Modified rs92gps to be parsable easier, initial commit of auto sonde RX utilities.

pull/13/head
Mark Jessop 2017-04-29 23:36:47 +09:30
rodzic 49ebe504d4
commit f228b43e02
4 zmienionych plików z 326 dodań i 62 usunięć

Wyświetl plik

@ -0,0 +1,55 @@
# APRS push utils for Sonde auto RX.
from socket import *
# Push a Radiosonde data packet to APRS as an object.
def push_balloon_to_aprs(sonde_data, aprs_comment="BOM Balloon", aprsUser="N0CALL", aprsPass="00000", serverHost = 'rotate.aprs2.net', serverPort = 14580):
# Pad or limit the sonde ID to 9 characters.
object_name = sonde_data["id"].strip()
if len(object_name) > 9:
object_name = object_name[:9]
elif len(object_name) < 9:
object_name = object_name + " "*(9-len(object_name))
# Convert float latitude to APRS format (DDMM.MM)
lat = float(sonde_data["lat"])
lat_degree = abs(int(lat))
lat_minute = abs(lat - int(lat)) * 60.0
lat_min_str = ("%02.2f" % lat_minute).zfill(5)
lat_dir = "S"
if lat>0.0:
lat_dir = "N"
lat_str = "%02d%s" % (lat_degree,lat_min_str) + lat_dir
# Convert float longitude to APRS format (DDDMM.MM)
lon = float(sonde_data["lon"])
lon_degree = abs(int(lon))
lon_minute = abs(lon - int(lon)) * 60.0
lon_min_str = ("%02.2f" % lon_minute).zfill(5)
lon_dir = "E"
if lon<0.0:
lon_dir = "W"
lon_str = "%03d%s" % (lon_degree,lon_min_str) + lon_dir
# Convert Alt (in metres) to feet
alt = int(float(sonde_data["alt"])/0.3048)
# Produce the APRS object string.
out_str = ";%s*111111z%s/%sO000/000/A=%06d %s" % (object_name,lat_str,lon_str,alt,aprs_comment)
# Connect to an APRS-IS server, login, then push our object position in.
# create socket & connect to server
sSock = socket(AF_INET, SOCK_STREAM)
sSock.connect((serverHost, serverPort))
# logon
sSock.send('user %s pass %s vers VK5QI-Python 0.01\n' % (aprsUser, aprsPass) )
# send packet
sSock.send('%s>APRS:%s\n' % (aprsUser, out_str) )
# close socket
sSock.shutdown(0)
sSock.close()
return out_str

