kopia lustrzana https://github.com/projecthorus/radiosonde_auto_rx
Modified rs92gps to be parsable easier, initial commit of auto sonde RX utilities.
rodzic
49ebe504d4
commit
f228b43e02
|
@ -0,0 +1,55 @@
|
|||
# APRS push utils for Sonde auto RX.
|
||||
|
||||
from socket import *
|
||||
|
||||
|
||||
# Push a Radiosonde data packet to APRS as an object.
|
||||
def push_balloon_to_aprs(sonde_data, aprs_comment="BOM Balloon", aprsUser="N0CALL", aprsPass="00000", serverHost = 'rotate.aprs2.net', serverPort = 14580):
|
||||
# Pad or limit the sonde ID to 9 characters.
|
||||
object_name = sonde_data["id"].strip()
|
||||
if len(object_name) > 9:
|
||||
object_name = object_name[:9]
|
||||
elif len(object_name) < 9:
|
||||
object_name = object_name + " "*(9-len(object_name))
|
||||
|
||||
# Convert float latitude to APRS format (DDMM.MM)
|
||||
lat = float(sonde_data["lat"])
|
||||
lat_degree = abs(int(lat))
|
||||
lat_minute = abs(lat - int(lat)) * 60.0
|
||||
lat_min_str = ("%02.2f" % lat_minute).zfill(5)
|
||||
lat_dir = "S"
|
||||
if lat>0.0:
|
||||
lat_dir = "N"
|
||||
lat_str = "%02d%s" % (lat_degree,lat_min_str) + lat_dir
|
||||
|
||||
# Convert float longitude to APRS format (DDDMM.MM)
|
||||
lon = float(sonde_data["lon"])
|
||||
lon_degree = abs(int(lon))
|
||||
lon_minute = abs(lon - int(lon)) * 60.0
|
||||
lon_min_str = ("%02.2f" % lon_minute).zfill(5)
|
||||
lon_dir = "E"
|
||||
if lon<0.0:
|
||||
lon_dir = "W"
|
||||
lon_str = "%03d%s" % (lon_degree,lon_min_str) + lon_dir
|
||||
|
||||
# Convert Alt (in metres) to feet
|
||||
alt = int(float(sonde_data["alt"])/0.3048)
|
||||
|
||||
# Produce the APRS object string.
|
||||
out_str = ";%s*111111z%s/%sO000/000/A=%06d %s" % (object_name,lat_str,lon_str,alt,aprs_comment)
|
||||
|
||||
# Connect to an APRS-IS server, login, then push our object position in.
|
||||
|
||||
# create socket & connect to server
|
||||
sSock = socket(AF_INET, SOCK_STREAM)
|
||||
sSock.connect((serverHost, serverPort))
|
||||
# logon
|
||||
sSock.send('user %s pass %s vers VK5QI-Python 0.01\n' % (aprsUser, aprsPass) )
|
||||
# send packet
|
||||
sSock.send('%s>APRS:%s\n' % (aprsUser, out_str) )
|
||||
|
||||
# close socket
|
||||
sSock.shutdown(0)
|
||||
sSock.close()
|
||||
|
||||
return out_str
|
|
@ -4,89 +4,289 @@
|
|||
#
|
||||
# 2017-04 Mark Jessop <vk5qi@rfhead.net>
|
||||
#
|
||||
# The following binaries will need to be built and copied to this directory:
|
||||
# rs92/rs92gps
|
||||
# scan/rs_detect
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
import logging
|
||||
import datetime
|
||||
import time
|
||||
import Queue
|
||||
import subprocess
|
||||
import traceback
|
||||
from aprs_utils import *
|
||||
from threading import Thread
|
||||
from StringIO import StringIO
|
||||
from findpeaks import *
|
||||
from os import system
|
||||
import sys
|
||||
|
||||
|
||||
# Receiver Parameters
|
||||
RX_PPM = 0
|
||||
RX_GAIN = 0 # 0 = Auto
|
||||
|
||||
# Sonde Search Configuration Parameters
|
||||
MIN_FREQ = 400.4e6
|
||||
MAX_FREQ = 403.5e6
|
||||
SEARCH_STEP = 500
|
||||
MIN_FREQ_DISTANCE = 10000 # Expect a minimum distance of 10 kHz between sondes.
