2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int headcmp(int symlen, char *hdr, int len, unsigned int mvp, int inv, int option_dc) {
|
|
int errs = 0;
|
|
int pos;
|
|
int step = 1;
|
|
char sign = 0;
|
|
|
|
if (symlen != 1) step = 2;
|
|
if (inv) sign=1;
|
|
|
|
for (pos = 0; pos < len; pos += step) {
|
|
read_bufbit(symlen, rawbits+pos, mvp+1-(int)(len*samples_per_bit), pos==0);
|
|
}
|
|
rawbits[pos] = '\0';
|
|
|
|
while (len > 0) {
|
|
if ((rawbits[len-1]^sign) != hdr[len-1]) errs += 1;
|
|
len--;
|
|
}
|
|
|
|
if (option_dc && errs < 3) {
|
|
dc_ofs += dc;
|
|
}
|
|
|
|
return errs;
|
|
}
|
|
|
|
int get_fqofs(int hdrlen, unsigned int mvp, float *freq, float *snr) {
|
|
int j;
|
|
int buf_start;
|
|
int presamples = 256*samples_per_bit;
|
|
|
|
if (presamples > M_DFT) presamples = M_DFT;
|
|
|
|
buf_start = mvp - hdrlen*samples_per_bit - presamples;
|
|
|
|
while (buf_start < 0) buf_start += N_IQBUF;
|
|
|
|
for (j = 0; j < M_DFT; j++) {
|
|
Z[j] = Hann[j]*raw_iqbuf[(buf_start+j) % N_IQBUF];
|
|
}
|
|
while (j < N_DFT) Z[j++] = 0;
|
|
|
|
cdft(Z);
|
|
df = bin2freq(max_bin(Z));
|
|
|
|
// if |df|<eps, +-2400Hz dominant (rs41)
|
|
if (fabs(df) > 1000.0) df = 0.0;
|
|
|
|
|
|
sample_posframe = sample_in; //mvp - hdrlen*samples_per_bit;
|
|
sample_posnoise = mvp + sample_rate*7/8.0;
|
|
|
|
|
|
*freq = df;
|
|
*snr = SNRdB;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
int read_sbit(FILE *fp, int symlen, int *bit, int inv, int ofs, int reset, int cm) {
|
|
// symlen==2: manchester2 10->0,01->1: 2.bit
|
|
|
|
static double bitgrenze;
|
|
static unsigned long scount;
|
|
|
|
float sample;
|
|
|
|
double sum = 0.0;
|
|
|
|
if (reset) {
|
|
scount = 0;
|
|
bitgrenze = 0;
|
|
}
|
|
|
|
if (symlen == 2) {
|
|
bitgrenze += samples_per_bit;
|
|
do {
|
|
if (buffered > 0) buffered -= 1;
|
|
else if (f32buf_sample(fp, inv, cm) == EOF) return EOF;
|
|
|
|
sample = bufs[(sample_out-buffered + ofs + M) % M];
|
|
sum -= sample;
|
|
|
|
scount++;
|
|
} while (scount < bitgrenze); // n < samples_per_bit
|
|
}
|
|
|
|
bitgrenze += samples_per_bit;
|
|
do {
|
|
if (buffered > 0) buffered -= 1;
|
|
else if (f32buf_sample(fp, inv, cm) == EOF) return EOF;
|
|
|
|
sample = bufs[(sample_out-buffered + ofs + M) % M];
|
|
sum += sample;
|
|
|
|
scount++;
|
|
} while (scount < bitgrenze); // n < samples_per_bit
|
|
|
|
if (sum >= 0) *bit = 1;
|
|
else *bit = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int read_IDsbit(FILE *fp, int symlen, int *bit, int inv, int ofs, int reset, int cm) {
