kopia lustrzana https://github.com/projecthorus/radiosonde_auto_rx
Add vaisala vs autorx temp/humidity comparison script.
rodzic
292f2ff3b0
commit
7047f8ea34
|
|
@ -0,0 +1,289 @@
|
|||
#!/usr/bin/env python
|
||||
#
|
||||
# Vaisala vs Auto_rx Comparisons
|
||||
#
|
||||
# Copyright (C) 2019 Mark Jessop <vk5qi@rfhead.net>
|
||||
# Released under GNU GPL v3 or later
|
||||
#
|
||||
# Compares the auto_rx calcuated temperature & humidity values with
|
||||
# truth data produced by a Vaisala ground station.
|
||||
#
|
||||
# The 'truth' data must be in vaisalas 'metdata' tab-delimited text format.
|
||||
#
|
||||
# Run with:
|
||||
# python3 compare_vaisala.py originalmetdata_20190521_0418_R0230900.txt 20190521-042102_R0230900_RS41_402200_sonde.log
|
||||
#
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import glob
|
||||
import json
|
||||
import os.path
|
||||
import pytz
|
||||
import sys
|
||||
import traceback
|
||||
import numpy as np
|
||||
# NOTE - If running on a headless system with no display, the following two lines will need to be uncommented.
|
||||
#import matplotlib as mpl
|
||||
#mpl.use('Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
from dateutil.parser import parse
|
||||
from math import radians, degrees, sin, cos, atan2, sqrt, pi
|
||||
import metpy.calc as mpcalc
|
||||
from metpy.plots import SkewT
|
||||
from metpy.units import units
|
||||
|
||||
def read_vaisala_metdata(filename):
|
||||
""" Read in a Vaisala 'metdata' tab-delimtied text file, as produced by the MW32 ground station """
|
||||
|
||||
_f = open(filename, 'r')
|
||||
|
||||
# Skip past the header.
|
||||
for i in range(22):
|
||||
_f.readline()
|
||||
|
||||
|
||||
output = []
|
||||
# Read in lines of data.
|
||||
# n Elapsed time HeightMSL Pc Pm Temp RH VirT Lat Lon HeightE Speed Dir
|
||||
for line in _f:
|
||||
try:
|
||||
_fields = line.split('\t')
|
||||
_count = int(_fields[0])
|
||||
_flight_time = int(_fields[1])
|
||||
_height_msl = int(_fields[2])
|
||||
_pressure_calc = float(_fields[3])
|
||||
_pressure_meas = float(_fields[4])
|
||||
_temp = float(_fields[5])
|
||||
_relhum = int(_fields[6])
|
||||
_virt = float(_fields[7])
|
||||
_lat = float(_fields[8])
|
||||
_lon = float(_fields[9])
|
||||
_alt = float(_fields[10])
|
||||
_vel_h = float(_fields[11])
|
||||
_heading = float(_fields[12])
|
||||
|
||||
output.append([_count, _flight_time, _height_msl, _pressure_calc, _pressure_meas, _temp, _relhum, _virt, _lat, _lon, _alt, _vel_h, _heading])
|
||||
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
return np.array(output)
|
||||
|
||||
|
||||
# Earthmaths code by Daniel Richman (thanks!)
|
||||
# Copyright 2012 (C) Daniel Richman; GNU GPL 3
|
||||
def position_info(listener, balloon):
|
||||
"""
|
||||
Calculate and return information from 2 (lat, lon, alt) tuples
|
||||
|
||||
Returns a dict with:
|
||||
|
||||
- angle at centre
|
||||
- great circle distance
|
||||
- distance in a straight line
|
||||
- bearing (azimuth or initial course)
|
||||
- elevation (altitude)
|
||||
|
||||
Input and output latitudes, longitudes, angles, bearings and elevations are
|
||||
in degrees, and input altitudes and output distances are in meters.