Wyświetl plik

@ -4,89 +4,289 @@
#
# 2017-04 Mark Jessop <vk5qi@rfhead.net>
#
# The following binaries will need to be built and copied to this directory:
# rs92/rs92gps
# scan/rs_detect
import numpy as np
import sys
import logging
import datetime
import time
import Queue
import subprocess
import traceback
from aprs_utils import *
from threading import Thread
from StringIO import StringIO
from findpeaks import *
from os import system
import sys
# Receiver Parameters
RX_PPM = 0
RX_GAIN = 0 # 0 = Auto
# Sonde Search Configuration Parameters
MIN_FREQ = 400.4e6
MAX_FREQ = 403.5e6
SEARCH_STEP = 500
MIN_FREQ_DISTANCE = 10000 # Expect a minimum distance of 10 kHz between sondes.
MIN_SNR = 10 # Only takes peaks that are a minimum of 10dB above the noise floor.
MIN_FREQ = 400.4e6 # Search start frequency (Hz)
MAX_FREQ = 403.5e6 # Search stop frequency (Hz)
SEARCH_STEP = 800 # Search step (Hz)
FREQ_QUANTIZATION = 5000 # Quantize search results to 5 kHz steps.
MIN_FREQ_DISTANCE = 1000 # Expect a minimum distance of 10 kHz between sondes.
MIN_SNR = 10 # Only takes peaks that are a minimum of 10dB above the noise floor.
SEARCH_ATTEMPTS = 5 # Number of attempts to search before giving up
SEARCH_DELAY = 300 # Delay between search attempts (seconds)
# Other Receiver Parameters
MAX_RX_TIME = 3*60*60
# APRS Output
APRS_OUTPUT_ENABLED = True
APRS_UPDATE_RATE = 30
APRS_USER = "N0CALL"
APRS_PASS = "000000"
aprs_queue = Queue.Queue(1)
def run_rtl_power(start, stop, step, filename="log_power.csv", dwell = 20):
# Run rtl_power, with a timeout
# rtl_power -f 400400000:403500000:800 -i20 -1 log_power.csv
rtl_power_cmd = "timeout %d rtl_power -f %d:%d:%d -i %d -1 %s" % (dwell+10, start, stop, step, dwell, filename)
logging.info("Running frequency scan.")
ret_code = system(rtl_power_cmd)
if ret_code == 1:
logging.critical("rtl_power call failed!")
sys.exit(1)
else:
return True
def read_rtl_power(filename):
''' Read in frequency samples from a single-shot log file produced by rtl_power'''
''' Read in frequency samples from a single-shot log file produced by rtl_power'''
# Output buffers.
freq = np.array([])
power = np.array([])
# Output buffers.
freq = np.array([])
power = np.array([])
freq_step = 0
freq_step = 0
# Open file.
f = open(filename,'r')
# Open file.
f = open(filename,'r')
# rtl_power log files are csv's, with the first 6 fields in each line describing the time and frequency scan parameters
# for the remaining fields, which contain the power samples.
# rtl_power log files are csv's, with the first 6 fields in each line describing the time and frequency scan parameters
# for the remaining fields, which contain the power samples.
for line in f:
# Split line into fields.
fields = line.split(',')
for line in f:
# Split line into fields.
fields = line.split(',')
if len(fields) < 6:
raise Exception("Invalid number of samples in input file - corrupt?")
if len(fields) < 6:
logging.error("Invalid number of samples in input file - corrupt?")
raise Exception("Invalid number of samples in input file - corrupt?")
start_date = fields[0]
start_time = fields[1]
start_freq = float(fields[2])
stop_freq = float(fields[3])
freq_step = float(fields[4])
n_samples = int(fields[5])
start_date = fields[0]
start_time = fields[1]
start_freq = float(fields[2])
stop_freq = float(fields[3])
freq_step = float(fields[4])
n_samples = int(fields[5])
freq_range = np.arange(start_freq,stop_freq,freq_step)
samples = np.loadtxt(StringIO(",".join(fields[6:])),delimiter=',')
freq_range = np.arange(start_freq,stop_freq,freq_step)
samples = np.loadtxt(StringIO(",".join(fields[6:])),delimiter=',')
# Add frequency range and samples to output buffers.
freq = np.append(freq, freq_range)
power = np.append(power, samples)
# Add frequency range and samples to output buffers.
freq = np.append(freq, freq_range)
power = np.append(power, samples)
f.close()
return (freq, power, freq_step)
f.close()
return (freq, power, freq_step)
def quantize_freq(freq_list, quantize=5000):
return np.round(freq_list/quantize)*quantize
def detect_sonde(frequency):
""" Receive some FM and attempt to detect the presence of a radiosonde. """
rx_test_command = "timeout 10s rtl_fm -p %d -M fm -s 15k -f %d 2>/dev/null |" % (RX_PPM, frequency)
rx_test_command += "sox -t raw -r 15k -e s -b 16 -c 1 - -r 48000 -t wav - highpass 20 2>/dev/null |"
rx_test_command += "./rs_detect -z -t 8 2>/dev/null"
logging.info("Attempting sonde detection on %.3f MHz" % (frequency/1e6))
ret_code = system(rx_test_command)
ret_code = ret_code >> 8
if ret_code == 3:
logging.info("Detected a RS41!")
return "RS41"
elif ret_code == 4:
logging.info("Detected a RS92!")
return "RS92"
else:
return None