|
|
// symlen==2: manchester2 10->0,01->1: 2.bit
|
|
|
|
static double bitgrenze;
|
|
static unsigned long scount;
|
|
|
|
float sample;
|
|
|
|
double sum = 0.0;
|
|
double mid;
|
|
double l = 1.0;
|
|
|
|
if (reset) {
|
|
scount = 0;
|
|
bitgrenze = 0;
|
|
}
|
|
|
|
if (symlen == 2) {
|
|
mid = bitgrenze + (samples_per_bit-1)/2.0;
|
|
bitgrenze += samples_per_bit;
|
|
do {
|
|
if (buffered > 0) buffered -= 1;
|
|
else if (f32buf_sample(fp, inv, cm) == EOF) return EOF;
|
|
|
|
sample = bufs[(sample_out-buffered + ofs + M) % M];
|
|
if (mid-l < scount && scount < mid+l) sum -= sample;
|
|
|
|
scount++;
|
|
} while (scount < bitgrenze); // n < samples_per_bit
|
|
}
|
|
|
|
mid = bitgrenze + (samples_per_bit-1)/2.0;
|
|
bitgrenze += samples_per_bit;
|
|
do {
|
|
if (buffered > 0) buffered -= 1;
|
|
else if (f32buf_sample(fp, inv, cm) == EOF) return EOF;
|
|
|
|
sample = bufs[(sample_out-buffered + ofs + M) % M];
|
|
if (mid-l < scount && scount < mid+l) sum += sample;
|
|
|
|
scount++;
|
|
} while (scount < bitgrenze); // n < samples_per_bit
|
|
|
|
if (sum >= 0) *bit = 1;
|
|
else *bit = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
int read_softbit(FILE *fp, int symlen, int *bit, float *sb, float level, int inv, int ofs, int reset, int cm) {
|
|
// symlen==2: manchester2 10->0,01->1: 2.bit
|
|
|
|
static double bitgrenze;
|
|
static unsigned long scount;
|
|
|
|
float sample;
|
|
|
|
double sum = 0.0;
|
|
int n = 0;
|
|
|
|
if (reset) {
|
|
scount = 0;
|
|
bitgrenze = 0;
|
|
}
|
|
|
|
if (symlen == 2) {
|
|
bitgrenze += samples_per_bit;
|
|
do {
|
|
if (buffered > 0) buffered -= 1;
|
|
else if (f32buf_sample(fp, inv, cm) == EOF) return EOF;
|
|
|
|
sample = bufs[(sample_out-buffered + ofs + M) % M];
|
|
if (scount > bitgrenze-samples_per_bit && scount < bitgrenze-2)
|
|
{
|
|
sum -= sample;
|
|
n++;
|
|
}
|
|
scount++;
|
|
} while (scount < bitgrenze); // n < samples_per_bit
|
|
}
|
|
|
|
bitgrenze += samples_per_bit;
|
|
do {
|
|
if (buffered > 0) buffered -= 1;
|
|
else if (f32buf_sample(fp, inv, cm) == EOF) return EOF;
|
|
|
|
sample = bufs[(sample_out-buffered + ofs + M) % M];
|
|
if (scount > bitgrenze-samples_per_bit && scount < bitgrenze-2)
|
|
{
|
|
sum += sample;
|
|
n++;
|
|
}
|
|
scount++;
|
|
} while (scount < bitgrenze); // n < samples_per_bit
|
|
|
|
if (sum >= 0) *bit = 1;
|
|
else *bit = 0;
|
|
|
|
*sb = sum / n;
|
|
|
|
if (*sb > +2.5*level) *sb = +0.8*level;
|
|
if (*sb > +level) *sb = +level;
|
|
|
|
if (*sb < -2.5*level) *sb = -0.8*level;
|
|