|
||||
MIN_SNR = 10 # Only takes peaks that are a minimum of 10dB above the noise floor.
|
||||
MIN_FREQ = 400.4e6 # Search start frequency (Hz)
|
||||
MAX_FREQ = 403.5e6 # Search stop frequency (Hz)
|
||||
SEARCH_STEP = 800 # Search step (Hz)
|
||||
FREQ_QUANTIZATION = 5000 # Quantize search results to 5 kHz steps.
|
||||
MIN_FREQ_DISTANCE = 1000 # Expect a minimum distance of 10 kHz between sondes.
|
||||
MIN_SNR = 10 # Only takes peaks that are a minimum of 10dB above the noise floor.
|
||||
SEARCH_ATTEMPTS = 5 # Number of attempts to search before giving up
|
||||
SEARCH_DELAY = 300 # Delay between search attempts (seconds)
|
||||
|
||||
# Other Receiver Parameters
|
||||
MAX_RX_TIME = 3*60*60
|
||||
|
||||
# APRS Output
|
||||
APRS_OUTPUT_ENABLED = True
|
||||
APRS_UPDATE_RATE = 30
|
||||
APRS_USER = "N0CALL"
|
||||
APRS_PASS = "000000"
|
||||
aprs_queue = Queue.Queue(1)
|
||||
|
||||
|
||||
|
||||
def run_rtl_power(start, stop, step, filename="log_power.csv", dwell = 20):
|
||||
# Run rtl_power, with a timeout
|
||||
# rtl_power -f 400400000:403500000:800 -i20 -1 log_power.csv
|
||||
rtl_power_cmd = "timeout %d rtl_power -f %d:%d:%d -i %d -1 %s" % (dwell+10, start, stop, step, dwell, filename)
|
||||
logging.info("Running frequency scan.")
|
||||
ret_code = system(rtl_power_cmd)
|
||||
if ret_code == 1:
|
||||
logging.critical("rtl_power call failed!")
|
||||
sys.exit(1)
|
||||
else:
|
||||
return True
|
||||
|
||||
def read_rtl_power(filename):
|
||||
''' Read in frequency samples from a single-shot log file produced by rtl_power'''
|
||||
''' Read in frequency samples from a single-shot log file produced by rtl_power'''
|
||||
|
||||
# Output buffers.
|
||||
freq = np.array([])
|
||||
power = np.array([])
|
||||
# Output buffers.
|
||||
freq = np.array([])
|
||||
power = np.array([])
|
||||
|
||||
freq_step = 0
|
||||
freq_step = 0
|
||||
|
||||
|
||||
# Open file.
|
||||
f = open(filename,'r')
|
||||
# Open file.
|
||||
f = open(filename,'r')
|
||||
|
||||
# rtl_power log files are csv's, with the first 6 fields in each line describing the time and frequency scan parameters
|
||||
# for the remaining fields, which contain the power samples.
|
||||
# rtl_power log files are csv's, with the first 6 fields in each line describing the time and frequency scan parameters
|
||||
# for the remaining fields, which contain the power samples.
|
||||
|
||||
for line in f:
|
||||
# Split line into fields.
|
||||
fields = line.split(',')
|
||||
for line in f:
|
||||
# Split line into fields.
|
||||
fields = line.split(',')
|
||||
|
||||
if len(fields) < 6:
|
||||
raise Exception("Invalid number of samples in input file - corrupt?")
|
||||
if len(fields) < 6:
|
||||
logging.error("Invalid number of samples in input file - corrupt?")