|
||||
"""
|
||||
|
||||
# Earth:
|
||||
radius = 6371000.0
|
||||
|
||||
(lat1, lon1, alt1) = listener
|
||||
(lat2, lon2, alt2) = balloon
|
||||
|
||||
lat1 = radians(lat1)
|
||||
lat2 = radians(lat2)
|
||||
lon1 = radians(lon1)
|
||||
lon2 = radians(lon2)
|
||||
|
||||
# Calculate the bearing, the angle at the centre, and the great circle
|
||||
# distance using Vincenty's_formulae with f = 0 (a sphere). See
|
||||
# http://en.wikipedia.org/wiki/Great_circle_distance#Formulas and
|
||||
# http://en.wikipedia.org/wiki/Great-circle_navigation and
|
||||
# http://en.wikipedia.org/wiki/Vincenty%27s_formulae
|
||||
d_lon = lon2 - lon1
|
||||
sa = cos(lat2) * sin(d_lon)
|
||||
sb = (cos(lat1) * sin(lat2)) - (sin(lat1) * cos(lat2) * cos(d_lon))
|
||||
bearing = atan2(sa, sb)
|
||||
aa = sqrt((sa ** 2) + (sb ** 2))
|
||||
ab = (sin(lat1) * sin(lat2)) + (cos(lat1) * cos(lat2) * cos(d_lon))
|
||||
angle_at_centre = atan2(aa, ab)
|
||||
great_circle_distance = angle_at_centre * radius
|
||||
|
||||
# Armed with the angle at the centre, calculating the remaining items
|
||||
# is a simple 2D triangley circley problem:
|
||||
|
||||
# Use the triangle with sides (r + alt1), (r + alt2), distance in a
|
||||
# straight line. The angle between (r + alt1) and (r + alt2) is the
|
||||
# angle at the centre. The angle between distance in a straight line and
|
||||
# (r + alt1) is the elevation plus pi/2.
|
||||
|
||||
# Use sum of angle in a triangle to express the third angle in terms
|
||||
# of the other two. Use sine rule on sides (r + alt1) and (r + alt2),
|
||||
# expand with compound angle formulae and solve for tan elevation by
|
||||
# dividing both sides by cos elevation
|
||||
ta = radius + alt1
|
||||
tb = radius + alt2
|
||||
ea = (cos(angle_at_centre) * tb) - ta
|
||||
eb = sin(angle_at_centre) * tb
|
||||
elevation = atan2(ea, eb)
|
||||
|
||||
# Use cosine rule to find unknown side.
|
||||
distance = sqrt((ta ** 2) + (tb ** 2) - 2 * tb * ta * cos(angle_at_centre))
|
||||
|
||||
# Give a bearing in range 0 <= b < 2pi
|
||||
if bearing < 0:
|
||||
bearing += 2 * pi
|
||||
|
||||
return {
|
||||
"listener": listener, "balloon": balloon,
|
||||
"listener_radians": (lat1, lon1, alt1),
|
||||
"balloon_radians": (lat2, lon2, alt2),
|
||||
"angle_at_centre": degrees(angle_at_centre),
|
||||
"angle_at_centre_radians": angle_at_centre,
|
||||
"bearing": degrees(bearing),
|
||||
"bearing_radians": bearing,
|
||||
"great_circle_distance": great_circle_distance,
|
||||
"straight_distance": distance,
|
||||
"elevation": degrees(elevation),
|
||||
"elevation_radians": elevation
|
||||
}
|
||||
|
||||
|
||||
def read_log_file(filename, decimation=10, min_altitude=100):
|
||||
# Load in the file.
|
||||
# data = np.genfromtxt(filename,delimiter=',', dtype=None)
|
||||
|
||||
# # Extract fields.
|
||||
# times = data['f0']
|
||||
# latitude = data['f3']
|
||||
# longitude = data['f4']
|
||||
# altitude = data['f5']
|
||||
# temperature = data['f6']
|
||||
# humidity = data['f7']
|
||||
|
||||
times = []
|
||||
latitude = []
|
||||
longitude = []
|
||||
altitude = []
|
||||
temperature = []
|
||||
humidity = []
|
||||
|
||||
with open(filename, 'r') as _file:
|
||||
for line in _file:
|
||||
try:
|
||||
_fields = line.split(',')
|
||||
|
||||
# Attempt to parse the line
|
||||
_time = _fields[0]
|
||||
_lat = float(_fields[3])
|
||||
_lon = float(_fields[4])
|
||||
_alt = float(_fields[5])
|
||||
_temp = float(_fields[6])
|
||||
_hum = float(_fields[7])