if (*sb < -level) *sb = -level;
|
|
|
|
*sb /= level;
|
|
|
|
return 0;
|
|
}
|
|
|
|
float header_level(char hdr[], int hLen, unsigned int pos, int inv) {
|
|
int n, bitn;
|
|
int sgn = 0;
|
|
double s = 0.0;
|
|
double sum = 0.0;
|
|
|
|
n = 0;
|
|
bitn = 0;
|
|
while ( bitn < hLen && (n < N) ) {
|
|
sgn = (hdr[bitn]&1)*2-1; // {'0','1'} -> {-1,1}
|
|
s = bufs[(pos-N + n + M) % M];
|
|
if (inv) s = -s;
|
|
sum += s * sgn;
|
|
n++;
|
|
bitn = n / samples_per_bit;
|
|
}
|
|
sum /= n;
|
|
|
|
return sum;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------------- */
|
|
|
|
|
|
#define SQRT2 1.4142135624 // sqrt(2)
|
|
// sigma = sqrt(log(2)) / (2*PI*BT):
|
|
//#define SIGMA 0.2650103635 // BT=0.5: 0.2650103635 , BT=0.3: 0.4416839392
|
|
|
|
// Gaussian FM-pulse
|
|
static double Q(double x) {
|
|
return 0.5 - 0.5*erf(x/SQRT2);
|
|
}
|
|
static double pulse(double t, double sigma) {
|
|
return Q((t-0.5)/sigma) - Q((t+0.5)/sigma);
|
|
}
|
|
|
|
|
|
static double norm2_match() {
|
|
int i;
|
|
double x, y = 0.0;
|
|
for (i = 0; i < N; i++) {
|
|
x = match[i];
|
|
y += x*x;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
int init_buffers(char hdr[], int hLen, float BT, int opt_iq) {
|
|
//hLen = strlen(header) = HEADLEN;
|
|
|
|
int i, pos;
|
|
float b0, b1, b2, b, t;
|
|
float normMatch;
|
|
double sigma = sqrt(log(2)) / (2*M_PI*BT);
|
|
|
|
int K;
|
|
int n, k;
|
|
float *m = NULL;
|
|
|
|
option_iq = opt_iq;
|
|
|
|
N = hLen * samples_per_bit + 0.5;
|
|
M = 3*N;
|
|
if (samples_per_bit < 6) M = 6*N;
|
|
Nvar = N; //N/2; // = N/k
|
|
|
|
bufs = (float *)calloc( M+1, sizeof(float)); if (bufs == NULL) return -100;
|
|
match = (float *)calloc( N+1, sizeof(float)); if (match == NULL) return -100;
|
|
|
|
xs = (float *)calloc( M+1, sizeof(float)); if (xs == NULL) return -100;
|
|
qs = (float *)calloc( M+1, sizeof(float)); if (qs == NULL) return -100;
|
|
|
|
|
|
rawbits = (char *)calloc( N+1, sizeof(char)); if (rawbits == NULL) return -100;
|
|
|
|
for (i = 0; i < M; i++) bufs[i] = 0.0;
|
|
|
|
|
|
for (i = 0; i < N; i++) {
|
|
pos = i/samples_per_bit;
|
|
t = (i - pos*samples_per_bit)/samples_per_bit - 0.5;
|
|
|
|
b1 = ((hdr[pos] & 0x1) - 0.5)*2.0;
|
|
b = b1*pulse(t, sigma);
|
|
|
|
if (pos > 0) {
|
|
b0 = ((hdr[pos-1] & 0x1) - 0.5)*2.0;
|
|
b += b0*pulse(t+1, sigma);
|
|
}
|
|
|
|
if (pos < hLen) {
|
|
b2 = ((hdr[pos+1] & 0x1) - 0.5)*2.0;
|
|
b += b2*pulse(t-1, sigma);
|
|
}
|
|
|
|
match[i] = b;
|
|
}
|
|
|
|
normMatch = sqrt(norm2_match());
|
|
for (i = 0; i < N; i++) {
|
|
match[i] /= normMatch;