|
||||
raise Exception("Invalid number of samples in input file - corrupt?")
|
||||
|
||||
start_date = fields[0]
|
||||
start_time = fields[1]
|
||||
start_freq = float(fields[2])
|
||||
stop_freq = float(fields[3])
|
||||
freq_step = float(fields[4])
|
||||
n_samples = int(fields[5])
|
||||
start_date = fields[0]
|
||||
start_time = fields[1]
|
||||
start_freq = float(fields[2])
|
||||
stop_freq = float(fields[3])
|
||||
freq_step = float(fields[4])
|
||||
n_samples = int(fields[5])
|
||||
|
||||
freq_range = np.arange(start_freq,stop_freq,freq_step)
|
||||
samples = np.loadtxt(StringIO(",".join(fields[6:])),delimiter=',')
|
||||
freq_range = np.arange(start_freq,stop_freq,freq_step)
|
||||
samples = np.loadtxt(StringIO(",".join(fields[6:])),delimiter=',')
|
||||
|
||||
# Add frequency range and samples to output buffers.
|
||||
freq = np.append(freq, freq_range)
|
||||
power = np.append(power, samples)
|
||||
# Add frequency range and samples to output buffers.
|
||||
freq = np.append(freq, freq_range)
|
||||
power = np.append(power, samples)
|
||||
|
||||
f.close()
|
||||
return (freq, power, freq_step)
|
||||
f.close()
|
||||
return (freq, power, freq_step)
|
||||
|
||||
def quantize_freq(freq_list, quantize=5000):
|
||||
return np.round(freq_list/quantize)*quantize
|
||||
|
||||
def detect_sonde(frequency):
|
||||
""" Receive some FM and attempt to detect the presence of a radiosonde. """
|
||||
rx_test_command = "timeout 10s rtl_fm -p %d -M fm -s 15k -f %d 2>/dev/null |" % (RX_PPM, frequency)
|
||||
rx_test_command += "sox -t raw -r 15k -e s -b 16 -c 1 - -r 48000 -t wav - highpass 20 2>/dev/null |"
|
||||
rx_test_command += "./rs_detect -z -t 8 2>/dev/null"
|
||||
|
||||
logging.info("Attempting sonde detection on %.3f MHz" % (frequency/1e6))
|
||||
ret_code = system(rx_test_command)
|
||||
|
||||
ret_code = ret_code >> 8
|
||||
|
||||
if ret_code == 3:
|
||||
logging.info("Detected a RS41!")
|
||||
return "RS41"
|
||||
elif ret_code == 4:
|
||||
logging.info("Detected a RS92!")
|
||||
return "RS92"
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
# $rs = "";
|
||||
# $WFM = "";
|
||||
# if (abs($ret) == 2) { $rs = "dfm"; $breite = "15k"; $dec = './dfm06 -vv --ecc'; $filter = "lowpass 2000 highpass 20"; }
|
||||
# if (abs($ret) == 3) { $rs = "rs41"; $breite = "12k"; $dec = './rs41ecc --ecc -v'; $filter = "lowpass 2600"; }
|
||||
# if (abs($ret) == 4) { $rs = "rs92"; $breite = "12k"; $dec = './rs92gps --vel2 -a almanac.txt'; $filter = "lowpass 2500 highpass 20"; }
|
||||
# if (abs($ret) == 5) { $rs = "m10"; $breite = "24k"; $dec = './m10x -vv'; $filter = "highpass 20"; }
|
||||
# if (abs($ret) == 6) { $rs = "imet"; $breite = "40k"; $dec = './imet1ab -v'; $filter = "highpass 20"; $WFM = "-o 4"; }
|
||||
# if ($inv) { print "-";} print uc($rs)," ($utc)\n";
|
||||
# $utc = strftime('%Y%m%d_%H%M%S', gmtime);
|
||||
# $wavfile = $rs."-".$utc."Z-".$freq."Hz.wav";
|
||||
# if ($rs) {
|
||||
# system("timeout 30s rtl_fm -p $ppm -M fm $WFM -s $breite -f $freq 2>/dev/null |\
|
||||
# sox -t raw -r $breite -e s -b 16 -c 1 - -r 48000 -b 8 -t wav - $filter 2>/dev/null |\
|
||||
# tee $log_dir/$wavfile | $dec $inv 2>/dev/null");
|
||||
|
||||
def process_rs92_line(line):
|
||||
try:
|
||||
|
||||
params = line.split(',')
|
||||
if len(params) < 9:
|
||||
logging.error("Not enough parameters: %s" % line)
