/* * radiosonde RS92 * * * broadcast ephemeris: * http://cddis.gsfc.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html * ftp://cddis.gsfc.nasa.gov/gnss/data/daily/YYYY/DDD/YYn/brdcDDD0.YYn.Z (updated) * ftp://cddis.gsfc.nasa.gov/gnss/data/daily/YYYY/brdc/brdcDDD0.YYn.Z (final) * * SEM almanac: * https://celestrak.com/GPS/almanac/SEM/ * * GPS calendar: * http://adn.agi.com/GNSSWeb/ * * GPS-Hoehe ueber Ellipsoid, Geoid-Hoehe: * http://geographiclib.sourceforge.net/cgi-bin/GeoidEval */ /* ./rs92gps_rawin -r 2015_11_01.wav > raw.out ./rs92gps_rawin --dop 5 -gg -e brdc3050.15n --rawin raw.out */ #include #include #include #include #ifdef WIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef unsigned short ui16_t; typedef unsigned int ui32_t; typedef struct { int frnr; char id[9]; int week; int gpssec; int jahr; int monat; int tag; int wday; int std; int min; float sek; double lat; double lon; double h; int sats[4]; double dop; unsigned short aux[4]; } gpx_t; gpx_t gpx; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_inv = 0, // invertiert Signal fileloaded = 0, option_vergps = 0, rawin = 0; double dop_limit = 10.0; int rollover = 0, err_gps = 0; int almanac = 0, ephem = 0; /* --- RS92-SGP: 8N1 manchester --- */ #define BITS (2*(1+8+1)) // 20 #define HEADOFS 40 // HEADOFS+HEADLEN = 120 (bis 0x10) #define HEADLEN 80 // (HEADOFS+HEADLEN) mod BITS = 0 /* #define HEADOFS 0 // HEADOFS muss 0 wegen Wiederholung #define HEADLEN 60 // HEADLEN < 100, (HEADOFS+HEADLEN) mod BITS = 0 */ #define FRAMESTART ((HEADOFS+HEADLEN)/BITS) /* 2A 10*/ char header[] = "10100110011001101001" "10100110011001101001" "10100110011001101001" "10100110011001101001" "1010011001100110100110101010100110101001"; char buf[HEADLEN+1] = "x"; int bufpos = -1; #define FRAME_LEN 240 ui8_t frame[FRAME_LEN] = { 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x10}; /* --- RS92-SGP ------------------- */ char buffer_rawin[3*FRAME_LEN+8]; //## rawin1: buffer_rawin[2*FRAME_LEN+4]; int frameofs = 0; #define MASK_LEN 64 ui8_t mask[MASK_LEN] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98, 0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26, 0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1, 0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1, 0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C, 0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61, 0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23, 0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1}; /* LFSR: ab i=8 (mod 64): * m[16+i] = m[i] ^ m[i+2] ^ m[i+4] ^ m[i+6] * ________________3205590EF944C6262160C2EA795D6DA15469470CDCE85CF1 * F776827F0799A22C937C3063F5102E61D0BCB4B606AAF423786E3BAEBF7B4CC196833E51B1490898 */ /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 4800 int sample_rate = 0, bits_sample = 0, channels = 0; float samples_per_bit = 0; int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } int read_wav_header(FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if ((bits_sample != 8) && (bits_sample != 16)) return -1; samples_per_bit = sample_rate/(float)BAUD_RATE; fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit); return 0; } int read_sample(FILE *fp) { // int = i32_t int byte, i, ret; // return ui16_t/ui8_t oder EOF for (i = 0; i < channels; i++) { // i = 0: links bzw. mono byte = fgetc(fp); if (byte == EOF) return EOF; if (i == 0) ret = byte; if (bits_sample == 16) { byte = fgetc(fp); if (byte == EOF) return EOF; if (i == 0) ret += byte << 8; } } // unsigned 8/16 bit sample >= 0 return ret; // EOF < 0 } int sign(int sample) { int sgn = 0; if (bits_sample == 8) { // unsigned char: if (sample & 0x80) sgn = 1; else sgn = -1; // 00..7F: - , 80..FF: + } else if (bits_sample == 16) { if (sample & 0x8000) sgn = -1; else sgn = 1; } return sgn; } int par=1, par_alt=1; unsigned long sample_count = 0; int read_bits_fsk(FILE *fp, int *bit, int *len) { int n, sample; float l; n = 0; do{ sample = read_sample(fp); // unsigned sample; if (sample == EOF) return EOF; // usample >= 0 par_alt = par; par = sign(sample); sample_count++; n++; } while (par*par_alt > 0); l = (float)n / samples_per_bit; // abw = n % samples_per_bit; *len = (int)(l+0.5); if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1 else *bit = (1-par_alt)/2; // sdr#= 0; i--) { // big endian */ if (bit8[i] == 1) byteval += d; else if (bit8[i] == 0) byteval += 0; else return 0x100; d <<= 1; } return byteval; } void inc_bufpos() { bufpos = (bufpos+1) % HEADLEN; } int compare() { int i=0, j = bufpos; while (i < HEADLEN) { if (j < 0) j = HEADLEN-1; if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break; j--; i++; } return i; } ui8_t xorbyte(int pos) { return frame[pos]; // ^ mask[pos % MASK_LEN]; } /* ------------------------------------------------------------------------------------ */ /* * Convert GPS Week and Seconds to Modified Julian Day. * - Adapted from sci.astro FAQ. * - Ignores UTC leap seconds. */ /* void Gps2Date(long GpsWeek, long GpsSeconds, int *Year, int *Month, int *Day) { long GpsDays, Mjd; long J, C, Y, M; GpsDays = GpsWeek * 7 + (GpsSeconds / 86400); Mjd = 44244 + GpsDays; J = Mjd + 2468570; C = 4 * J / 146097; J = J - (146097 * C + 3) / 4; Y = 4000 * (J + 1) / 1461001; J = J - 1461 * Y / 4 + 31; M = 80 * J / 2447; *Day = J - 2447 * M / 80; J = M / 11; *Month = M + 2 - (12 * J); *Year = 100 * (C - 49) + Y + J; } */ /* ------------------------------------------------------------------------------------ */ #define pos_FrameNb 0x08 // 2 byte #define pos_SondeID 0x0C // 8 byte #define pos_CalData 0x17 // 1 byte, counter 0x00..0x1f #define pos_Calfreq 0x1A // 2 byte, calfr 0x00 #define pos_GPSTOW 0x48 // 4 byte #define pos_AuxData 0xC8 // 8 byte #define posGPS_PRN 0x4E // 12*5 bit in 8 byte #define posGPS_DATA 0x62 // 12*8 byte int get_FrameNb() { int i; unsigned byte; ui8_t frnr_bytes[2]; int frnr; for (i = 0; i < 2; i++) { byte = xorbyte(pos_FrameNb + i); frnr_bytes[i] = byte; } frnr = frnr_bytes[0] + (frnr_bytes[1] << 8); gpx.frnr = frnr; return 0; } int get_SondeID() { int i; unsigned byte; ui8_t sondeid_bytes[8]; for (i = 0; i < 8; i++) { byte = xorbyte(pos_SondeID + i); if ((byte < 0x20) || (byte > 0x7E)) return -1; sondeid_bytes[i] = byte; } for (i = 0; i < 8; i++) { gpx.id[i] = sondeid_bytes[i]; } gpx.id[9] = '\0'; return 0; } char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; int get_GPStime() { int i; unsigned byte; ui8_t gpstime_bytes[4]; int gpstime = 0, // 32bit day; float ms; for (i = 0; i < 4; i++) { byte = xorbyte(pos_GPSTOW + i); gpstime_bytes[i] = byte; } memcpy(&gpstime, gpstime_bytes, 4); ms = gpstime % 1000; gpstime /= 1000; gpx.gpssec = gpstime; day = gpstime / (24 * 