# $rs = "";
# $WFM = "";
# if (abs($ret) == 2) { $rs = "dfm"; $breite = "15k"; $dec = './dfm06 -vv --ecc'; $filter = "lowpass 2000 highpass 20"; }
# if (abs($ret) == 3) { $rs = "rs41"; $breite = "12k"; $dec = './rs41ecc --ecc -v'; $filter = "lowpass 2600"; }
# if (abs($ret) == 4) { $rs = "rs92"; $breite = "12k"; $dec = './rs92gps --vel2 -a almanac.txt'; $filter = "lowpass 2500 highpass 20"; }
# if (abs($ret) == 5) { $rs = "m10"; $breite = "24k"; $dec = './m10x -vv'; $filter = "highpass 20"; }
# if (abs($ret) == 6) { $rs = "imet"; $breite = "40k"; $dec = './imet1ab -v'; $filter = "highpass 20"; $WFM = "-o 4"; }
# if ($inv) { print "-";} print uc($rs)," ($utc)\n";
# $utc = strftime('%Y%m%d_%H%M%S', gmtime);
# $wavfile = $rs."-".$utc."Z-".$freq."Hz.wav";
# if ($rs) {
# system("timeout 30s rtl_fm -p $ppm -M fm $WFM -s $breite -f $freq 2>/dev/null |\
# sox -t raw -r $breite -e s -b 16 -c 1 - -r 48000 -b 8 -t wav - $filter 2>/dev/null |\
# tee $log_dir/$wavfile | $dec $inv 2>/dev/null");
def process_rs92_line(line):
try:
params = line.split(',')
if len(params) < 9:
logging.error("Not enough parameters: %s" % line)
return
# Attempt to extract parameters.
rs92_frame = {}
rs92_frame['frame'] = int(params[0])
rs92_frame['id'] = str(params[1])
rs92_frame['time'] = str(params[2])
rs92_frame['lat'] = float(params[3])
rs92_frame['lon'] = float(params[4])
rs92_frame['alt'] = float(params[5])
rs92_frame['vel_h'] = float(params[6])
rs92_frame['heading'] = float(params[7])
rs92_frame['vel_v'] = float(params[8])
rs92_frame['ok'] = 'OK'
logging.info("RS92: %s,%d,%s,%.5f,%.5f,%.1f" % (rs92_frame['id'], rs92_frame['frame'],rs92_frame['time'], rs92_frame['lat'], rs92_frame['lon'], rs92_frame['alt']))
return rs92_frame
except:
logging.error("Could not parse string: %s" % line)
return None
def decode_rs92(frequency, ppm=RX_PPM, rx_queue=None):
""" Decode a RS92 sonde """
decode_cmd = "rtl_fm -p %d -M fm -s 12k -f %d 2>/dev/null |" % (ppm, frequency)
decode_cmd += "sox -t raw -r 12k -e s -b 16 -c 1 - -r 48000 -b 8 -t wav - lowpass 2500 highpass 20 2>/dev/null |"
decode_cmd += "./rs92gps --vel2 --crc -a almanac.txt"
rx_start_time = time.time()
rx = subprocess.Popen(decode_cmd, shell=True, stdin=None, stdout=subprocess.PIPE)
while True:
try:
line = rx.stdout.readline()
if (line != None) and (line != ""):
data = process_rs92_line(line)
if data != None:
data['freq'] = "%.3f MHz" % (frequency/1e6)
if rx_queue != None:
try:
rx_queue.put_nowait(data)
except:
pass
except:
traceback.print_exc()
logging.error("Could not read from rxer stdout?")
rx.kill()
return
def internet_push_thread():
global aprs_queue, APRS_USER, APRS_PASS, APRS_UPDATE_RATE, APRS_OUTPUT_ENABLED
print("Started thread.")
while APRS_OUTPUT_ENABLED:
try:
data = aprs_queue.get_nowait()
except:
continue
aprs_comment = "Sonde Auto-RX Test %s" % data['freq']
if APRS_OUTPUT_ENABLED:
aprs_data = push_balloon_to_aprs(data,aprs_comment=aprs_comment,aprsUser=APRS_USER, aprsPass=APRS_PASS)
logging.debug("Data pushed to APRS-IS: %s" % aprs_data)
time.sleep(APRS_UPDATE_RATE)
print("Closing thread.")
if __name__ == "__main__":
# Run rtl_power, with a timeout
# rtl_power -f 400400000:403500000:800 -i20 -1 log_power.csv
rtl_power_cmd = "timeout 30 rtl_power -f %d:%d:%d -i20 -1 log_power.csv" % (MIN_FREQ, MAX_FREQ, SEARCH_STEP)
print("Running: %s" % rtl_power_cmd)
ret_code = system(rtl_power_cmd)
if ret_code == 1:
print("rtl_power call failed!")
sys.exit(1)
# Read in result
(freq, power, step) = read_rtl_power('log_power.csv')
# Setup logging.
logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', filename=datetime.datetime.utcnow().strftime("log/%Y%m%d-%H%M%S.log"), level=logging.DEBUG)
logging.getLogger().addHandler(logging.StreamHandler())
# Rough approximation of the noise floor of the received power spectrum.
power_nf = np.mean(power)
sonde_freq = 0.0
sonde_type = None
# Detect peaks.
peak_indices = detect_peaks(power, mph=(power_nf+MIN_SNR), mpd=(MIN_FREQ_DISTANCE/step))
while SEARCH_ATTEMPTS>0:
# Scan Band
run_rtl_power(MIN_FREQ, MAX_FREQ, SEARCH_STEP)
if len(peak_indices) == 0:
print("No peaks found!")
sys.exit(1)
peak_frequencies = freq[peak_indices]
print("Peaks found at: %s" % str(peak_frequencies/1e6))
# Read in result
(freq, power, step) = read_rtl_power('log_power.csv')
# Rough approximation of the noise floor of the received power spectrum.
power_nf = np.mean(power)
# Detect peaks.
peak_indices = detect_peaks(power, mph=(power_nf+MIN_SNR), mpd=(MIN_FREQ_DISTANCE/step), show = False)
if len(peak_indices) == 0:
logging.info("No peaks found!")
continue
# Sort peaks by power.
peak_powers = power[peak_indices]
peak_freqs = freq[peak_indices]
peak_frequencies = np.flip(peak_freqs[np.argsort(peak_powers)],0)
# Quantize to nearest 5 kHz
peak_frequencies = quantize_freq(peak_frequencies, FREQ_QUANTIZATION)
logging.info("Peaks found at (MHz): %s" % str(peak_frequencies/1e6))
for freq in peak_frequencies:
detected = detect_sonde(freq)
if detected != None:
sonde_freq = freq
sonde_type = detected
break
if sonde_type != None:
break
else:
SEARCH_ATTEMPTS -= 1
logging.warning("Search attempt failed, %d attempts remaining. Waiting %d seconds." % (SEARCH_ATTEMPTS, SEARCH_DELAY))
time.sleep(SEARCH_DELAY)
if SEARCH_ATTEMPTS == 0:
logging.error("No sondes detcted, exiting.")
sys.exit(0)
logging.info("Starting decoding of %s on %.3f MHz" % (sonde_type, sonde_freq/1e6))
t = Thread(target=internet_push_thread)
t.start()
if sonde_type == "RS92":
decode_rs92(sonde_freq, rx_queue=aprs_queue)
elif sonde_type == "RS41":
logging.error("Not implemented.")
else:
pass
APRS_OUTPUT_ENABLED = False