|
|
}
|
|
|
|
|
|
delay = N/16;
|
|
sample_in = 0;
|
|
|
|
K = M-N - delay; //N/2 - delay; // N+K < M
|
|
|
|
LOG2N = 2 + (int)(log(N+K)/log(2));
|
|
N_DFT = 1 << LOG2N;
|
|
|
|
while (N + K > N_DFT/2 - 2) {
|
|
LOG2N += 1;
|
|
N_DFT <<= 1;
|
|
}
|
|
|
|
|
|
xn = calloc(N_DFT+1, sizeof(float)); if (xn == NULL) return -1;
|
|
|
|
ew = calloc(LOG2N+1, sizeof(float complex)); if (ew == NULL) return -1;
|
|
Fm = calloc(N_DFT+1, sizeof(float complex)); if (Fm == NULL) return -1;
|
|
X = calloc(N_DFT+1, sizeof(float complex)); if (X == NULL) return -1;
|
|
Z = calloc(N_DFT+1, sizeof(float complex)); if (Z == NULL) return -1;
|
|
cx = calloc(N_DFT+1, sizeof(float complex)); if (cx == NULL) return -1;
|
|
|
|
M_DFT = M;
|
|
Hann = calloc(N_DFT+1, sizeof(float complex)); if (Hann == NULL) return -1;
|
|
for (i = 0; i < M_DFT; i++) Hann[i] = 0.5 * (1 - cos( 2 * M_PI * i / (double)(M_DFT-1) ) );
|
|
|
|
for (n = 0; n < LOG2N; n++) {
|
|
k = 1 << n;
|
|
ew[n] = cexp(-I*M_PI/(float)k);
|
|
}
|
|
|
|
m = calloc(N_DFT+1, sizeof(float)); if (m == NULL) return -1;
|
|
for (i = 0; i < N; i++) m[N-1 - i] = match[i];
|
|
while (i < N_DFT) m[i++] = 0.0;
|
|
rdft(m, Fm);
|
|
|
|
free(m); m = NULL;
|
|
|
|
|
|
if (option_iq)
|
|
{
|
|
if (channels < 2) return -1;
|
|
/*
|
|
M_DFT = samples_per_bit*256+0.5;
|
|
while ( (1 << LOG2N) < M_DFT ) LOG2N++;
|
|
LOG2N++;
|
|
N_DFT = (1 << LOG2N);
|
|
N_IQBUF = M_DFT + samples_per_bit*(64+16);
|
|
*/
|
|
N_IQBUF = N_DFT;
|
|
raw_iqbuf = calloc(N_IQBUF+1, sizeof(float complex)); if (raw_iqbuf == NULL) return -1;
|
|
rot_iqbuf = calloc(N_IQBUF+1, sizeof(float complex)); if (rot_iqbuf == NULL) return -1;
|
|
|
|
len_sq = samples_per_bit*8;
|
|
}
|
|
|
|
|
|
return K;
|
|
}
|
|
|
|
int free_buffers() {
|
|
|
|
if (match) { free(match); match = NULL; }
|
|
if (bufs) { free(bufs); bufs = NULL; }
|
|
if (xs) { free(xs); xs = NULL; }
|
|
if (qs) { free(qs); qs = NULL; }
|
|
if (rawbits) { free(rawbits); rawbits = NULL; }
|
|
|
|
if (xn) { free(xn); xn = NULL; }
|
|
if (ew) { free(ew); ew = NULL; }
|
|
if (Fm) { free(Fm); Fm = NULL; }
|
|
if (X) { free(X); X = NULL; }
|
|
if (Z) { free(Z); Z = NULL; }
|
|
if (cx) { free(cx); cx = NULL; }
|
|
|
|
if (Hann) { free(Hann); Hann = NULL; }
|
|
|
|
if (option_iq)
|
|
{
|
|
if (raw_iqbuf) { free(raw_iqbuf); raw_iqbuf = NULL; }
|
|
if (rot_iqbuf) { free(rot_iqbuf); rot_iqbuf = NULL; }
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------------------ */
|
|
|
|
unsigned int get_sample() {
|
|
return sample_out;
|
|
}
|
|
|