3600); gpstime %= (24*3600); if ((day < 0) || (day > 6)) return -1; gpx.wday = day; gpx.std = gpstime / 3600; gpx.min = (gpstime % 3600) / 60; gpx.sek = gpstime % 60 + ms/1000.0; return 0; } int get_Aux() { int i; unsigned short byte; for (i = 0; i < 4; i++) { byte = xorbyte(pos_AuxData+2*i)+(xorbyte(pos_AuxData+2*i+1)<<8); gpx.aux[i] = byte; } return 0; } int get_Cal() { int i; unsigned byte; ui8_t calfr = 0; //ui8_t burst = 0; int freq = 0; ui8_t freq_bytes[2]; byte = xorbyte(pos_CalData); calfr = byte; if (option_verbose == 2) { fprintf(stderr, "[%5d] ", gpx.frnr); fprintf(stderr, " 0x%02x:", calfr); } for (i = 0; i < 16; i++) { byte = xorbyte(pos_CalData+1+i); if (option_verbose == 2) { fprintf(stderr, " %02x", byte); } } if (option_verbose) { get_Aux(); if (option_verbose == 2) { fprintf(stderr, " # "); for (i = 0; i < 8; i++) { byte = xorbyte(pos_AuxData+i); fprintf(stderr, "%02x ", byte); } } else { if (gpx.aux[0] != 0 || gpx.aux[1] != 0 ||gpx.aux[2] != 0 || gpx.aux[3] != 0) { fprintf(stdout, " # %04x %04x %04x %04x", gpx.aux[0], gpx.aux[1], gpx.aux[2], gpx.aux[3]); } } } if (calfr == 0x00) { for (i = 0; i < 2; i++) { byte = xorbyte(pos_Calfreq + i); freq_bytes[i] = byte; } byte = freq_bytes[0] + (freq_bytes[1] << 8); //printf(":%04x ", byte); freq = 400000 + 10*byte; // kHz; fprintf(stdout, " : freq %d kHz", freq); } if (option_verbose == 2) { fprintf(stderr, "\n"); } return 0; } /* ---------------------------------------------------------------------------------------------------- */ #include "nav_gps.c" EPHEM_t alm[33]; //EPHEM_t eph[33][24]; EPHEM_t *ephs = NULL; SAT_t sat[33]; ui8_t prn_le[12*5]; /* le - little endian */ void prnbits_le(ui16_t byte16, ui8_t bits[15]) { int i; /* letztes bit wird nicht gelesen */ for (i = 0; i < 15; i++) { bits[i] = byte16 & 1; byte16 >>= 1; } } ui8_t prns[12]; void prn12(ui8_t *prn_le, ui8_t prns[12]) { int i, j, d; for (i = 0; i < 12; i++) { prns[i] = 0; d = 1; for (j = 0; j < 5; j++) { if (prn_le[5*i+j]) prns[i] += d; d <<= 1; } // ?? if (prns[i] == 0) prns[i] = 32; ?? // 5 bit: 0..31 } } int calc_satpos_alm(EPHEM_t alm[], double t, SAT_t *satp) { double X, Y, Z; int j; int week; double cl_corr; for (j = 1; j < 33; j++) { if (alm[j].prn > 0) { // prn==j // Woche hat 604800 sec if (t-alm[j].toa > 604800/2) rollover = +1; else if (t-alm[j].toa < -604800/2) rollover = -1; else rollover = 0; week = alm[j].week - rollover; GPS_SatellitePosition_Ephem( week, t, alm[j], &cl_corr, &X, &Y, &Z ); satp[alm[j].prn].X = X; satp[alm[j].prn].Y = Y; satp[alm[j].prn].Z = Z; satp[alm[j].prn].clock_corr = cl_corr; } } return 0; } int calc_satpos_rnx(EPHEM_t eph[][24], double t, SAT_t *satp) { double X, Y, Z; int j, i, ti; int week; double cl_corr; double tdiff, td; for (j = 1; j < 33; j++) { // Woche hat 604800 sec tdiff = 604800; ti = 0; for (i = 0; i < 24; i++) { if (eph[j][i].prn > 0) { if (t-eph[j][i].toe > 604800/2) rollover = +1; else if (t-eph[j][i].toe < -604800/2) rollover = -1; else rollover = 0; td = t-eph[j][i].toe - rollover*604800; if (td < 0) td *= -1; if ( td < tdiff ) { tdiff = td; ti = i; week = eph[j][ti].week - rollover; } } } GPS_SatellitePosition_Ephem( week, t, eph[j][ti], &cl_corr, &X, &Y, &Z ); satp[eph[j][ti].prn].X = X; satp[eph[j][ti].prn].Y = Y; satp[eph[j][ti].prn].Z = Z; satp[eph[j][ti].prn].clock_corr = cl_corr; } return 