|
||||
return
|
||||
|
||||
# Attempt to extract parameters.
|
||||
rs92_frame = {}
|
||||
rs92_frame['frame'] = int(params[0])
|
||||
rs92_frame['id'] = str(params[1])
|
||||
rs92_frame['time'] = str(params[2])
|
||||
rs92_frame['lat'] = float(params[3])
|
||||
rs92_frame['lon'] = float(params[4])
|
||||
rs92_frame['alt'] = float(params[5])
|
||||
rs92_frame['vel_h'] = float(params[6])
|
||||
rs92_frame['heading'] = float(params[7])
|
||||
rs92_frame['vel_v'] = float(params[8])
|
||||
rs92_frame['ok'] = 'OK'
|
||||
|
||||
logging.info("RS92: %s,%d,%s,%.5f,%.5f,%.1f" % (rs92_frame['id'], rs92_frame['frame'],rs92_frame['time'], rs92_frame['lat'], rs92_frame['lon'], rs92_frame['alt']))
|
||||
|
||||
return rs92_frame
|
||||
|
||||
except:
|
||||
logging.error("Could not parse string: %s" % line)
|
||||
return None
|
||||
|
||||
def decode_rs92(frequency, ppm=RX_PPM, rx_queue=None):
|
||||
""" Decode a RS92 sonde """
|
||||
decode_cmd = "rtl_fm -p %d -M fm -s 12k -f %d 2>/dev/null |" % (ppm, frequency)
|
||||
decode_cmd += "sox -t raw -r 12k -e s -b 16 -c 1 - -r 48000 -b 8 -t wav - lowpass 2500 highpass 20 2>/dev/null |"
|
||||
decode_cmd += "./rs92gps --vel2 --crc -a almanac.txt"
|
||||
|
||||
|
||||
rx_start_time = time.time()
|
||||
|
||||
rx = subprocess.Popen(decode_cmd, shell=True, stdin=None, stdout=subprocess.PIPE)
|
||||
|
||||
while True:
|
||||
try:
|
||||
line = rx.stdout.readline()
|
||||
if (line != None) and (line != ""):
|
||||
data = process_rs92_line(line)
|
||||
|
||||
if data != None:
|
||||
data['freq'] = "%.3f MHz" % (frequency/1e6)
|
||||
|
||||
if rx_queue != None:
|
||||
try:
|
||||
rx_queue.put_nowait(data)
|
||||
except:
|
||||
pass
|
||||
except:
|
||||
traceback.print_exc()
|
||||
logging.error("Could not read from rxer stdout?")
|
||||
rx.kill()
|
||||
return
|
||||
|
||||
|
||||
def internet_push_thread():
|
||||
global aprs_queue, APRS_USER, APRS_PASS, APRS_UPDATE_RATE, APRS_OUTPUT_ENABLED
|
||||
print("Started thread.")