|
||||
|
||||
# Append data to arrays.
|
||||
times.append(_time)
|
||||
latitude.append(_lat)
|
||||
longitude.append(_lon)
|
||||
altitude.append(_alt)
|
||||
temperature.append(_temp)
|
||||
humidity.append(_hum)
|
||||
except Exception as e:
|
||||
print("Error reading line: ")
|
||||
|
||||
print("Read %d data points from %s." % (len(times), filename))
|
||||
|
||||
_output = [] # Altitude, Wind Speed, Wind Direction, Temperature, Dew Point
|
||||
# First entry, We assume all the values are unknown for now.
|
||||
_output.append([altitude[0], np.NaN, np.NaN, np.NaN, np.NaN, np.NaN])
|
||||
|
||||
_burst = False
|
||||
_startalt = altitude[0]
|
||||
|
||||
i = decimation
|
||||
while i < len(times):
|
||||
if altitude[i] < min_altitude:
|
||||
i += decimation
|
||||
continue
|
||||
|
||||
# Check if we are descending. If so, break.
|
||||
if altitude[i] < _output[-1][0]:
|
||||
_burst = True
|
||||
print("Detected burst at %d metres." % altitude[i])
|
||||
break
|
||||
|
||||
# If we have valid PTU data, calculate the dew point.
|
||||
if temperature[i] != -273:
|
||||
T = temperature[i]
|
||||
RH = humidity[i]
|
||||
DP = 243.04*(np.log(RH/100)+((17.625*T)/(243.04+T)))/(17.625-np.log(RH/100)-((17.625*T)/(243.04+T)))
|
||||
else:
|
||||
# Otherwise we insert NaNs, so data isn't plotted.
|
||||
T = np.NaN
|
||||
DP = np.NaN
|
||||
RH = np.NaN
|
||||
|
||||
# Calculate time delta between telemetry frames.
|
||||
_time = parse(times[i])
|
||||
_time_old = parse(times[i-decimation])
|
||||
_delta_seconds = (_time - _time_old).total_seconds()
|
||||
|
||||
# Calculate the movement direction and distance, and then calculate the movement speed.
|
||||
_movement = position_info((latitude[i], longitude[i], altitude[i]), (latitude[i-decimation], longitude[i-decimation], altitude[i-decimation]))
|
||||
_heading = _movement['bearing']
|
||||
_velocity = _movement['great_circle_distance']/_delta_seconds
|
||||
|
||||
_output.append([altitude[i], _velocity, _heading, T, DP, RH])
|
||||
|
||||
i += decimation
|
||||
|
||||
# Convert our output data into something we can process easier.
|
||||
return (np.array(_output), _burst, _startalt, times[-1])
|
||||
|
||||
|
||||
def comparison_plots(vaisala_data, autorx_data):
|
||||
_vaisala_alt = vaisala_data[:,2]
|
||||
_vaisala_temp = vaisala_data[:,5]
|
||||
_vaisala_rh = vaisala_data[:,6]
|
||||
|
||||
_autorx_alt = autorx_data[:,0]
|
||||
_autorx_temp = autorx_data[:,3]
|
||||
_autorx_rh = autorx_data[:,5]
|
||||
|
||||
|
||||
plt.figure()
|
||||
plt.plot(_vaisala_alt, _vaisala_temp, label="Vaisala")
|
||||
plt.plot(_autorx_alt, _autorx_temp, label="auto_rx")
|
||||
plt.xlabel("Altitude (m)")
|
||||
plt.ylabel("Temperature (degC)")
|
||||
plt.title("Temperature")
|
||||
plt.legend()
|
||||
|
||||
plt.figure()
|
||||
plt.plot(_vaisala_alt, _vaisala_rh, label="Vaisala")
|
||||
plt.plot(_autorx_alt, _autorx_rh, label="auto_rx")
|
||||
plt.xlabel("Altitude (m)")
|
||||
plt.ylabel("Relative Humidity (%)")
|
||||
plt.title("Relative Humidity")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_vaisala_filename = sys.argv[1]
|
||||
_autorx_filename = sys.argv[2]
|
||||
|
||||
vaisala_data = read_vaisala_metdata(_vaisala_filename)
|
||||
|
||||
(autorx_data, burst, startalt, lasttime) = read_log_file(_autorx_filename, decimation=1)
|
||||
|
||||
comparison_plots(vaisala_data, autorx_data)
|
||||
Ładowanie…
Reference in New Issue