0; } int calc_satpos_rnx2(EPHEM_t *eph, double t, SAT_t *satp) { double X, Y, Z; int j; int week; double cl_corr; double tdiff, td; int count, count0; for (j = 1; j < 33; j++) { count = count0 = 0; // Woche hat 604800 sec tdiff = 604800; while (eph[count].prn > 0) { if (eph[count].prn == j) { if (t - eph[count].toe > 604800/2) rollover = +1; else if (t - eph[count].toe < -604800/2) rollover = -1; else rollover = 0; td = fabs( t - eph[count].toe - rollover*604800); if ( td < tdiff ) { tdiff = td; week = eph[count].week - rollover; count0 = count; } } count += 1; } GPS_SatellitePosition_Ephem( week, t, eph[count0], &cl_corr, &X, &Y, &Z ); satp[j].X = X; satp[j].Y = Y; satp[j].Z = Z; satp[j].clock_corr = cl_corr; satp[j].ephtime = eph[count0].toe; } return 0; } typedef struct { int chips; ui32_t time; int ca; } RANGE_t; RANGE_t range[33]; int prn[12]; // pseudo.range = -df*pseudo.chips , df = lightspeed/(chips/sec)/2^10 const double df = 299792.458/1023.0/1024.0; //0.286183844 // c=299792458m/s, 1023000chips/s int get_pseudorange() { ui32_t gpstime; ui8_t gpstime_bytes[4]; ui8_t pseudobytes[4]; unsigned byteval; int i, j, k; ui8_t bytes[4]; ui16_t byte16; double pr0, prj; for (i = 0; i < 4; i++) { gpstime_bytes[i] = xorbyte(pos_GPSTOW + i); } memcpy(&gpstime, gpstime_bytes, 4); // GPS-TOW in ms for (i = 0; i < 4; i++) { for (j = 0; j < 2; j++) { bytes[j] = frame[posGPS_PRN+2*i+j]; } memcpy(&byte16, bytes, 2); prnbits_le(byte16, prn_le+15*i); } prn12(prn_le, prns); // PRN-Nummern if (almanac) calc_satpos_alm(alm, gpstime/1000.0, sat); //if (ephem) calc_satpos_rnx(eph, gpstime/1000.0, sat); if (ephem) calc_satpos_rnx2(ephs, gpstime/1000.0, sat); k = 0; for (j = 0; j < 12; j++) { for (i = 0; i < 4; i++) { pseudobytes[i] = frame[posGPS_DATA+8*j+i]; } memcpy(&byteval, pseudobytes, 4); if ( byteval == 0x7FFFFFFF || byteval == 0x55555555 ) { range[prns[j]].chips = 0; continue; } if (option_vergps != 8) { if ( byteval > 0x10000000 && byteval < 0xF0000000 ) { range[prns[j]].chips = 0; continue; }} if ( prns[j] == 0 ) prns[j] = 32; range[prns[j]].chips = byteval; range[prns[j]].time = gpstime; /* for (i = 0; i < 4; i++) { pseudobytes[i] = frame[posGPS_DATA+8*j+4+i]; } memcpy(&byteval, pseudobytes, 4); range[prns[j]].ca = byteval & 0xFFFFFF; //range[prns[j]].dop = (byteval >> 24) & 0xFF; if (range[prns[j]].ca == 0x555555) { range[prns[j]].ca = 0; continue; } */ if ( dist(sat[prns[j]].X, sat[prns[j]].Y, sat[prns[j]].Z, 0, 0, 0) > 6700000 ) { for (i = 0; i < k; i++) { if (prn[i] == prns[j]) break; } if (i == k) { prn[k] = prns[j]; k++; } } } for (j = 0; j < 12; j++) { // 0x013FB0A4 sat[prns[j]].pseudorange = /*0x01400000*/ - range[prns[j]].chips * df; } pr0 = (double)0x01400000; for (j = 0; j < k; j++) { prj = sat[prn[j]].pseudorange + sat[prn[j]].clock_corr; if (prj < pr0) pr0 = prj; } for (j = 0; j < k; j++) sat[prn[j]].PR = sat[prn[j]].pseudorange + sat[prn[j]].clock_corr - pr0 + 20e6; // es kann PRNs geben, die zeitweise stark abweichende PR liefern; // eventuell Standardabweichung ermitteln und fehlerhafte Sats weglassen return k; } double DOP[4]; int get_GPSkoord(int N) { double lat, lon, alt, rx_cl_bias; double pos_ecef[3]; double gdop, gdop0 = 1000.0; double hdop, vdop, pdop; int i0, i1, i2, i3, j; int nav_ret = 0; int num = 0; SAT_t Sat_A[4]; SAT_t Sat_B[12]; // N <= 12 if (option_vergps == 8) { printf(" sats: "); for (j = 0; j < N; j++) fprintf(stdout, "%02d ", prn[j]); printf("\n"); } gpx.lat = gpx.lon = gpx.h = 0; if (option_vergps != 2) { for (i0=0;i0 0 && gdop < gdop0) { gpx.lat = lat; gpx.lon = lon; gpx.h = alt; gpx.dop = gdop; gpx.sats[0] = prn[i0]; gpx.sats[1] = prn[i1]; gpx.sats[2] = prn[i2]; gpx.sats[3] = prn[i3]; gdop0 = gdop; } } }}}} } if (option_vergps == 8 || option_vergps == 2) { for (j = 0; j < N; j++) Sat_B[j] = sat[prn[j]]; if (option_vergps == 8) { NAV_bancroft1(N, Sat_B, pos_ecef, &rx_cl_bias); ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt); printf("bancroft1[%d] lat: %.6f , lon: %.6f , alt: %.2f ", N, lat, lon, alt); printf("\n"); } NAV_bancroft2(N, Sat_B, pos_ecef, &rx_cl_bias); ecef2elli(pos_ecef[0], pos_ecef[1], pos_ecef[2], &lat, &lon, &alt); gdop = -1; if (calc_DOPn(N, Sat_B, pos_ecef, DOP) == 0) { gdop = sqrt(DOP[0]+DOP[1]+DOP[2]+DOP[3]); } if (option_vergps == 8) { printf("bancroft2[%d] lat: %.6f , lon: %.6f , alt: %.2f ", N, lat, lon, alt); printf(" GDOP["); for (j = 0; j < N; j++) { printf("%d", prn[j]); if (j < N-1) printf(","); else printf("] %.1f ", gdop); } printf("\n"); } if (option_vergps == 2) { gpx.lat = lat; gpx.lon = lon; gpx.h = alt; gpx.dop = gdop; num = N; } } return num; } /* ------------------------------------------------------------------------------------ */ int print_position() { // GPS-Hoehe ueber Ellipsoid int j, k; int err1, err2; err1 = 0; if (!option_verbose) err1 = err_gps; err1 |= get_FrameNb(); err1 |= get_SondeID(); err2 = err1 | err_gps; //err2 |= get_GPSweek(); err2 |= get_GPStime(); if (!err1) { //Gps2Date(gpx.week, gpx.gpssec, &gpx.jahr, &gpx.monat, &gpx.tag); fprintf(stdout, "[%5d] ", gpx.frnr); fprintf(stdout, "(%s) ", gpx.id); } if (!err2) { fprintf(stdout, "%s ", weekday[gpx.wday]); fprintf(stdout, "%02d:%02d:%04.1f", gpx.std, gpx.min, gpx.sek); /* fprintf(stdout, "%04d-%02d-%02d %02d:%02d:%02d", gpx.jahr, gpx.monat, gpx.tag, gpx.std, gpx.min, gpx.sek); if (option_verbose) fprintf(stdout, " (W %d)", gpx.week); */ k = get_pseudorange(); if ((almanac || ephem) && (k >= 4)) { if (get_GPSkoord(k) > 0) { fprintf(stdout, " "); if (almanac) fprintf(stdout, " lat: %.4f lon: %.4f alt: %.1f ", gpx.lat, gpx.lon, gpx.h); else fprintf(stdout, " lat: %.5f lon: %.5f alt: %.1f ", gpx.lat, gpx.lon, gpx.h); if (option_vergps) { if (option_vergps != 2) { fprintf(stdout, " GDOP[%02d,%02d,%02d,%02d] %.1f", gpx.sats[0], gpx.sats[1], gpx.sats[2], gpx.sats[3], gpx.dop); } else { fprintf(stdout, " GDOP["); for (j = 0; j < k; j++) { printf("%d", prn[j]); if (j < k-1) printf(","); else printf("] %.1f ", gpx.dop); } } } } } get_Cal(); } if (!err1) { fprintf(stdout, "\n"); if (option_vergps == 8) printf("\n"); } return err2; } void print_frame(int len) { int i; ui8_t byte; if (option_raw) { for (i = 0; i < len; i++) { //byte = frame[i]; byte = xorbyte(i); fprintf(stdout, "%02x", byte); } fprintf(stdout, "\n"); } else print_position(); } int main(int argc, char *argv[]) { FILE *fp, *fp_alm = NULL, *fp_eph = NULL; char *fpname; char bitbuf[BITS]; int bit_count = 0, byte_count = FRAMESTART, header_found = 0, byte, i; int bit, len; char *pbuf = NULL; #ifdef WIN _setmode(_fileno(stdin), _O_BINARY); setbuf(stdout, NULL); #endif fpname = argv[0]; ++argv; while ((*argv) && (!fileloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] \n", fpname); fprintf(stderr, " file: audio.wav or raw_data\n"); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, --verbose\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); fprintf(stderr, " -a, --almanac \n"); fprintf(stderr, " -e, --ephem \n"); fprintf(stderr, " -g1 (verbose GPS: 4 sats)\n"); fprintf(stderr, " -g2 (verbose GPS: all sats)\n"); fprintf(stderr, " -gg (vverbose GPS)\n"); fprintf(stderr, " --rawin1,2 (raw_data file)\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv") == 0) ) { option_verbose = 2; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 1; } else if ( (strcmp(*argv, "-a") == 0) || (strcmp(*argv, "--almanac") == 0) ) { ++argv; if (*argv) fp_alm = fopen(*argv, "r"); // txt-mode else return -1; } else if ( (strcmp(*argv, "-e") == 0) || (strncmp(*argv, "--ephem", 7) == 0) ) { ++argv; if (*argv) fp_eph = fopen(*argv, "r"); // txt-mode else return -1; } else if ( (strcmp(*argv, "--dop") == 0) ) { ++argv; if (*argv) { dop_limit = atof(*argv); if (dop_limit <= 0 || dop_limit >= 100) dop_limit = 10; } else return -1; } else if (strcmp(*argv, "-g1") == 0) { option_vergps = 1; } // verbose1 GPS else if (strcmp(*argv, "-g2") == 0) { option_vergps = 2; } // verbose2 GPS (bancroft) else if (strcmp(*argv, "-gg") == 0) { option_vergps = 8; } // vverbose GPS else if (strcmp(*argv, "--rawin1") == 0) { rawin = 2; } // raw_txt input1 else if (strcmp(*argv, "--rawin2") == 0) { rawin = 3; } // raw_txt input2 (SM) else { if (!rawin) fp = fopen(*argv, "rb"); else fp = fopen(*argv, "r"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -1; } fileloaded = 1; } ++argv; } if (!fileloaded) fp = stdin; if (fp_alm) { i = read_SEMalmanac(fp_alm, alm); if (i == 0) { almanac = 1; } fclose(fp_alm); } if (fp_eph) { /* i = read_RNXephemeris(fp_eph, eph); if (i == 0) { ephem = 1; almanac = 0; } fclose(fp_eph); */ ephs = read_RNXpephs(fp_eph); if (ephs) { ephem = 1; almanac = 0; } fclose(fp_eph); } if (!rawin) { i = read_wav_header(fp); if (i) { fclose(fp); return -1; } while (!read_bits_fsk(fp, &bit, &len)) { if (len == 0) { // reset_frame(); if (byte_count > pos_SondeID+8) { if (byte_count < FRAME_LEN-20) err_gps = 1; print_frame(byte_count); err_gps = 0; } bit_count = 0; byte_count = FRAMESTART; header_found = 0; inc_bufpos(); buf[bufpos] = 'x'; continue; // ... } for (i = 0; i < len; i++) { inc_bufpos(); buf[bufpos] = 0x30 + bit; // Ascii if (!header_found) { if (compare() >= HEADLEN) header_found = 1; } else { bitbuf[bit_count] = bit; bit_count++; if (bit_count == BITS) { bit_count = 0; byte = bits2byte(bitbuf); frame[byte_count] = byte; byte_count++; if (byte_count == FRAME_LEN) { byte_count = FRAMESTART; header_found = 0; //inc_bufpos(); //buf[bufpos] = 'x'; print_frame(FRAME_LEN); } } } } } } else //if (rawin) { if (rawin == 3) frameofs = 5; while (1 > 0) { pbuf = fgets(buffer_rawin, rawin*FRAME_LEN+4, fp); if (pbuf == NULL) break; buffer_rawin[rawin*FRAME_LEN+1] = '\0'; len = strlen(buffer_rawin) / rawin; if (len > pos_SondeID+8) { for (i = 0; i < len-frameofs; i++) { //%2x SCNx8=%hhx(inttypes.h) sscanf(buffer_rawin+rawin*i, "%2hhx", frame+frameofs+i); // wenn ohne %hhx: sscanf(buffer_rawin+rawin*i, "%2x", &byte); frame[frameofs+i] = (ui8_t)byte; } if (len < FRAME_LEN-20) err_gps = 1; print_frame(len); err_gps = 0; } } } free(ephs); fclose(fp); return 0; }