|
||||
while APRS_OUTPUT_ENABLED:
|
||||
try:
|
||||
data = aprs_queue.get_nowait()
|
||||
except:
|
||||
continue
|
||||
|
||||
aprs_comment = "Sonde Auto-RX Test %s" % data['freq']
|
||||
if APRS_OUTPUT_ENABLED:
|
||||
aprs_data = push_balloon_to_aprs(data,aprs_comment=aprs_comment,aprsUser=APRS_USER, aprsPass=APRS_PASS)
|
||||
logging.debug("Data pushed to APRS-IS: %s" % aprs_data)
|
||||
|
||||
time.sleep(APRS_UPDATE_RATE)
|
||||
|
||||
print("Closing thread.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Run rtl_power, with a timeout
|
||||
# rtl_power -f 400400000:403500000:800 -i20 -1 log_power.csv
|
||||
rtl_power_cmd = "timeout 30 rtl_power -f %d:%d:%d -i20 -1 log_power.csv" % (MIN_FREQ, MAX_FREQ, SEARCH_STEP)
|
||||
print("Running: %s" % rtl_power_cmd)
|
||||
ret_code = system(rtl_power_cmd)
|
||||
if ret_code == 1:
|
||||
print("rtl_power call failed!")
|
||||
sys.exit(1)
|
||||
|
||||
# Read in result
|
||||
(freq, power, step) = read_rtl_power('log_power.csv')
|
||||
# Setup logging.
|
||||
logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', filename=datetime.datetime.utcnow().strftime("log/%Y%m%d-%H%M%S.log"), level=logging.DEBUG)
|
||||
logging.getLogger().addHandler(logging.StreamHandler())
|
||||
|
||||
# Rough approximation of the noise floor of the received power spectrum.
|
||||
power_nf = np.mean(power)
|
||||
sonde_freq = 0.0
|
||||
sonde_type = None
|
||||
|
||||
# Detect peaks.
|
||||
peak_indices = detect_peaks(power, mph=(power_nf+MIN_SNR), mpd=(MIN_FREQ_DISTANCE/step))
|
||||
while SEARCH_ATTEMPTS>0:
|
||||
# Scan Band
|
||||
run_rtl_power(MIN_FREQ, MAX_FREQ, SEARCH_STEP)
|
||||
|
||||
if len(peak_indices) == 0:
|
||||
print("No peaks found!")
|
||||
sys.exit(1)
|
||||
|
||||
peak_frequencies = freq[peak_indices]
|
||||
|
||||
|
||||
print("Peaks found at: %s" % str(peak_frequencies/1e6))
|
||||
# Read in result
|
||||
(freq, power, step) = read_rtl_power('log_power.csv')
|
||||
|
||||
# Rough approximation of the noise floor of the received power spectrum.
|
||||
power_nf = np.mean(power)
|
||||
|
||||
# Detect peaks.
|
||||
peak_indices = detect_peaks(power, mph=(power_nf+MIN_SNR), mpd=(MIN_FREQ_DISTANCE/step), show = False)
|
||||
|
||||
if len(peak_indices) == 0:
|
||||
logging.info("No peaks found!")
|
||||
continue
|
||||
|
||||
# Sort peaks by power.
|
||||
peak_powers = power[peak_indices]
|
||||
peak_freqs = freq[peak_indices]
|
||||
peak_frequencies = np.flip(peak_freqs[np.argsort(peak_powers)],0)
|
||||
|
||||
# Quantize to nearest 5 kHz
|
||||
peak_frequencies = quantize_freq(peak_frequencies, FREQ_QUANTIZATION)
|
||||
|
||||
logging.info("Peaks found at (MHz): %s" % str(peak_frequencies/1e6))
|
||||
|
||||
for freq in peak_frequencies:
|
||||
detected = detect_sonde(freq)
|
||||
if detected != None:
|
||||
sonde_freq = freq
|
||||
sonde_type = detected
|
||||
break
|
||||
|
||||
if sonde_type != None:
|
||||
break
|
||||
else:
|
||||
SEARCH_ATTEMPTS -= 1
|
||||
logging.warning("Search attempt failed, %d attempts remaining. Waiting %d seconds." % (SEARCH_ATTEMPTS, SEARCH_DELAY))
|
||||
time.sleep(SEARCH_DELAY)
|
||||
|
||||
if SEARCH_ATTEMPTS == 0:
|
||||
logging.error("No sondes detcted, exiting.")