Wyświetl plik

@ -0,0 +1,8 @@
#!/bin/bash
# Radiosonde Auto-RX Script
# Start auto_rx process with a 3 hour timeout.
timeout 10800 python auto_rx.py
# Clean up rtl_fm process.
killall rtl_fm

Wyświetl plik

@ -1287,8 +1287,8 @@ int print_position() { // GPS-Hoehe ueber Ellipsoid
}
if (!err1) {
fprintf(stdout, "[%5d] ", gpx.frnr);
fprintf(stdout, "(%s) ", gpx.id);
fprintf(stdout, "%5d,", gpx.frnr);
fprintf(stdout, "%s,", gpx.id);
}
if (!err2) {
@ -1297,20 +1297,21 @@ int print_position() { // GPS-Hoehe ueber Ellipsoid
//fprintf(stdout, "(W %d) ", gpx.week);
fprintf(stdout, "(%04d-%02d-%02d) ", gpx.jahr, gpx.monat, gpx.tag);
}
fprintf(stdout, "%s ", weekday[gpx.wday]); // %04.1f: wenn sek >= 59.950, wird auf 60.0 gerundet
fprintf(stdout, "%02d:%02d:%06.3f", gpx.std, gpx.min, gpx.sek);
//fprintf(stdout, "%s ", weekday[gpx.wday]); // %04.1f: wenn sek >= 59.950, wird auf 60.0 gerundet
fprintf(stdout, "%02d:%02d:%06.3f,", gpx.std, gpx.min, gpx.sek);
if (n > 0) {
fprintf(stdout, " ");
if (almanac) fprintf(stdout, " lat: %.4f lon: %.4f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
else fprintf(stdout, " lat: %.5f lon: %.5f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
if (almanac) fprintf(stdout, "%.4f,%.4f,%.1f,", gpx.lat, gpx.lon, gpx.alt);
else fprintf(stdout, "%.5f,%.5f,%.1f,", gpx.lat, gpx.lon, gpx.alt);
if (option_verbose && option_vergps != 8) {
fprintf(stdout, " (d:%.1f)", gpx.diter);
}
if (option_vel /*&& option_vergps >= 2*/) {
fprintf(stdout," vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU);
fprintf(stdout,"%4.1f,%5.1f,%3.1f,", gpx.vH, gpx.vD, gpx.vU);
//fprintf(stdout," VEL: vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU);
}
if (option_verbose) {
if (option_vergps != 2) {