|
||||
sys.exit(0)
|
||||
|
||||
logging.info("Starting decoding of %s on %.3f MHz" % (sonde_type, sonde_freq/1e6))
|
||||
|
||||
t = Thread(target=internet_push_thread)
|
||||
t.start()
|
||||
|
||||
if sonde_type == "RS92":
|
||||
decode_rs92(sonde_freq, rx_queue=aprs_queue)
|
||||
elif sonde_type == "RS41":
|
||||
logging.error("Not implemented.")
|
||||
else:
|
||||
pass
|
||||
|
||||
APRS_OUTPUT_ENABLED = False
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
#!/bin/bash
|
||||
# Radiosonde Auto-RX Script
|
||||
|
||||
# Start auto_rx process with a 3 hour timeout.
|
||||
timeout 10800 python auto_rx.py
|
||||
|
||||
# Clean up rtl_fm process.
|
||||
killall rtl_fm
|
|
@ -1287,8 +1287,8 @@ int print_position() { // GPS-Hoehe ueber Ellipsoid
|
|||
}
|
||||
|
||||
if (!err1) {
|
||||
fprintf(stdout, "[%5d] ", gpx.frnr);
|
||||
fprintf(stdout, "(%s) ", gpx.id);
|
||||
fprintf(stdout, "%5d,", gpx.frnr);
|
||||
fprintf(stdout, "%s,", gpx.id);
|
||||
}
|
||||
|
||||
if (!err2) {
|
||||
|
@ -1297,20 +1297,21 @@ int print_position() { // GPS-Hoehe ueber Ellipsoid
|
|||
//fprintf(stdout, "(W %d) ", gpx.week);
|
||||
fprintf(stdout, "(%04d-%02d-%02d) ", gpx.jahr, gpx.monat, gpx.tag);
|
||||
}
|
||||
fprintf(stdout, "%s ", weekday[gpx.wday]); // %04.1f: wenn sek >= 59.950, wird auf 60.0 gerundet
|
||||
fprintf(stdout, "%02d:%02d:%06.3f", gpx.std, gpx.min, gpx.sek);
|
||||
//fprintf(stdout, "%s ", weekday[gpx.wday]); // %04.1f: wenn sek >= 59.950, wird auf 60.0 gerundet
|
||||
fprintf(stdout, "%02d:%02d:%06.3f,", gpx.std, gpx.min, gpx.sek);
|
||||
|
||||
if (n > 0) {
|
||||
fprintf(stdout, " ");
|
||||
|
||||
if (almanac) fprintf(stdout, " lat: %.4f lon: %.4f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
|
||||
else fprintf(stdout, " lat: %.5f lon: %.5f alt: %.1f ", gpx.lat, gpx.lon, gpx.alt);
|
||||
if (almanac) fprintf(stdout, "%.4f,%.4f,%.1f,", gpx.lat, gpx.lon, gpx.alt);
|
||||
else fprintf(stdout, "%.5f,%.5f,%.1f,", gpx.lat, gpx.lon, gpx.alt);
|
||||
|
||||
if (option_verbose && option_vergps != 8) {
|
||||
fprintf(stdout, " (d:%.1f)", gpx.diter);
|
||||
}
|
||||
if (option_vel /*&& option_vergps >= 2*/) {
|
||||
fprintf(stdout," vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU);
|
||||
fprintf(stdout,"%4.1f,%5.1f,%3.1f,", gpx.vH, gpx.vD, gpx.vU);
|
||||
//fprintf(stdout," VEL: vH: %4.1f D: %5.1f° vV: %3.1f ", gpx.vH, gpx.vD, gpx.vU);
|
||||
}
|
||||
if (option_verbose) {
|
||||
if (option_vergps != 2) {
|
||||
|
|
Ładowanie…
Reference in New Issue